code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =1.5 _lowerCAmelCase =int(factor * num_class_images ) _lowerCAmelCase =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=a__ , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=a__ ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: _lowerCAmelCase =client.query(text=a__ ) if len(a__ ) >= factor * num_class_images or num_images > 1E4: break else: _lowerCAmelCase =int(factor * num_images ) _lowerCAmelCase =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=a__ , aesthetic_weight=0.1 , ) _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =tqdm(desc='downloading real regularization images' , total=a__ ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: _lowerCAmelCase =class_images[count] count += 1 try: _lowerCAmelCase =requests.get(images['url'] ) if img.status_code == 2_0_0: _lowerCAmelCase =Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser('' , add_help=a__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=a__ , type=a__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=a__ , type=a__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_0_0 , type=a__ ) return parser.parse_args() if __name__ == "__main__": lowercase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) _lowerCAmelCase =[] for i in range(len(a__ ) - pat_len + 1 ): _lowerCAmelCase =True for j in range(a__ ): if s[i + j] != pattern[j]: _lowerCAmelCase =False break if match_found: position.append(a__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =set_counts _lowerCAmelCase =max(__A ) _lowerCAmelCase =len(__A ) _lowerCAmelCase =[1] * num_sets _lowerCAmelCase =list(range(__A ) ) def UpperCamelCase__ ( self , __A , __A ) -> bool: _lowerCAmelCase =self.get_parent(__A ) _lowerCAmelCase =self.get_parent(__A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowerCAmelCase =0 _lowerCAmelCase =dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowerCAmelCase =self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowerCAmelCase =0 _lowerCAmelCase =src_parent _lowerCAmelCase =self.set_counts[src_parent] _lowerCAmelCase =max(self.max_set , __A ) return True def UpperCamelCase__ ( self , __A ) -> int: if self.parents[disj_set] == disj_set: return disj_set _lowerCAmelCase =self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" lowercase : List[str] = 'resnet' lowercase : Union[str, Any] = ['basic', 'bottleneck'] def __init__( self , __A=3 , __A=64 , __A=[256, 512, 1024, 2048] , __A=[3, 4, 6, 3] , __A="bottleneck" , __A="relu" , __A=False , __A=None , __A=None , **__A , ) -> Optional[int]: super().__init__(**__A ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _lowerCAmelCase =num_channels _lowerCAmelCase =embedding_size _lowerCAmelCase =hidden_sizes _lowerCAmelCase =depths _lowerCAmelCase =layer_type _lowerCAmelCase =hidden_act _lowerCAmelCase =downsample_in_first_stage _lowerCAmelCase =['stem'] + [F'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )] _lowerCAmelCase , _lowerCAmelCase =get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = version.parse('1.11') @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-3
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' from jiwer import compute_measures import datasets lowercase_ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowercase_ = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowercase_ = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCamelCase__ ( self , __A=None , __A=None , __A=False ) -> str: if concatenate_texts: return compute_measures(__A , __A )["wer"] else: _lowerCAmelCase =0 _lowerCAmelCase =0 for prediction, reference in zip(__A , __A ): _lowerCAmelCase =compute_measures(__A , __A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[Any] = 'bridgetower_vision_model' def __init__( self , __A=768 , __A=12 , __A=3 , __A=16 , __A=288 , __A=1 , __A=1E-05 , __A=False , __A=True , __A=False , **__A , ) -> Optional[int]: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_channels _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_factor _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =stop_gradient _lowerCAmelCase =share_layernorm _lowerCAmelCase =remove_last_layer @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) if config_dict.get('model_type' ) == "bridgetower": _lowerCAmelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'bridgetower_text_model' def __init__( self , __A=5_0265 , __A=768 , __A=12 , __A=12 , __A=1 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=514 , __A=1 , __A=1E-05 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , **__A , ) -> Dict: super().__init__(**__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =initializer_factor _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =pad_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =eos_token_id @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) if config_dict.get('model_type' ) == "bridgetower": _lowerCAmelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Dict = 'bridgetower' def __init__( self , __A=True , __A="gelu" , __A=768 , __A=1 , __A=1E-05 , __A=False , __A="add" , __A=12 , __A=6 , __A=False , __A=False , __A=None , __A=None , **__A , ) -> Any: # TODO: remove this once the Hub files are updated. _lowerCAmelCase =kwargs.pop('text_config_dict' , __A ) _lowerCAmelCase =kwargs.pop('vision_config_dict' , __A ) super().__init__(**__A ) _lowerCAmelCase =share_cross_modal_transformer_layers _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_size _lowerCAmelCase =initializer_factor _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =share_link_tower_layers _lowerCAmelCase =link_tower_type _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =tie_word_embeddings _lowerCAmelCase =init_layernorm_from_vision_encoder if text_config is None: _lowerCAmelCase ={} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: _lowerCAmelCase ={} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) _lowerCAmelCase =BridgeTowerTextConfig(**__A ) _lowerCAmelCase =BridgeTowerVisionConfig(**__A ) @classmethod def UpperCamelCase__ ( cls , __A , __A , **__A ) -> List[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A=13 , __A=3 , __A=224 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , ) -> Any: _lowerCAmelCase =size if size is not None else {'height': 18, 'width': 18} _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =min_resolution _lowerCAmelCase =max_resolution _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean _lowerCAmelCase =image_std def UpperCamelCase__ ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : Dict = ViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =EfficientFormerImageProcessorTester(self ) @property def UpperCamelCase__ ( self ) -> int: return self.image_proc_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'image_mean' ) ) self.assertTrue(hasattr(__A , 'image_std' ) ) self.assertTrue(hasattr(__A , 'do_normalize' ) ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'size' ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass def UpperCamelCase__ ( self ) -> List[str]: # Initialize image_processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase =prepare_image_inputs(self.image_proc_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _lowerCAmelCase =image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _lowerCAmelCase =image_processor(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def UpperCamelCase__ ( self ) -> int: # Initialize image_processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase =prepare_image_inputs(self.image_proc_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _lowerCAmelCase =image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _lowerCAmelCase =image_processor(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def UpperCamelCase__ ( self ) -> List[Any]: # Initialize image_processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase =prepare_image_inputs(self.image_proc_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _lowerCAmelCase =image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _lowerCAmelCase =image_processor(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ) -> List[Any]: _lowerCAmelCase =psutil.Process() _lowerCAmelCase =False def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =-1 while True: _lowerCAmelCase =max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =True _lowerCAmelCase =threading.Thread(target=self.peak_monitor ) _lowerCAmelCase =True self.thread.start() def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =False self.thread.join() return self.cpu_memory_peak lowercase_ = PeakCPUMemory() def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ={'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase =psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase =torch.cuda.memory_allocated(a__ ) torch.cuda.reset_peak_memory_stats() return measures def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase =(psutil.Process().memory_info().rss - start_measures['cpu']) / 2**2_0 _lowerCAmelCase =(cpu_peak_tracker.stop() - start_measures['cpu']) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase =(torch.cuda.memory_allocated(a__ ) - start_measures[str(a__ )]) / 2**2_0 _lowerCAmelCase =(torch.cuda.max_memory_allocated(a__ ) - start_measures[str(a__ )]) / 2**2_0 return measures def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' print(F'''{description}:''' ) print(F'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(a__ )]:.2f}MiB''' ) _lowerCAmelCase =measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=[1, 1, 2] , __A=1 , __A=32 , __A=4 , __A=8 , __A=37 , __A="gelu_new" , __A=0.1 , __A=0.1 , __A=0.0 , __A=512 , __A=3 , __A=0.02 , __A=3 , __A=4 , __A=None , __A=False , ) -> str: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =block_sizes _lowerCAmelCase =num_decoder_layers _lowerCAmelCase =d_model _lowerCAmelCase =n_head _lowerCAmelCase =d_head _lowerCAmelCase =d_inner _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =activation_dropout _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =2 _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =scope _lowerCAmelCase =initializer_std # Used in the tests to check the size of the first attention layer _lowerCAmelCase =n_head # Used in the tests to check the size of the first hidden state _lowerCAmelCase =self.d_model # Used in the tests to check the number of output hidden states/attentions _lowerCAmelCase =sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _lowerCAmelCase =self.num_hidden_layers + 2 def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Optional[Any]: _lowerCAmelCase =TFFunnelModel(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCAmelCase =False _lowerCAmelCase =TFFunnelModel(config=__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _lowerCAmelCase =False _lowerCAmelCase =TFFunnelModel(config=__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Any: _lowerCAmelCase =TFFunnelBaseModel(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) _lowerCAmelCase =False _lowerCAmelCase =TFFunnelBaseModel(config=__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) _lowerCAmelCase =False _lowerCAmelCase =TFFunnelBaseModel(config=__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Optional[int]: _lowerCAmelCase =TFFunnelForPreTraining(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Union[str, Any]: _lowerCAmelCase =TFFunnelForMaskedLM(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Any: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFFunnelForSequenceClassification(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Tuple: _lowerCAmelCase =self.num_choices _lowerCAmelCase =TFFunnelForMultipleChoice(config=__A ) _lowerCAmelCase =tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase =tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase =tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Tuple: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFFunnelForTokenClassification(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , ) -> Tuple: _lowerCAmelCase =TFFunnelForQuestionAnswering(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowercase : Union[str, Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowercase : Tuple = False lowercase : Union[str, Any] = False def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =TFFunnelModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A ) def UpperCamelCase__ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @require_tf class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowercase : List[Any] = False lowercase : Optional[Any] = False def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =TFFunnelModelTester(self , base=__A ) _lowerCAmelCase =ConfigTester(self , config_class=__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__A ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A )
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase__ ( a__ ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return max(metric_fn(a__ , a__ ) for gt in ground_truths ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =[] if args.gold_data_mode == "qa": _lowerCAmelCase =pd.read_csv(a__ , sep='\t' , header=a__ ) for answer_list in data[1]: _lowerCAmelCase =ast.literal_eval(a__ ) answers.append(a__ ) else: _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =[[reference] for reference in references] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 for prediction, ground_truths in zip(a__ , a__ ): total += 1 em += metric_max_over_ground_truths(a__ , a__ , a__ ) fa += metric_max_over_ground_truths(a__ , a__ , a__ ) _lowerCAmelCase =100.0 * em / total _lowerCAmelCase =100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =args.k _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =_lowerCAmelCase =0 for hypo, reference in zip(a__ , a__ ): _lowerCAmelCase =set(hypo.split('\t' )[:k] ) _lowerCAmelCase =set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase =100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' def strip_title(a__ ): if title.startswith('"' ): _lowerCAmelCase =title[1:] if title.endswith('"' ): _lowerCAmelCase =title[:-1] return title _lowerCAmelCase =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a__ , return_tensors='pt' , padding=a__ , truncation=a__ , )['input_ids'].to(args.device ) _lowerCAmelCase =rag_model.rag.question_encoder(a__ ) _lowerCAmelCase =question_enc_outputs[0] _lowerCAmelCase =rag_model.retriever( a__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) _lowerCAmelCase =rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase =[] for docs in all_docs: _lowerCAmelCase =[strip_title(a__ ) for title in docs['title']] provenance_strings.append('\t'.join(a__ ) ) return provenance_strings def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a__ , return_tensors='pt' , padding=a__ , truncation=a__ ) _lowerCAmelCase =inputs_dict.input_ids.to(args.device ) _lowerCAmelCase =inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase =rag_model.generate( # rag_model overwrites generate a__ , attention_mask=a__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase =rag_model.retriever.generator_tokenizer.batch_decode(a__ , skip_special_tokens=a__ ) if args.print_predictions: for q, a in zip(a__ , a__ ): logger.info('Q: {} - A: {}'.format(a__ , a__ ) ) return answers def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=a__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=a__ , choices=['exact', 'compressed', 'legacy'] , type=a__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=a__ , type=a__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=a__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=a__ , type=a__ , required=a__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=a__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=a__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=a__ , type=a__ , required=a__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=a__ , type=a__ , required=a__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=a__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=a__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=a__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=a__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=a__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=5_0 , type=a__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={} if args.model_type is None: _lowerCAmelCase =infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): _lowerCAmelCase =RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration _lowerCAmelCase =args.n_docs if args.index_name is not None: _lowerCAmelCase =args.index_name if args.index_path is not None: _lowerCAmelCase =args.index_path else: _lowerCAmelCase =BartForConditionalGeneration _lowerCAmelCase =( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , a__ ) _lowerCAmelCase =get_scores if args.eval_mode == 'e2e' else get_precision_at_k _lowerCAmelCase =evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(a__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(a__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): _lowerCAmelCase =RagRetriever.from_pretrained(a__ , **a__ ) _lowerCAmelCase =model_class.from_pretrained(a__ , retriever=a__ , **a__ ) model.retriever.init_retrieval() else: _lowerCAmelCase =model_class.from_pretrained(a__ , **a__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: _lowerCAmelCase =[] for line in tqdm(a__ ): questions.append(line.strip() ) if len(a__ ) == args.eval_batch_size: _lowerCAmelCase =evaluate_batch_fn(a__ , a__ , a__ ) preds_file.write('\n'.join(a__ ) + '\n' ) preds_file.flush() _lowerCAmelCase =[] if len(a__ ) > 0: _lowerCAmelCase =evaluate_batch_fn(a__ , a__ , a__ ) preds_file.write('\n'.join(a__ ) ) preds_file.flush() score_fn(a__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase_ = get_args() main(args)
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[] create_all_state(1 , a__ , a__ , [] , a__ ) return result def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__ , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(a__ , total_number - level + 2 ): current_list.append(a__ ) create_all_state(i + 1 , a__ , level - 1 , a__ , a__ ) current_list.pop() def UpperCamelCase__ ( a__ ): '''simple docstring''' for i in total_list: print(*a__ ) if __name__ == "__main__": lowercase_ = 4 lowercase_ = 2 lowercase_ = generate_all_combinations(n, k) print_all_state(total_list)
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =FunnelConfig.from_json_file(a__ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase =FunnelBaseModel(a__ ) if base_model else FunnelModel(a__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(a__ , a__ , a__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) lowercase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _lowerCAmelCase =sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler('sample_euler' ) _lowerCAmelCase ='A painting of a squirrel eating a burger' _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _lowerCAmelCase =output.images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowerCAmelCase =sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler('sample_euler' ) _lowerCAmelCase ='A painting of a squirrel eating a burger' _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _lowerCAmelCase =output.images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowerCAmelCase =sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _lowerCAmelCase ='A painting of a squirrel eating a burger' _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=__A , ) _lowerCAmelCase =output.images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase =np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A , __A ) -> Tuple: _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =graph self._normalize_graph(__A , __A ) _lowerCAmelCase =len(__A ) _lowerCAmelCase =None def UpperCamelCase__ ( self , __A , __A ) -> Optional[int]: if sources is int: _lowerCAmelCase =[sources] if sinks is int: _lowerCAmelCase =[sinks] if len(__A ) == 0 or len(__A ) == 0: return _lowerCAmelCase =sources[0] _lowerCAmelCase =sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: _lowerCAmelCase =0 for i in sources: max_input_flow += sum(self.graph[i] ) _lowerCAmelCase =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _lowerCAmelCase =max_input_flow _lowerCAmelCase =0 _lowerCAmelCase =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _lowerCAmelCase =max_input_flow _lowerCAmelCase =size - 1 def UpperCamelCase__ ( self ) -> Optional[Any]: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCamelCase__ ( self , __A ) -> Dict: _lowerCAmelCase =algorithm(self ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> Dict: _lowerCAmelCase =flow_network _lowerCAmelCase =flow_network.verticesCount _lowerCAmelCase =flow_network.sourceIndex _lowerCAmelCase =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _lowerCAmelCase =flow_network.graph _lowerCAmelCase =False def UpperCamelCase__ ( self ) -> List[str]: if not self.executed: self._algorithm() _lowerCAmelCase =True def UpperCamelCase__ ( self ) -> Tuple: pass class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A ) -> List[Any]: super().__init__(__A ) # use this to save your result _lowerCAmelCase =-1 def UpperCamelCase__ ( self ) -> Dict: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A ) -> List[str]: super().__init__(__A ) _lowerCAmelCase =[[0] * self.verticies_count for i in range(self.verticies_count )] _lowerCAmelCase =[0] * self.verticies_count _lowerCAmelCase =[0] * self.verticies_count def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _lowerCAmelCase =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _lowerCAmelCase =0 while i < len(__A ): _lowerCAmelCase =vertices_list[i] _lowerCAmelCase =self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) _lowerCAmelCase =0 else: i += 1 _lowerCAmelCase =sum(self.preflow[self.source_index] ) def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def UpperCamelCase__ ( self , __A , __A ) -> List[Any]: _lowerCAmelCase =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCamelCase__ ( self , __A ) -> Optional[int]: _lowerCAmelCase =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _lowerCAmelCase =self.heights[to_index] if min_height is not None: _lowerCAmelCase =min_height + 1 if __name__ == "__main__": lowercase_ = [0] lowercase_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowercase_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowercase_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowercase_ = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase__ ( a__ = "" ): '''simple docstring''' _lowerCAmelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' _lowerCAmelCase =BeautifulSoup(requests.get(a__ ).text , 'html.parser' ) _lowerCAmelCase =soup.find_all('td' , attrs='titleColumn' ) _lowerCAmelCase =soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(a__ , a__ ) } def UpperCamelCase__ ( a__ = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' _lowerCAmelCase =get_imdb_top_aaa_movies() with open(a__ , 'w' , newline='' ) as out_file: _lowerCAmelCase =csv.writer(a__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowercase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowercase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') lowercase_ = [file for file in filepaths if ''' ''' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') lowercase_ = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') lowercase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') lowercase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' lowercase_ = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase_ = 25_6047 lowercase_ = 25_6145 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : int = NllbTokenizer lowercase : Union[str, Any] = NllbTokenizerFast lowercase : Tuple = True lowercase : Dict = True lowercase : Tuple = {} def UpperCamelCase__ ( self ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase =NllbTokenizer(__A , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =NllbTokenizer(__A , keep_accents=__A ) _lowerCAmelCase =tokenizer.tokenize('This is a test' ) self.assertListEqual(__A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCAmelCase =self.rust_tokenizer_class.from_pretrained(__A , **__A ) _lowerCAmelCase =self.tokenizer_class.from_pretrained(__A , **__A ) _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =tokenizer_r.save_pretrained(__A ) _lowerCAmelCase =tokenizer_p.save_pretrained(__A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way _lowerCAmelCase =tokenizer_r.from_pretrained(__A ) _lowerCAmelCase =tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =tokenizer_r.save_pretrained(__A , legacy_format=__A ) _lowerCAmelCase =tokenizer_p.save_pretrained(__A ) # Checks it save with the same files self.assertSequenceEqual(__A , __A ) # Checks everything loads correctly in the same way _lowerCAmelCase =tokenizer_r.from_pretrained(__A ) _lowerCAmelCase =tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =tokenizer_r.save_pretrained(__A , legacy_format=__A ) _lowerCAmelCase =tokenizer_p.save_pretrained(__A ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase =tokenizer_r.from_pretrained(__A ) _lowerCAmelCase =tokenizer_p.from_pretrained(__A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__A , __A ) ) shutil.rmtree(__A ) @require_torch def UpperCamelCase__ ( self ) -> str: if not self.test_seqaseq: return _lowerCAmelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. _lowerCAmelCase =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] _lowerCAmelCase =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: _lowerCAmelCase =tokenizer.prepare_seqaseq_batch( src_texts=__A , tgt_texts=__A , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified _lowerCAmelCase =tokenizer.prepare_seqaseq_batch( __A , tgt_texts=__A , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) _lowerCAmelCase =tokenizer.prepare_seqaseq_batch( src_texts=__A , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __A ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def UpperCamelCase__ ( self ) -> Any: pass def UpperCamelCase__ ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCAmelCase =[AddedToken('<special>' , lstrip=__A )] _lowerCAmelCase =self.rust_tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A ) _lowerCAmelCase =tokenizer_r.encode('Hey this is a <special> token' ) _lowerCAmelCase =tokenizer_r.encode('<special>' , add_special_tokens=__A )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: _lowerCAmelCase =self.rust_tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A , ) _lowerCAmelCase =self.tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , **__A ) _lowerCAmelCase =tokenizer_p.encode('Hey this is a <special> token' ) _lowerCAmelCase =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" lowercase : Optional[Any] = 'facebook/nllb-200-distilled-600M' lowercase : List[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase : Tuple = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase : int = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) _lowerCAmelCase =1 return cls def UpperCamelCase__ ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __A ) def UpperCamelCase__ ( self ) -> List[str]: self.assertIn(__A , self.tokenizer.all_special_ids ) # fmt: off _lowerCAmelCase =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on _lowerCAmelCase =self.tokenizer.decode(__A , skip_special_tokens=__A ) _lowerCAmelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__A ) self.assertEqual(__A , __A ) self.assertNotIn(self.tokenizer.eos_token , __A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __A ) _lowerCAmelCase =10 _lowerCAmelCase =self.tokenizer(__A , max_length=__A , truncation=__A ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __A ) self.assertEqual(len(__A ) , __A ) def UpperCamelCase__ ( self ) -> Optional[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__A ) _lowerCAmelCase =NllbTokenizer.from_pretrained(__A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __A ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__A , truncation=__A , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__A , __A ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) _lowerCAmelCase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __A ) self.assertEqual(__A , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =self.tokenizer(self.src_text , padding=__A , truncation=__A , max_length=3 , return_tensors='pt' ) _lowerCAmelCase =self.tokenizer( text_target=self.tgt_text , padding=__A , truncation=__A , max_length=10 , return_tensors='pt' ) _lowerCAmelCase =targets['input_ids'] _lowerCAmelCase =shift_tokens_right( __A , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__A ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) _lowerCAmelCase =False _lowerCAmelCase =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase_ = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class SCREAMING_SNAKE_CASE ( tr.AbstractTransform): """simple docstring""" def __init__( self , __A = " " ) -> str: _lowerCAmelCase =sentence_delimiter def UpperCamelCase__ ( self , __A ) -> Optional[Any]: return list(__A ) def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase =[] for sent_idx, sentence in enumerate(__A ): chars.extend(self.process_string(__A ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__A ) - 1: chars.append(self.sentence_delimiter ) return chars lowercase_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase_ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowercase_ = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' lowercase_ = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def UpperCamelCase__ ( self , __A , __A , __A=False ) -> str: if concatenate_texts: return jiwer.compute_measures( __A , __A , truth_transform=__A , hypothesis_transform=__A , )["wer"] _lowerCAmelCase =0 _lowerCAmelCase =0 for prediction, reference in zip(__A , __A ): _lowerCAmelCase =jiwer.compute_measures( __A , __A , truth_transform=__A , hypothesis_transform=__A , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = ['pixel_values'] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = IMAGENET_DEFAULT_MEAN , __A = IMAGENET_DEFAULT_STD , **__A , ) -> None: super().__init__(**__A ) _lowerCAmelCase =size if size is not None else {'shortest_edge': 224} _lowerCAmelCase =get_size_dict(__A , default_to_square=__A ) _lowerCAmelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase =get_size_dict(__A , param_name='crop_size' ) _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =resample _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase =image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__A , default_to_square=__A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase =int((256 / 224) * size['shortest_edge'] ) _lowerCAmelCase =get_resize_output_image_size(__A , size=__A , default_to_square=__A ) _lowerCAmelCase ={'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( __A , size=(size_dict['height'], size_dict['width']) , resample=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__A , size=(size['height'], size['width']) , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: return rescale(__A , scale=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> BatchFeature: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(__A , default_to_square=__A ) _lowerCAmelCase =crop_size if crop_size is not None else self.crop_size _lowerCAmelCase =get_size_dict(__A , param_name='crop_size' ) _lowerCAmelCase =make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(__A ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(__A , __A , __A ) for image in images] if do_center_crop: _lowerCAmelCase =[self.center_crop(__A , __A ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(__A , __A ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(__A , __A , __A ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(__A , __A ) for image in images] _lowerCAmelCase ={'pixel_values': images} return BatchFeature(data=__A , tensor_type=__A )
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =checkpoints.load_tax_checkpoint(a__ ) _lowerCAmelCase =flatten_dict(a__ ) return flax_params def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={} _lowerCAmelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } _lowerCAmelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _lowerCAmelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _lowerCAmelCase =new_key.replace(a__ , a__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _lowerCAmelCase =new_key.replace(a__ , a__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _lowerCAmelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , a__ ) _lowerCAmelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _lowerCAmelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , a__ ) _lowerCAmelCase =flax_dict[key] _lowerCAmelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _lowerCAmelCase =torch.from_numpy(converted_dict[key].T ) else: _lowerCAmelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCamelCase__ ( a__ , a__ , a__=False , a__=False ): '''simple docstring''' _lowerCAmelCase =get_flax_param(a__ ) if not use_large: _lowerCAmelCase =PixaStructVisionConfig() _lowerCAmelCase =PixaStructTextConfig() else: _lowerCAmelCase =PixaStructVisionConfig( hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_attention_heads=2_4 , num_hidden_layers=1_8 ) _lowerCAmelCase =PixaStructTextConfig(hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_heads=2_4 , num_layers=1_8 ) _lowerCAmelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=a__ ) _lowerCAmelCase =PixaStructForConditionalGeneration(a__ ) _lowerCAmelCase =rename_and_convert_flax_params(a__ ) model.load_state_dict(a__ ) _lowerCAmelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) _lowerCAmelCase =PixaStructImageProcessor() _lowerCAmelCase =PixaStructProcessor(image_processor=a__ , tokenizer=a__ ) if use_large: _lowerCAmelCase =4_0_9_6 _lowerCAmelCase =True # mkdir if needed os.makedirs(a__ , exist_ok=a__ ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) print('Model saved in {}'.format(a__ ) ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') lowercase_ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import argparse from collections import defaultdict import yaml lowercase_ = '''docs/source/en/_toctree.yml''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =defaultdict(a__ ) _lowerCAmelCase =[] _lowerCAmelCase =[] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(a__ ) _lowerCAmelCase =new_doc_list _lowerCAmelCase =[key for key, value in counts.items() if value > 1] _lowerCAmelCase =[] for duplicate_key in duplicates: _lowerCAmelCase =list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(a__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowerCAmelCase =sorted(a__ , key=lambda a__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(a__ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(a__ ) # Sort return overview_doc def UpperCamelCase__ ( a__=False ): '''simple docstring''' with open(a__ , encoding='utf-8' ) as f: _lowerCAmelCase =yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase =0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase =content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase =0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase =api_doc[scheduler_idx]['sections'] _lowerCAmelCase =clean_doc_toc(a__ ) _lowerCAmelCase =False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase =True if overwrite: _lowerCAmelCase =new_scheduler_doc if diff: if overwrite: _lowerCAmelCase =api_doc with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(a__ , allow_unicode=a__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase__ ( a__=False ): '''simple docstring''' with open(a__ , encoding='utf-8' ) as f: _lowerCAmelCase =yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase =0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase =content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase =0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase =False _lowerCAmelCase =api_doc[pipeline_idx]['sections'] _lowerCAmelCase =[] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase =pipeline_doc['section'] _lowerCAmelCase =clean_doc_toc(a__ ) if overwrite: _lowerCAmelCase =new_sub_pipeline_doc new_pipeline_docs.append(a__ ) # sort overall pipeline doc _lowerCAmelCase =clean_doc_toc(a__ ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase =True if overwrite: _lowerCAmelCase =new_pipeline_docs if diff: if overwrite: _lowerCAmelCase =api_doc with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(a__ , allow_unicode=a__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase_ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase__ ( a__ , a__ = "cpu" , a__ = None ): '''simple docstring''' _lowerCAmelCase =torch.load(a__ , map_location=a__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(a__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _lowerCAmelCase =v.half() if save_path is None: # overwrite src_path _lowerCAmelCase =src_path torch.save(a__ , a__ ) if __name__ == "__main__": fire.Fire(convert)
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] ) def UpperCamelCase__ ( a__ ): '''simple docstring''' if (len(a__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(a__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =WavaVecaForSequenceClassification.from_pretrained(a__ , config=a__ ) _lowerCAmelCase =downstream_dict['projector.weight'] _lowerCAmelCase =downstream_dict['projector.bias'] _lowerCAmelCase =downstream_dict['model.post_net.linear.weight'] _lowerCAmelCase =downstream_dict['model.post_net.linear.bias'] return model def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =WavaVecaForAudioFrameClassification.from_pretrained(a__ , config=a__ ) _lowerCAmelCase =downstream_dict['model.linear.weight'] _lowerCAmelCase =downstream_dict['model.linear.bias'] return model def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =WavaVecaForXVector.from_pretrained(a__ , config=a__ ) _lowerCAmelCase =downstream_dict['connector.weight'] _lowerCAmelCase =downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCAmelCase =downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _lowerCAmelCase =downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _lowerCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _lowerCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _lowerCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _lowerCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _lowerCAmelCase =downstream_dict['objective.W'] return model @torch.no_grad() def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =torch.load(a__ , map_location='cpu' ) _lowerCAmelCase =checkpoint['Downstream'] _lowerCAmelCase =WavaVecaConfig.from_pretrained(a__ ) _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained( a__ , return_attention_mask=a__ , do_normalize=a__ ) _lowerCAmelCase =hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _lowerCAmelCase =convert_classification(a__ , a__ , a__ ) elif arch.endswith('ForAudioFrameClassification' ): _lowerCAmelCase =convert_diarization(a__ , a__ , a__ ) elif arch.endswith('ForXVector' ): _lowerCAmelCase =convert_xvector(a__ , a__ , a__ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _lowerCAmelCase =checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') lowercase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ = False ): '''simple docstring''' if not isinstance(a__ , a__ ): _lowerCAmelCase =F'''Expected string as input, found {type(a__ )}''' raise ValueError(a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase =F'''Expected boolean as use_pascal parameter, found {type(a__ )}''' raise ValueError(a__ ) _lowerCAmelCase =input_str.split('_' ) _lowerCAmelCase =0 if use_pascal else 1 _lowerCAmelCase =words[start_index:] _lowerCAmelCase =[word[0].upper() + word[1:] for word in words_to_capitalize] _lowerCAmelCase ='' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__lowercase) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , *__A , **__A ) -> Optional[int]: super().__init__(*__A , **__A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase__ ( self , __A=None , __A=None , __A=None ) -> Tuple: _lowerCAmelCase ={} _lowerCAmelCase ={} if prompt is not None: _lowerCAmelCase =prompt if generate_kwargs is not None: _lowerCAmelCase =generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _lowerCAmelCase ={} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _lowerCAmelCase =max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , __A , **__A ) -> str: return super().__call__(__A , **__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> Union[str, Any]: _lowerCAmelCase =load_image(__A ) if prompt is not None: if not isinstance(__A , __A ): raise ValueError( F'''Received an invalid text input, got - {type(__A )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _lowerCAmelCase =self.model.config.model_type if model_type == "git": _lowerCAmelCase =self.image_processor(images=__A , return_tensors=self.framework ) _lowerCAmelCase =self.tokenizer(text=__A , add_special_tokens=__A ).input_ids _lowerCAmelCase =[self.tokenizer.cls_token_id] + input_ids _lowerCAmelCase =torch.tensor(__A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _lowerCAmelCase =self.image_processor(images=__A , header_text=__A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _lowerCAmelCase =self.image_processor(images=__A , return_tensors=self.framework ) _lowerCAmelCase =self.tokenizer(__A , return_tensors=self.framework ) model_inputs.update(__A ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: _lowerCAmelCase =self.image_processor(images=__A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _lowerCAmelCase =None return model_inputs def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , __A ) and all(x is None for x in model_inputs['input_ids'] ) ): _lowerCAmelCase =None if generate_kwargs is None: _lowerCAmelCase ={} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _lowerCAmelCase =model_inputs.pop(self.model.main_input_name ) _lowerCAmelCase =self.model.generate(__A , **__A , **__A ) return model_outputs def UpperCamelCase__ ( self , __A ) -> List[str]: _lowerCAmelCase =[] for output_ids in model_outputs: _lowerCAmelCase ={ 'generated_text': self.tokenizer.decode( __A , skip_special_tokens=__A , ) } records.append(__A ) return records
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) _lowerCAmelCase =parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(a__ ) DownloadCommand.register_subcommand(a__ ) EnvironmentCommand.register_subcommand(a__ ) RunCommand.register_subcommand(a__ ) ServeCommand.register_subcommand(a__ ) UserCommands.register_subcommand(a__ ) AddNewModelCommand.register_subcommand(a__ ) AddNewModelLikeCommand.register_subcommand(a__ ) LfsCommands.register_subcommand(a__ ) PTtoTFCommand.register_subcommand(a__ ) # Let's go _lowerCAmelCase =parser.parse_args() if not hasattr(a__ , 'func' ): parser.print_help() exit(1 ) # Run _lowerCAmelCase =args.func(a__ ) service.run() if __name__ == "__main__": main()
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def UpperCamelCase__ ( a__ = 1_0_0_0_0_0_0 , a__ = 1_0 ): '''simple docstring''' _lowerCAmelCase =defaultdict(a__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _lowerCAmelCase =max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _lowerCAmelCase =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(a__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F'{solution() = }')
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =torch.exp(a__ ) _lowerCAmelCase =torch.sum(a__ , dim=1 ) # sum of exp(x_i) _lowerCAmelCase =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a__ ) - B / A class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =config.output_attentions _lowerCAmelCase =config.output_hidden_states _lowerCAmelCase =nn.ModuleList([BertLayer(__A ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase =nn.ModuleList([BertHighway(__A ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase =[-1 for _ in range(config.num_hidden_layers )] def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: if (type(__A ) is float) or (type(__A ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCAmelCase =x else: _lowerCAmelCase =x def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: _lowerCAmelCase =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , ) -> Union[str, Any]: _lowerCAmelCase =() _lowerCAmelCase =() _lowerCAmelCase =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCAmelCase =all_hidden_states + (hidden_states,) _lowerCAmelCase =layer_module( __A , __A , head_mask[i] , __A , __A ) _lowerCAmelCase =layer_outputs[0] if self.output_attentions: _lowerCAmelCase =all_attentions + (layer_outputs[1],) _lowerCAmelCase =(hidden_states,) if self.output_hidden_states: _lowerCAmelCase =current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase =current_outputs + (all_attentions,) _lowerCAmelCase =self.highway[i](__A ) # logits, pooled_output if not self.training: _lowerCAmelCase =highway_exit[0] _lowerCAmelCase =entropy(__A ) _lowerCAmelCase =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCAmelCase =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCAmelCase =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__A , i + 1 ) else: _lowerCAmelCase =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCAmelCase =all_hidden_states + (hidden_states,) _lowerCAmelCase =(hidden_states,) if self.output_hidden_states: _lowerCAmelCase =outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase =outputs + (all_attentions,) _lowerCAmelCase =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , __lowercase , ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A ) -> Dict: super().__init__(__A ) _lowerCAmelCase =config _lowerCAmelCase =BertEmbeddings(__A ) _lowerCAmelCase =DeeBertEncoder(__A ) _lowerCAmelCase =BertPooler(__A ) self.init_weights() def UpperCamelCase__ ( self ) -> Dict: self.encoder.init_highway_pooler(self.pooler ) def UpperCamelCase__ ( self ) -> Any: return self.embeddings.word_embeddings def UpperCamelCase__ ( self , __A ) -> Tuple: _lowerCAmelCase =value def UpperCamelCase__ ( self , __A ) -> List[str]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__A ) @add_start_docstrings_to_model_forward(__A ) def UpperCamelCase__ ( self , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> int: if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowerCAmelCase =input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase =inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowerCAmelCase =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase =torch.ones(__A , device=__A ) if encoder_attention_mask is None: _lowerCAmelCase =torch.ones(__A , device=__A ) if token_type_ids is None: _lowerCAmelCase =torch.zeros(__A , dtype=torch.long , device=__A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase =self.get_extended_attention_mask(__A , __A , __A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCAmelCase =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCAmelCase =encoder_attention_mask[:, None, None, :] _lowerCAmelCase =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCAmelCase =(1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase =self.get_head_mask(__A , self.config.num_hidden_layers ) _lowerCAmelCase =self.embeddings( input_ids=__A , position_ids=__A , token_type_ids=__A , inputs_embeds=__A ) _lowerCAmelCase =self.encoder( __A , attention_mask=__A , head_mask=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , ) _lowerCAmelCase =encoder_outputs[0] _lowerCAmelCase =self.pooler(__A ) _lowerCAmelCase =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A ) -> Dict: _lowerCAmelCase =message _lowerCAmelCase =exit_layer # start from 1! class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A ) -> int: super().__init__() _lowerCAmelCase =BertPooler(__A ) _lowerCAmelCase =nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase =nn.Linear(config.hidden_size , config.num_labels ) def UpperCamelCase__ ( self , __A ) -> int: # Pooler _lowerCAmelCase =encoder_outputs[0] _lowerCAmelCase =self.pooler(__A ) # "return" pooler_output # BertModel _lowerCAmelCase =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCAmelCase =bmodel_output[1] _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.classifier(__A ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , __lowercase , ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A ) -> Union[str, Any]: super().__init__(__A ) _lowerCAmelCase =config.num_labels _lowerCAmelCase =config.num_hidden_layers _lowerCAmelCase =DeeBertModel(__A ) _lowerCAmelCase =nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__A ) def UpperCamelCase__ ( self , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=-1 , __A=False , ) -> Tuple: _lowerCAmelCase =self.num_layers try: _lowerCAmelCase =self.bert( __A , attention_mask=__A , token_type_ids=__A , position_ids=__A , head_mask=__A , inputs_embeds=__A , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCAmelCase =outputs[1] _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.classifier(__A ) _lowerCAmelCase =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase =e.message _lowerCAmelCase =e.exit_layer _lowerCAmelCase =outputs[0] if not self.training: _lowerCAmelCase =entropy(__A ) _lowerCAmelCase =[] _lowerCAmelCase =[] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase =MSELoss() _lowerCAmelCase =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase =CrossEntropyLoss() _lowerCAmelCase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase =[] for highway_exit in outputs[-1]: _lowerCAmelCase =highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase =MSELoss() _lowerCAmelCase =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase =CrossEntropyLoss() _lowerCAmelCase =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: _lowerCAmelCase =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase =(loss,) + outputs if not self.training: _lowerCAmelCase =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' import argparse import datetime def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={ '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCAmelCase ={0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(a__ ) < 1_1: raise ValueError('Must be 10 characters long' ) # Get month _lowerCAmelCase =int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('Month must be between 1 - 12' ) _lowerCAmelCase =date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCAmelCase =int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCAmelCase =date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCAmelCase =int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCAmelCase =datetime.date(int(a__ ) , int(a__ ) , int(a__ ) ) # Start math if m <= 2: _lowerCAmelCase =y - 1 _lowerCAmelCase =m + 1_2 # maths var _lowerCAmelCase =int(str(a__ )[:2] ) _lowerCAmelCase =int(str(a__ )[2:] ) _lowerCAmelCase =int(2.6 * m - 5.39 ) _lowerCAmelCase =int(c / 4 ) _lowerCAmelCase =int(k / 4 ) _lowerCAmelCase =int(d + k ) _lowerCAmelCase =int(t + u + v + x ) _lowerCAmelCase =int(z - (2 * c) ) _lowerCAmelCase =round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCAmelCase =F'''Your date {date_input}, is a {days[str(a__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowercase_ = parser.parse_args() zeller(args.date_input)
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A = "cpu" , __A = "openai/clip-vit-large-patch14" ) -> None: _lowerCAmelCase =device _lowerCAmelCase =CLIPTokenizerFast.from_pretrained(__A ) _lowerCAmelCase =[0.48_145_466, 0.4_578_275, 0.40_821_073] _lowerCAmelCase =[0.26_862_954, 0.26_130_258, 0.27_577_711] _lowerCAmelCase =torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCAmelCase =torchvision.transforms.Resize(224 ) _lowerCAmelCase =torchvision.transforms.CenterCrop(224 ) def UpperCamelCase__ ( self , __A ) -> List[str]: _lowerCAmelCase =self.resize(__A ) _lowerCAmelCase =self.center_crop(__A ) _lowerCAmelCase =self.normalize(__A ) return images def __call__( self , __A=None , __A=None , **__A ) -> List[Any]: _lowerCAmelCase =self.tokenizer(text=__A , **__A ) _lowerCAmelCase =self.preprocess_img(__A ) _lowerCAmelCase ={key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A=10 , __A=0.01 , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=False , __A=True , __A="image" , __A=True , __A=False , __A=False , __A=False , ) -> None: super().__init__() _lowerCAmelCase =None _lowerCAmelCase =device if device else get_device() if vqgan: _lowerCAmelCase =vqgan else: _lowerCAmelCase =load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: _lowerCAmelCase =clip else: _lowerCAmelCase =CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) _lowerCAmelCase =ProcessorGradientFlow(device=self.device ) _lowerCAmelCase =iterations _lowerCAmelCase =lr _lowerCAmelCase =log _lowerCAmelCase =make_grid _lowerCAmelCase =return_val _lowerCAmelCase =quantize _lowerCAmelCase =self.vqgan.decoder.z_shape def UpperCamelCase__ ( self , __A=None , __A=None , __A=5 , __A=True ) -> Dict: _lowerCAmelCase =[] if output_path is None: _lowerCAmelCase ='./animation.gif' if input_path is None: _lowerCAmelCase =self.save_path _lowerCAmelCase =sorted(glob(input_path + '/*' ) ) if not len(__A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(__A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) _lowerCAmelCase =total_duration / len(__A ) _lowerCAmelCase =[frame_duration] * len(__A ) if extend_frames: _lowerCAmelCase =1.5 _lowerCAmelCase =3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(F'''gif saved to {output_path}''' ) def UpperCamelCase__ ( self , __A=None , __A=None ) -> List[Any]: if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError _lowerCAmelCase =preprocess(Image.open(__A ) , target_image_size=256 ).to(self.device ) _lowerCAmelCase =preprocess_vqgan(__A ) _lowerCAmelCase , *_lowerCAmelCase =self.vqgan.encode(__A ) return z def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase =self.latent.detach().requires_grad_() _lowerCAmelCase =base_latent + transform_vector if self.quantize: _lowerCAmelCase , *_lowerCAmelCase =self.vqgan.quantize(__A ) else: _lowerCAmelCase =trans_latent return self.vqgan.decode(__A ) def UpperCamelCase__ ( self , __A , __A , __A=None ) -> Any: _lowerCAmelCase =self.clip_preprocessor(text=__A , images=__A , return_tensors='pt' , padding=__A ) _lowerCAmelCase =self.clip(**__A ) _lowerCAmelCase =clip_outputs.logits_per_image if weights is not None: _lowerCAmelCase =similarity_logits * weights return similarity_logits.sum() def UpperCamelCase__ ( self , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =self._get_clip_similarity(pos_prompts['prompts'] , __A , weights=(1 / pos_prompts['weights']) ) if neg_prompts: _lowerCAmelCase =self._get_clip_similarity(neg_prompts['prompts'] , __A , weights=neg_prompts['weights'] ) else: _lowerCAmelCase =torch.tensor([1] , device=self.device ) _lowerCAmelCase =-torch.log(__A ) + torch.log(__A ) return loss def UpperCamelCase__ ( self , __A , __A , __A ) -> str: _lowerCAmelCase =torch.randn_like(self.latent , requires_grad=__A , device=self.device ) _lowerCAmelCase =torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCAmelCase =self._add_vector(__A ) _lowerCAmelCase =loop_post_process(__A ) _lowerCAmelCase =self._get_CLIP_loss(__A , __A , __A ) print('CLIP loss' , __A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: wandb.init(reinit=__A , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: _lowerCAmelCase =Image.open(__A ) _lowerCAmelCase =image.resize((256, 256) ) wandb.log('Original Image' , wandb.Image(__A ) ) def UpperCamelCase__ ( self , __A ) -> int: if not prompts: return [] _lowerCAmelCase =[] _lowerCAmelCase =[] if isinstance(__A , __A ): _lowerCAmelCase =[prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(__A , (tuple, list) ): _lowerCAmelCase =prompt[0] _lowerCAmelCase =float(prompt[1] ) elif ":" in prompt: _lowerCAmelCase , _lowerCAmelCase =prompt.split(':' ) _lowerCAmelCase =float(__A ) else: _lowerCAmelCase =prompt _lowerCAmelCase =1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=True , __A=False , __A=True , __A=True , __A=None , ) -> Dict: if image_path: _lowerCAmelCase =self._get_latent(__A ) else: _lowerCAmelCase =torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCAmelCase =self.process_prompts(__A ) _lowerCAmelCase =self.process_prompts(__A ) if save_final and save_path is None: _lowerCAmelCase =os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: _lowerCAmelCase =save_path + '_' + get_timestamp() os.makedirs(__A ) _lowerCAmelCase =save_path _lowerCAmelCase =self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(__A ) ) _lowerCAmelCase =loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'Image': wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' import argparse import json import subprocess def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[] _lowerCAmelCase =( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) _lowerCAmelCase =subprocess.run(a__ , shell=a__ , stdout=subprocess.PIPE ) _lowerCAmelCase =output.stdout.decode('utf-8' ) _lowerCAmelCase =json.loads(a__ ) _lowerCAmelCase =status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(a__ ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(a__ ) ) if len(a__ ) > 0: _lowerCAmelCase ='\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def UpperCamelCase__ ( a__ ): '''simple docstring''' return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A=7 , __A=3 , __A=18 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=None , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , ) -> Optional[int]: _lowerCAmelCase =size if size is not None else {'shortest_edge': 18} _lowerCAmelCase =crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =min_resolution _lowerCAmelCase =max_resolution _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean _lowerCAmelCase =image_std def UpperCamelCase__ ( self ) -> Dict: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : int = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'image_mean' ) ) self.assertTrue(hasattr(__A , 'image_std' ) ) self.assertTrue(hasattr(__A , 'do_normalize' ) ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'do_center_crop' ) ) self.assertTrue(hasattr(__A , 'size' ) ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ) -> List[str]: pass def UpperCamelCase__ ( self ) -> Optional[Any]: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ) -> int: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ) -> int: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import os lowercase_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =0 while index < len(a__ ) - 1: _lowerCAmelCase =SYMBOLS[numerals[index]] _lowerCAmelCase =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ='' _lowerCAmelCase =num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 _lowerCAmelCase =num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 _lowerCAmelCase =num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase__ ( a__ = "/p089_roman.txt" ): '''simple docstring''' _lowerCAmelCase =0 with open(os.path.dirname(a__ ) + roman_numerals_filename ) as filea: _lowerCAmelCase =filea.readlines() for line in lines: _lowerCAmelCase =line.strip() _lowerCAmelCase =parse_roman_numerals(a__ ) _lowerCAmelCase =generate_roman_numerals(a__ ) savings += len(a__ ) - len(a__ ) return savings if __name__ == "__main__": print(F'{solution() = }')
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def UpperCamelCase__ ( a__=None , a__=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=a__ ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : str = field( metadata={'help': 'The csv file to plot.'} , ) lowercase : bool = field( default=__lowercase , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) lowercase : bool = field( default=__lowercase , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) lowercase : bool = field( default=__lowercase , metadata={'help': 'Disable logarithmic scale when plotting'} , ) lowercase : bool = field( default=__lowercase , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) lowercase : Optional[str] = field( default=__lowercase , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) lowercase : Optional[List[str]] = list_field( default=__lowercase , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'}) def UpperCamelCase__ ( a__ ): '''simple docstring''' try: int(a__ ) return True except ValueError: return False def UpperCamelCase__ ( a__ ): '''simple docstring''' try: float(a__ ) return True except ValueError: return False class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> List[Any]: _lowerCAmelCase =args _lowerCAmelCase =defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: _lowerCAmelCase =csv.DictReader(__A ) for row in reader: _lowerCAmelCase =row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _lowerCAmelCase =int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _lowerCAmelCase =float(row['result'] ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase =plt.subplots() _lowerCAmelCase ='Time usage' if self.args.is_time else 'Memory usage' _lowerCAmelCase =title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _lowerCAmelCase =sorted(set(self.result_dict[model_name]['bsz'] ) ) _lowerCAmelCase =sorted(set(self.result_dict[model_name]['seq_len'] ) ) _lowerCAmelCase =self.result_dict[model_name]['result'] ((_lowerCAmelCase) , (_lowerCAmelCase)) =( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _lowerCAmelCase =( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _lowerCAmelCase =np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__A , ) else: _lowerCAmelCase =np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_lowerCAmelCase) , (_lowerCAmelCase)) =( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _lowerCAmelCase =np.asarray(__A , __A )[: len(__A )] plt.scatter( __A , __A , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__A , __A , '--' ) title_str += F''' {label_model_name} vs.''' _lowerCAmelCase =title_str[:-4] _lowerCAmelCase ='Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__A ) plt.xlabel(__A ) plt.ylabel(__A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =HfArgumentParser(a__ ) _lowerCAmelCase =parser.parse_args_into_dataclasses()[0] _lowerCAmelCase =Plot(args=a__ ) plot.plot() if __name__ == "__main__": main()
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=99 , __A=13 , __A=16 , __A=7 , __A=True , __A=True , __A=True , __A=False , __A=True , __A=2 , __A=32 , __A=4 , __A=4 , __A=30 , __A=0 , __A=1 , __A=2 , __A=None , ) -> Dict: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ ( self , __A , __A , __A , __A , ) -> Union[str, Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__A ).to(__A ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__A , use_cache=__A ) _lowerCAmelCase =model(__A ) _lowerCAmelCase =model(__A , use_cache=__A ) self.parent.assertTrue(len(__A ) == len(__A ) ) self.parent.assertTrue(len(__A ) == len(__A ) + 1 ) _lowerCAmelCase =outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__A )['last_hidden_state'] _lowerCAmelCase =model(__A , past_key_values=__A )['last_hidden_state'] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__A , __A , atol=1E-3 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Optional[int] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase : Optional[int] = (TrOCRForCausalLM,) if is_torch_available() else () lowercase : Optional[int] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowercase : Union[str, Any] = True lowercase : Union[str, Any] = False def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__A ) _lowerCAmelCase =ConfigTester(self , config_class=__A ) def UpperCamelCase__ ( self ) -> Optional[int]: pass def UpperCamelCase__ ( self ) -> Any: pass def UpperCamelCase__ ( self ) -> Optional[Any]: pass def UpperCamelCase__ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__A ) def UpperCamelCase__ ( self ) -> Optional[int]: return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' if curr_ind == len(a__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(a__ ) ): if valid_connection(a__ , a__ , a__ , a__ ): # Insert current vertex into path as next transition _lowerCAmelCase =next_ver # Validate created path if util_hamilton_cycle(a__ , a__ , curr_ind + 1 ): return True # Backtrack _lowerCAmelCase =-1 return False def UpperCamelCase__ ( a__ , a__ = 0 ): '''simple docstring''' _lowerCAmelCase =[-1] * (len(a__ ) + 1) # initialize start and end of path with starting index _lowerCAmelCase =_lowerCAmelCase =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(a__ , a__ , 1 ) else []
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase ={ 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCAmelCase ={ 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } _lowerCAmelCase =F'''{src_lang}-{tgt_lang}''' _lowerCAmelCase =F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(a__ , exist_ok=a__ ) _lowerCAmelCase =os.path.join(a__ , 'README.md' ) print(F'''Generating {path}''' ) with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(a__ ) # make sure we are under the root of the project lowercase_ = Path(__file__).resolve().parent.parent.parent lowercase_ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase_ , lowercase_ , lowercase_ = model_name.split('''-''') lowercase_ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : float lowercase : TreeNode | None = None lowercase : TreeNode | None = None def UpperCamelCase__ ( a__ ): '''simple docstring''' def is_valid_tree(a__ ) -> bool: if node is None: return True if not isinstance(a__ , a__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(a__ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( a__ , a__ , a__ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , a__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , a__ ) ) return is_binary_search_tree_recursive_check(a__ , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = (EulerDiscreteScheduler,) lowercase : Optional[Any] = 10 def UpperCamelCase__ ( self , **__A ) -> Union[str, Any]: _lowerCAmelCase ={ 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__A ) return config def UpperCamelCase__ ( self ) -> Any: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def UpperCamelCase__ ( self ) -> List[Any]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def UpperCamelCase__ ( self ) -> List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def UpperCamelCase__ ( self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A , generator=__A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config(prediction_type='v_prediction' ) _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A , generator=__A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.26_76E-06 ) < 1E-3 def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCAmelCase =sample.to(__A ) for t in scheduler.timesteps: _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A , generator=__A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A , use_karras_sigmas=__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCAmelCase =sample.to(__A ) for t in scheduler.timesteps: _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A , generator=__A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =(1 - _cos) / 2 _lowerCAmelCase =1 - _cos _lowerCAmelCase =1 + alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =(1 + _cos) / 2 _lowerCAmelCase =-1 - _cos _lowerCAmelCase =1 + alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =_sin / 2 _lowerCAmelCase =0 _lowerCAmelCase =-ba _lowerCAmelCase =1 + alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1 - alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 + alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1_0 ** (gain_db / 4_0) _lowerCAmelCase =1 + alpha * big_a _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha * big_a _lowerCAmelCase =1 + alpha / big_a _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha / big_a _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1_0 ** (gain_db / 4_0) _lowerCAmelCase =(big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase =(big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase =(big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase =(big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase =2 * sqrt(a__ ) * alpha _lowerCAmelCase =big_a * (pmc + aaa) _lowerCAmelCase =2 * big_a * mpc _lowerCAmelCase =big_a * (pmc - aaa) _lowerCAmelCase =ppmc + aaa _lowerCAmelCase =-2 * pmpc _lowerCAmelCase =ppmc - aaa _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1_0 ** (gain_db / 4_0) _lowerCAmelCase =(big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase =(big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase =(big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase =(big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase =2 * sqrt(a__ ) * alpha _lowerCAmelCase =big_a * (ppmc + aaa) _lowerCAmelCase =-2 * big_a * pmpc _lowerCAmelCase =big_a * (ppmc - aaa) _lowerCAmelCase =pmc + aaa _lowerCAmelCase =2 * mpc _lowerCAmelCase =pmc - aaa _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from collections.abc import Generator def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =0, 1 while True: _lowerCAmelCase , _lowerCAmelCase =b, a + b yield b def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = ['pixel_values'] def __init__( self , __A = True , __A = 32 , __A=PILImageResampling.BILINEAR , __A = True , **__A , ) -> None: _lowerCAmelCase =do_resize _lowerCAmelCase =do_rescale _lowerCAmelCase =size_divisor _lowerCAmelCase =resample super().__init__(**__A ) def UpperCamelCase__ ( self , __A , __A , __A , __A = None , **__A ) -> np.ndarray: _lowerCAmelCase , _lowerCAmelCase =get_image_size(__A ) # Rounds the height and width down to the closest multiple of size_divisor _lowerCAmelCase =height // size_divisor * size_divisor _lowerCAmelCase =width // size_divisor * size_divisor _lowerCAmelCase =resize(__A , (new_h, new_w) , resample=__A , data_format=__A , **__A ) return image def UpperCamelCase__ ( self , __A , __A , __A = None , **__A ) -> np.ndarray: return rescale(image=__A , scale=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A=None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> BatchFeature: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =size_divisor if size_divisor is not None else self.size_divisor _lowerCAmelCase =resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) _lowerCAmelCase =make_list_of_images(__A ) if not valid_images(__A ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(__A ) for img in images] if do_resize: _lowerCAmelCase =[self.resize(__A , size_divisor=__A , resample=__A ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(__A , scale=1 / 255 ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(__A , __A ) for image in images] _lowerCAmelCase ={'pixel_values': images} return BatchFeature(data=__A , tensor_type=__A )
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import argparse import os import re import packaging.version lowercase_ = '''examples/''' lowercase_ = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowercase_ = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } lowercase_ = '''README.md''' def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' with open(a__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase =f.read() _lowerCAmelCase , _lowerCAmelCase =REPLACE_PATTERNS[pattern] _lowerCAmelCase =replace.replace('VERSION' , a__ ) _lowerCAmelCase =re_pattern.sub(a__ , a__ ) with open(a__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(a__ ) def UpperCamelCase__ ( a__ ): '''simple docstring''' for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern='examples' ) def UpperCamelCase__ ( a__ , a__=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='🤗 Transformers currently provides the following architectures' _lowerCAmelCase ='1. Want to contribute a new model?' with open(a__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase =f.readlines() # Find the start of the list. _lowerCAmelCase =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _lowerCAmelCase =lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(a__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a__ ) def UpperCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: _lowerCAmelCase =f.read() _lowerCAmelCase =REPLACE_PATTERNS['init'][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def UpperCamelCase__ ( a__=False ): '''simple docstring''' _lowerCAmelCase =get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _lowerCAmelCase =default_version.base_version elif patch: _lowerCAmelCase =F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _lowerCAmelCase =F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _lowerCAmelCase =input(F'''Which version are you releasing? [{default_version}]''' ) if len(a__ ) == 0: _lowerCAmelCase =default_version print(F'''Updating version to {version}.''' ) global_version_update(a__ , patch=a__ ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =get_version() _lowerCAmelCase =F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _lowerCAmelCase =current_version.base_version # Check with the user we got that right. _lowerCAmelCase =input(F'''Which version are we developing now? [{dev_version}]''' ) if len(a__ ) == 0: _lowerCAmelCase =dev_version print(F'''Updating version to {version}.''' ) global_version_update(a__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowercase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True}) lowercase : ClassVar[Features] = Features({'audio': Audio()}) lowercase : ClassVar[Features] = Features({'transcription': Value('string')}) lowercase : str = "audio" lowercase : str = "transcription" def UpperCamelCase__ ( self , __A ) -> Tuple: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , __A ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) _lowerCAmelCase =copy.deepcopy(self ) _lowerCAmelCase =self.input_schema.copy() _lowerCAmelCase =features[self.audio_column] _lowerCAmelCase =input_schema return task_template @property def UpperCamelCase__ ( self ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A , __A = None , __A = None ) -> Tuple: super().__init__() _lowerCAmelCase =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCAmelCase =torch.zeros(__A , __A ) else: _lowerCAmelCase =None _lowerCAmelCase =torch.nn.Parameter(__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : VQModel lowercase : CLIPTextModel lowercase : CLIPTokenizer lowercase : TransformeraDModel lowercase : LearnedClassifierFreeSamplingEmbeddings lowercase : VQDiffusionScheduler def __init__( self , __A , __A , __A , __A , __A , __A , ) -> int: super().__init__() self.register_modules( vqvae=__A , transformer=__A , text_encoder=__A , tokenizer=__A , scheduler=__A , learned_classifier_free_sampling_embeddings=__A , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: _lowerCAmelCase =len(__A ) if isinstance(__A , __A ) else 1 # get prompt text embeddings _lowerCAmelCase =self.tokenizer( __A , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowerCAmelCase =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _lowerCAmelCase =text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCAmelCase =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__A ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase =prompt_embeds.repeat_interleave(__A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCAmelCase =self.learned_classifier_free_sampling_embeddings.embeddings _lowerCAmelCase =negative_prompt_embeds.unsqueeze(0 ).repeat(__A , 1 , 1 ) else: _lowerCAmelCase =[''] * batch_size _lowerCAmelCase =text_input_ids.shape[-1] _lowerCAmelCase =self.tokenizer( __A , padding='max_length' , max_length=__A , truncation=__A , return_tensors='pt' , ) _lowerCAmelCase =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCAmelCase =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase =negative_prompt_embeds.shape[1] _lowerCAmelCase =negative_prompt_embeds.repeat(1 , __A , 1 ) _lowerCAmelCase =negative_prompt_embeds.view(batch_size * num_images_per_prompt , __A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __A , __A = 100 , __A = 5.0 , __A = 1.0 , __A = 1 , __A = None , __A = None , __A = "pil" , __A = True , __A = None , __A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__A , __A ): _lowerCAmelCase =1 elif isinstance(__A , __A ): _lowerCAmelCase =len(__A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__A )}''' ) _lowerCAmelCase =batch_size * num_images_per_prompt _lowerCAmelCase =guidance_scale > 1.0 _lowerCAmelCase =self._encode_prompt(__A , __A , __A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__A )}.''' ) # get the initial completely masked latents unless the user supplied it _lowerCAmelCase =(batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCAmelCase =self.transformer.num_vector_embeds - 1 _lowerCAmelCase =torch.full(__A , __A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _lowerCAmelCase =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__A , device=self.device ) _lowerCAmelCase =self.scheduler.timesteps.to(self.device ) _lowerCAmelCase =latents for i, t in enumerate(self.progress_bar(__A ) ): # expand the sample if we are doing classifier free guidance _lowerCAmelCase =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCAmelCase =self.transformer(__A , encoder_hidden_states=__A , timestep=__A ).sample if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase =model_output.chunk(2 ) _lowerCAmelCase =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__A , dim=1 , keepdim=__A ) _lowerCAmelCase =self.truncate(__A , __A ) # remove `log(0)`'s (`-inf`s) _lowerCAmelCase =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase =self.scheduler.step(__A , timestep=__A , sample=__A , generator=__A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A , __A ) _lowerCAmelCase =self.vqvae.config.vq_embed_dim _lowerCAmelCase =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCAmelCase =self.vqvae.quantize.get_codebook_entry(__A , shape=__A ) _lowerCAmelCase =self.vqvae.decode(__A , force_not_quantize=__A ).sample _lowerCAmelCase =(image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase =self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A ) def UpperCamelCase__ ( self , __A , __A ) -> torch.FloatTensor: _lowerCAmelCase , _lowerCAmelCase =torch.sort(__A , 1 , descending=__A ) _lowerCAmelCase =torch.exp(__A ) _lowerCAmelCase =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCAmelCase =torch.full_like(keep_mask[:, 0:1, :] , __A ) _lowerCAmelCase =torch.cat((all_true, keep_mask) , dim=1 ) _lowerCAmelCase =keep_mask[:, :-1, :] _lowerCAmelCase =keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCAmelCase =log_p_x_0.clone() _lowerCAmelCase =-torch.inf # -inf = log(0) return rv
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''PoolFormerFeatureExtractor'''] lowercase_ = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ = object() # For specifying empty leaf dict `{}` lowercase_ = object() def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(a__ ) - len(a__ ) + 1 ): _lowerCAmelCase =[x.match(a__ ) for x, y in zip(a__ , ks[i:] )] if matches and all(a__ ): return True return False def UpperCamelCase__ ( a__ ): '''simple docstring''' def replace(a__ , a__ ): for rule, replacement in rules: if _match(a__ , a__ ): return replacement return val return replace def UpperCamelCase__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , a__ )), (("transformer", "wte", "embedding"), P('mp' , a__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a__ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , a__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a__ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , a__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =_get_partition_rules() _lowerCAmelCase =_replacement_rules(a__ ) _lowerCAmelCase ={k: _unmatched for k in flatten_dict(a__ )} _lowerCAmelCase ={k: replace(a__ , a__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a__ ) )
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' assert isinstance(a__ , a__ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _lowerCAmelCase =F'''The input value of [n={number}] has to be > 0''' raise ValueError(a__ ) else: _lowerCAmelCase =sylvester(number - 1 ) _lowerCAmelCase =num - 1 _lowerCAmelCase =num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if not isinstance(a__ , a__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(a__ , a__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) _lowerCAmelCase ='' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCamelCase__ ( a__ , a__ , **a__ ): '''simple docstring''' _lowerCAmelCase =AutoConfig.from_pretrained(a__ , **a__ ) _lowerCAmelCase =AutoModelForSeqaSeqLM.from_config(a__ ) model.save_pretrained(a__ ) AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCamelCase__ ( a__ , a__ , a__ , a__=5 ): '''simple docstring''' assert masked_input.count('<mask>' ) == 1 _lowerCAmelCase =torch.tensor(tokenizer.encode(a__ , add_special_tokens=a__ ) ).unsqueeze(0 ) # Batch size 1 _lowerCAmelCase =model(a__ )[0] # The last hidden-state is the first element of the output tuple _lowerCAmelCase =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCAmelCase =logits[0, masked_index, :] _lowerCAmelCase =logits.softmax(dim=0 ) _lowerCAmelCase , _lowerCAmelCase =prob.topk(k=a__ , dim=0 ) _lowerCAmelCase =' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(a__ ) )] ) _lowerCAmelCase =tokenizer.mask_token _lowerCAmelCase =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): _lowerCAmelCase =predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(a__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(a__ ) , a__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(a__ , a__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase_ = CamembertTokenizer.from_pretrained('''camembert-base''') lowercase_ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowercase_ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : Tuple = None def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase =json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase =os.path.join(__A , 'feat_extract.json' ) feat_extract_first.to_json_file(__A ) _lowerCAmelCase =self.feature_extraction_class.from_json_file(__A ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) _lowerCAmelCase =self.feature_extraction_class.from_pretrained(__A ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.feature_extraction_class() self.assertIsNotNone(__A )
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCAmelCase =1 _lowerCAmelCase =1 while repunit: _lowerCAmelCase =(1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase__ ( a__ = 1_0_0_0_0_0_0 ): '''simple docstring''' _lowerCAmelCase =limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =question_encoder _lowerCAmelCase =generator _lowerCAmelCase =self.question_encoder def UpperCamelCase__ ( self , __A ) -> Optional[int]: if os.path.isfile(__A ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__A , exist_ok=__A ) _lowerCAmelCase =os.path.join(__A , 'question_encoder_tokenizer' ) _lowerCAmelCase =os.path.join(__A , 'generator_tokenizer' ) self.question_encoder.save_pretrained(__A ) self.generator.save_pretrained(__A ) @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> Optional[int]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase =kwargs.pop('config' , __A ) if config is None: _lowerCAmelCase =RagConfig.from_pretrained(__A ) _lowerCAmelCase =AutoTokenizer.from_pretrained( __A , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCAmelCase =AutoTokenizer.from_pretrained( __A , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=__A , generator=__A ) def __call__( self , *__A , **__A ) -> Union[str, Any]: return self.current_tokenizer(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.generator.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> List[Any]: return self.generator.decode(*__A , **__A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.question_encoder def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.generator def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = "longest" , __A = None , __A = True , **__A , ) -> BatchEncoding: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , __A , ) if max_length is None: _lowerCAmelCase =self.current_tokenizer.model_max_length _lowerCAmelCase =self( __A , add_special_tokens=__A , return_tensors=__A , max_length=__A , padding=__A , truncation=__A , **__A , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase =self.current_tokenizer.model_max_length _lowerCAmelCase =self( text_target=__A , add_special_tokens=__A , return_tensors=__A , padding=__A , max_length=__A , truncation=__A , **__A , ) _lowerCAmelCase =labels['input_ids'] return model_inputs
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : str = StableDiffusionInpaintPipeline lowercase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowercase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase : Optional[int] = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase : Any = frozenset([]) def UpperCamelCase__ ( self ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__A , ) _lowerCAmelCase =PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCAmelCase =CLIPTextModel(__A ) _lowerCAmelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , __A , __A=0 ) -> Tuple: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _lowerCAmelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__A ) ).convert('RGB' ).resize((64, 64) ) _lowerCAmelCase =Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase ='cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =StableDiffusionInpaintPipeline(**__A ) _lowerCAmelCase =sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =self.get_dummy_inputs(__A ) _lowerCAmelCase =sd_pipe(**__A ).images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase =np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCAmelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) _lowerCAmelCase ='stabilityai/stable-diffusion-2-inpainting' _lowerCAmelCase =StableDiffusionInpaintPipeline.from_pretrained(__A , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCAmelCase ='Face of a yellow cat, high resolution, sitting on a park bench' _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__A , image=__A , mask_image=__A , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCAmelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) _lowerCAmelCase ='stabilityai/stable-diffusion-2-inpainting' _lowerCAmelCase =StableDiffusionInpaintPipeline.from_pretrained( __A , torch_dtype=torch.floataa , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCAmelCase ='Face of a yellow cat, high resolution, sitting on a park bench' _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__A , image=__A , mask_image=__A , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCAmelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCAmelCase ='stabilityai/stable-diffusion-2-inpainting' _lowerCAmelCase =PNDMScheduler.from_pretrained(__A , subfolder='scheduler' ) _lowerCAmelCase =StableDiffusionInpaintPipeline.from_pretrained( __A , safety_checker=__A , scheduler=__A , torch_dtype=torch.floataa , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ='Face of a yellow cat, high resolution, sitting on a park bench' _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__A , image=__A , mask_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' import numpy # List of input, output pairs lowercase_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowercase_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowercase_ = [2, 4, 1, 5] lowercase_ = len(train_data) lowercase_ = 0.009 def UpperCamelCase__ ( a__ , a__="train" ): '''simple docstring''' return calculate_hypothesis_value(a__ , a__ ) - output( a__ , a__ ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 for i in range(len(a__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCamelCase__ ( a__ , a__=m ): '''simple docstring''' _lowerCAmelCase =0 for i in range(a__ ): if index == -1: summation_value += _error(a__ ) else: summation_value += _error(a__ ) * train_data[i][0][index] return summation_value def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =summation_of_cost_derivative(a__ , a__ ) / m return cost_derivative_value def UpperCamelCase__ ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output _lowerCAmelCase =0.000_002 _lowerCAmelCase =0 _lowerCAmelCase =0 while True: j += 1 _lowerCAmelCase =[0, 0, 0, 0] for i in range(0 , len(a__ ) ): _lowerCAmelCase =get_cost_derivative(i - 1 ) _lowerCAmelCase =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( a__ , a__ , atol=a__ , rtol=a__ , ): break _lowerCAmelCase =temp_parameter_vector print(('Number of iterations:', j) ) def UpperCamelCase__ ( ): '''simple docstring''' for i in range(len(a__ ) ): print(('Actual output value:', output(a__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(a__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : str = 'audio-spectrogram-transformer' def __init__( self , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.0 , __A=0.0 , __A=0.02 , __A=1E-12 , __A=16 , __A=True , __A=10 , __A=10 , __A=1024 , __A=128 , **__A , ) -> Tuple: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =patch_size _lowerCAmelCase =qkv_bias _lowerCAmelCase =frequency_stride _lowerCAmelCase =time_stride _lowerCAmelCase =max_length _lowerCAmelCase =num_mel_bins
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCamelCase__ ( a__ = "isbn/0140328726" ): '''simple docstring''' _lowerCAmelCase =olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _lowerCAmelCase =F'''{olid} is not a valid Open Library olid''' raise ValueError(a__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={ 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _lowerCAmelCase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _lowerCAmelCase =[ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _lowerCAmelCase =data['First sentence']['value'] for key, value in data.items(): if isinstance(a__ , a__ ): _lowerCAmelCase =', '.join(a__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowercase_ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: lowercase_ = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print('''\n'''.join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowercase_ = logging.getLogger(__name__) lowercase_ = '''Hello world! cécé herlolip''' lowercase_ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =BertAbsConfig( temp_dir='.' , finetune_bert=a__ , large=a__ , share_emb=a__ , use_bert_emb=a__ , encoder='bert' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) _lowerCAmelCase =torch.load(a__ , lambda a__ , a__ : storage ) _lowerCAmelCase =AbsSummarizer(a__ , torch.device('cpu' ) , a__ ) original.eval() _lowerCAmelCase =BertAbsSummarizer(a__ , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) _lowerCAmelCase =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs _lowerCAmelCase =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(a__ )) ) _lowerCAmelCase =torch.tensor(a__ ).unsqueeze(0 ) _lowerCAmelCase =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(a__ )) ) _lowerCAmelCase =torch.tensor(a__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _lowerCAmelCase =encoder_input_ids _lowerCAmelCase =decoder_input_ids _lowerCAmelCase =_lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =_lowerCAmelCase =None _lowerCAmelCase =_lowerCAmelCase =None _lowerCAmelCase =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _lowerCAmelCase =original(a__ , a__ , a__ , a__ , a__ , a__ , a__ )[0] _lowerCAmelCase =original.generator(a__ ) _lowerCAmelCase =new_model( a__ , a__ , a__ , a__ , a__ )[0] _lowerCAmelCase =new_model.generator(a__ ) _lowerCAmelCase =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(a__ ) ) _lowerCAmelCase =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(a__ ) ) _lowerCAmelCase =torch.allclose(a__ , a__ , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowercase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A , __A , ) -> int: super().__init__() self.register_modules( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , scheduler=__A , safety_checker=__A , feature_extractor=__A , ) def UpperCamelCase__ ( self , __A = "auto" ) -> List[str]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__A ) def UpperCamelCase__ ( self ) -> int: self.enable_attention_slicing(__A ) @torch.no_grad() def __call__( self , __A , __A = 512 , __A = 512 , __A = 50 , __A = 7.5 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = "pil" , __A = True , __A = None , __A = 1 , __A = None , **__A , ) -> Tuple: if isinstance(__A , __A ): _lowerCAmelCase =1 elif isinstance(__A , __A ): _lowerCAmelCase =len(__A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__A )}.''' ) # get prompt text embeddings _lowerCAmelCase =self.tokenizer( __A , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowerCAmelCase =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _lowerCAmelCase =text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _lowerCAmelCase =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =text_embeddings.shape _lowerCAmelCase =text_embeddings.repeat(1 , __A , 1 ) _lowerCAmelCase =text_embeddings.view(bs_embed * num_images_per_prompt , __A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase =42 if negative_prompt is None: _lowerCAmelCase =[''] elif type(__A ) is not type(__A ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(__A )} !=''' F''' {type(__A )}.''' ) elif isinstance(__A , __A ): _lowerCAmelCase =[negative_prompt] elif batch_size != len(__A ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(__A )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: _lowerCAmelCase =negative_prompt _lowerCAmelCase =text_input_ids.shape[-1] _lowerCAmelCase =self.tokenizer( __A , padding='max_length' , max_length=__A , truncation=__A , return_tensors='pt' , ) _lowerCAmelCase =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase =uncond_embeddings.shape[1] _lowerCAmelCase =uncond_embeddings.repeat(__A , __A , 1 ) _lowerCAmelCase =uncond_embeddings.view(batch_size * num_images_per_prompt , __A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase =(batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _lowerCAmelCase =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowerCAmelCase =torch.randn( __A , generator=__A , device='cpu' , dtype=__A ).to(self.device ) _lowerCAmelCase =torch.randn(__A , generator=__A , device='cpu' , dtype=__A ).to( self.device ) else: _lowerCAmelCase =torch.randn( __A , generator=__A , device=self.device , dtype=__A ) _lowerCAmelCase =torch.randn(__A , generator=__A , device=self.device , dtype=__A ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _lowerCAmelCase =latents_reference.to(self.device ) _lowerCAmelCase =latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _lowerCAmelCase =(latents_shape[3] - latents_shape_reference[3]) // 2 _lowerCAmelCase =(latents_shape[2] - latents_shape_reference[2]) // 2 _lowerCAmelCase =latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _lowerCAmelCase =latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _lowerCAmelCase =0 if dx < 0 else dx _lowerCAmelCase =0 if dy < 0 else dy _lowerCAmelCase =max(-dx , 0 ) _lowerCAmelCase =max(-dy , 0 ) # import pdb # pdb.set_trace() _lowerCAmelCase =latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowerCAmelCase =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase ='eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase ={} if accepts_eta: _lowerCAmelCase =eta for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase =self.scheduler.scale_model_input(__A , __A ) # predict the noise residual _lowerCAmelCase =self.unet(__A , __A , encoder_hidden_states=__A ).sample # perform guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase =noise_pred.chunk(2 ) _lowerCAmelCase =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase =self.scheduler.step(__A , __A , __A , **__A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A , __A ) _lowerCAmelCase =1 / 0.18_215 * latents _lowerCAmelCase =self.vae.decode(__A ).sample _lowerCAmelCase =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _lowerCAmelCase =self.feature_extractor(self.numpy_to_pil(__A ) , return_tensors='pt' ).to( self.device ) _lowerCAmelCase , _lowerCAmelCase =self.safety_checker( images=__A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _lowerCAmelCase =None if output_type == "pil": _lowerCAmelCase =self.numpy_to_pil(__A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__A , nsfw_content_detected=__A )
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = 'gptj' lowercase : Tuple = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __A=5_0400 , __A=2048 , __A=4096 , __A=28 , __A=16 , __A=64 , __A=None , __A="gelu_new" , __A=0.0 , __A=0.0 , __A=0.0 , __A=1E-5 , __A=0.02 , __A=True , __A=5_0256 , __A=5_0256 , __A=False , **__A , ) -> Union[str, Any]: _lowerCAmelCase =vocab_size _lowerCAmelCase =n_positions _lowerCAmelCase =n_embd _lowerCAmelCase =n_layer _lowerCAmelCase =n_head _lowerCAmelCase =n_inner _lowerCAmelCase =rotary_dim _lowerCAmelCase =activation_function _lowerCAmelCase =resid_pdrop _lowerCAmelCase =embd_pdrop _lowerCAmelCase =attn_pdrop _lowerCAmelCase =layer_norm_epsilon _lowerCAmelCase =initializer_range _lowerCAmelCase =use_cache _lowerCAmelCase =bos_token_id _lowerCAmelCase =eos_token_id super().__init__( bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A = "default" , __A = None , __A = False , ) -> Dict: super().__init__(__A , task=__A , patching_specs=__A , use_past=__A ) if not getattr(self._config , 'pad_token_id' , __A ): # TODO: how to do that better? _lowerCAmelCase =0 @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: _lowerCAmelCase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__A , direction='inputs' ) _lowerCAmelCase ={0: 'batch', 1: 'past_sequence + sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase__ ( self ) -> int: return self._config.n_layer @property def UpperCamelCase__ ( self ) -> int: return self._config.n_head def UpperCamelCase__ ( self , __A , __A = -1 , __A = -1 , __A = False , __A = None , ) -> Mapping[str, Any]: _lowerCAmelCase =super(__A , self ).generate_dummy_inputs( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase , _lowerCAmelCase =common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCAmelCase =seqlen + 2 _lowerCAmelCase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase =[ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] _lowerCAmelCase =common_inputs['attention_mask'] if self.use_past: _lowerCAmelCase =ordered_inputs['attention_mask'].dtype _lowerCAmelCase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(__A , __A , dtype=__A )] , dim=1 ) return ordered_inputs @property def UpperCamelCase__ ( self ) -> int: return 13
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import math import sys import cva import numpy as np def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =math.sqrt(a__ ) _lowerCAmelCase =1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =np.zeros((kernel_size, kernel_size) ) for i in range(0 , a__ ): for j in range(0 , a__ ): _lowerCAmelCase =math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(a__ , a__ ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ , ): '''simple docstring''' _lowerCAmelCase =np.zeros(img.shape ) _lowerCAmelCase =get_gauss_kernel(a__ , a__ ) _lowerCAmelCase , _lowerCAmelCase =img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _lowerCAmelCase =get_slice(a__ , a__ , a__ , a__ ) _lowerCAmelCase =img_s - img_s[kernel_size // 2, kernel_size // 2] _lowerCAmelCase =vec_gaussian(a__ , a__ ) _lowerCAmelCase =np.multiply(a__ , a__ ) _lowerCAmelCase =np.multiply(a__ , a__ ) _lowerCAmelCase =np.sum(a__ ) / np.sum(a__ ) _lowerCAmelCase =val return imga def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =args[1] if args[1:] else '../image_data/lena.jpg' _lowerCAmelCase =float(args[2] ) if args[2:] else 1.0 _lowerCAmelCase =float(args[3] ) if args[3:] else 1.0 if args[4:]: _lowerCAmelCase =int(args[4] ) _lowerCAmelCase =kernel_size + abs(kernel_size % 2 - 1 ) else: _lowerCAmelCase =5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase_ , lowercase_ , lowercase_ , lowercase_ = parse_args(sys.argv) lowercase_ = cva.imread(filename, 0) cva.imshow('''input image''', img) lowercase_ = img / 255 lowercase_ = out.astype('''float32''') lowercase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase_ = out * 255 lowercase_ = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = DebertaVaTokenizer lowercase : List[Any] = DebertaVaTokenizerFast lowercase : Optional[int] = True lowercase : Union[str, Any] = True def UpperCamelCase__ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase =DebertaVaTokenizer(__A , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , __A ) -> Optional[int]: _lowerCAmelCase ='this is a test' _lowerCAmelCase ='this is a test' return input_text, output_text def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase ='<pad>' _lowerCAmelCase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(__A ) , 3_0001 ) def UpperCamelCase__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase__ ( self ) -> Any: # fmt: off _lowerCAmelCase =' \tHeLLo!how \n Are yoU? ' _lowerCAmelCase =['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _lowerCAmelCase =DebertaVaTokenizer(__A , do_lower_case=__A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) _lowerCAmelCase =DebertaVaTokenizerFast(__A , do_lower_case=__A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def UpperCamelCase__ ( self ) -> Tuple: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def UpperCamelCase__ ( self ) -> Tuple: pass def UpperCamelCase__ ( self ) -> List[Any]: # fmt: off _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCAmelCase =DebertaVaTokenizer(__A , split_by_punct=__A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) _lowerCAmelCase =DebertaVaTokenizerFast(__A , split_by_punct=__A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Tuple: # fmt: off _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCAmelCase =DebertaVaTokenizer(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) _lowerCAmelCase =DebertaVaTokenizerFast(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Any: # fmt: off _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _lowerCAmelCase =DebertaVaTokenizer(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) _lowerCAmelCase =DebertaVaTokenizerFast(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: # fmt: off _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCAmelCase =DebertaVaTokenizer(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) _lowerCAmelCase =DebertaVaTokenizerFast(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> int: # fmt: off _lowerCAmelCase =' \tHeLLo!how \n Are yoU? ' _lowerCAmelCase =['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _lowerCAmelCase =DebertaVaTokenizer(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) _lowerCAmelCase =DebertaVaTokenizerFast(__A , do_lower_case=__A , split_by_punct=__A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =tokenizer.convert_ids_to_tokens(tokenizer.encode(__A , add_special_tokens=__A ) ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__A , add_special_tokens=__A ) ) self.assertListEqual(__A , __A ) _lowerCAmelCase =tokenizer.encode(__A , add_special_tokens=__A ) _lowerCAmelCase =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase =tokenizer.encode(__A ) _lowerCAmelCase =rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase ='This is a test' _lowerCAmelCase =[13, 1, 4398, 25, 21, 1289] _lowerCAmelCase =['▁', 'T', 'his', '▁is', '▁a', '▁test'] _lowerCAmelCase =['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _lowerCAmelCase =DebertaVaTokenizer(__A , keep_accents=__A ) _lowerCAmelCase =DebertaVaTokenizerFast(__A , keep_accents=__A ) _lowerCAmelCase =tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual(__A , __A ) # fmt: off _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =[13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _lowerCAmelCase =['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _lowerCAmelCase =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _lowerCAmelCase =tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =rust_tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =DebertaVaTokenizer(__A ) _lowerCAmelCase =tokenizer.encode('sequence builders' ) _lowerCAmelCase =tokenizer.encode('multi-sequence build' ) _lowerCAmelCase =tokenizer.build_inputs_with_special_tokens(__A ) _lowerCAmelCase =tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __A , ) @slow def UpperCamelCase__ ( self ) -> List[str]: # fmt: off _lowerCAmelCase ={'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import os def UpperCamelCase__ ( ): '''simple docstring''' with open(os.path.dirname(a__ ) + '/grid.txt' ) as f: _lowerCAmelCase =[] # noqa: E741 for _ in range(2_0 ): l.append([int(a__ ) for x in f.readline().split()] ) _lowerCAmelCase =0 # right for i in range(2_0 ): for j in range(1_7 ): _lowerCAmelCase =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _lowerCAmelCase =temp # down for i in range(1_7 ): for j in range(2_0 ): _lowerCAmelCase =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _lowerCAmelCase =temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): _lowerCAmelCase =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _lowerCAmelCase =temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): _lowerCAmelCase =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _lowerCAmelCase =temp return maximum if __name__ == "__main__": print(solution())
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' from __future__ import annotations from math import pi def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def UpperCamelCase__ ( a__ , a__ = 1_6 ): '''simple docstring''' _lowerCAmelCase =AutoTokenizer.from_pretrained('bert-base-cased' ) _lowerCAmelCase =load_dataset('glue' , 'mrpc' ) def tokenize_function(a__ ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase =datasets.map( a__ , batched=a__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase =1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase =1_6 elif accelerator.mixed_precision != "no": _lowerCAmelCase =8 else: _lowerCAmelCase =None return tokenizer.pad( a__ , padding='longest' , max_length=a__ , pad_to_multiple_of=a__ , return_tensors='pt' , ) # Instantiate dataloaders. _lowerCAmelCase =DataLoader( tokenized_datasets['train'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) _lowerCAmelCase =DataLoader( tokenized_datasets['validation'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ = mocked_dataloaders # noqa: F811 def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , a__ ) == "1": _lowerCAmelCase =2 # Initialize accelerator _lowerCAmelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase =config['lr'] _lowerCAmelCase =int(config['num_epochs'] ) _lowerCAmelCase =int(config['seed'] ) _lowerCAmelCase =int(config['batch_size'] ) _lowerCAmelCase =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowerCAmelCase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCAmelCase =batch_size // MAX_GPU_BATCH_SIZE _lowerCAmelCase =MAX_GPU_BATCH_SIZE set_seed(a__ ) _lowerCAmelCase , _lowerCAmelCase =get_dataloaders(a__ , a__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase =model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase =AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler _lowerCAmelCase =get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=1_0_0 , num_training_steps=(len(a__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase =model(**a__ ) _lowerCAmelCase =outputs.loss _lowerCAmelCase =loss / gradient_accumulation_steps accelerator.backward(a__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _lowerCAmelCase =0 for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase =model(**a__ ) _lowerCAmelCase =outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase =accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(a__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _lowerCAmelCase =predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowerCAmelCase =references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=a__ , references=a__ , ) _lowerCAmelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , a__ ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a__ , default=a__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase ={'lr': 2E-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(a__ , a__ ) if __name__ == "__main__": main()
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" lowercase : Optional[Any] = 'dinat' lowercase : str = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __A=4 , __A=3 , __A=64 , __A=[3, 4, 6, 5] , __A=[2, 4, 8, 16] , __A=7 , __A=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __A=3.0 , __A=True , __A=0.0 , __A=0.0 , __A=0.1 , __A="gelu" , __A=0.02 , __A=1E-5 , __A=0.0 , __A=None , __A=None , **__A , ) -> Union[str, Any]: super().__init__(**__A ) _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =embed_dim _lowerCAmelCase =depths _lowerCAmelCase =len(__A ) _lowerCAmelCase =num_heads _lowerCAmelCase =kernel_size _lowerCAmelCase =dilations _lowerCAmelCase =mlp_ratio _lowerCAmelCase =qkv_bias _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =drop_path_rate _lowerCAmelCase =hidden_act _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase =int(embed_dim * 2 ** (len(__A ) - 1) ) _lowerCAmelCase =layer_scale_init_value _lowerCAmelCase =['stem'] + [F'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )] _lowerCAmelCase , _lowerCAmelCase =get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import numpy as np def UpperCamelCase__ ( a__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__lowercase) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , **__A ) -> Optional[int]: super().__init__(**__A ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type(__A ) def __call__( self , __A , __A = None , **__A , ) -> Tuple: if "text_queries" in kwargs: _lowerCAmelCase =kwargs.pop('text_queries' ) if isinstance(__A , (str, Image.Image) ): _lowerCAmelCase ={'image': image, 'candidate_labels': candidate_labels} else: _lowerCAmelCase =image _lowerCAmelCase =super().__call__(__A , **__A ) return results def UpperCamelCase__ ( self , **__A ) -> Optional[Any]: _lowerCAmelCase ={} if "threshold" in kwargs: _lowerCAmelCase =kwargs['threshold'] if "top_k" in kwargs: _lowerCAmelCase =kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: _lowerCAmelCase =load_image(inputs['image'] ) _lowerCAmelCase =inputs['candidate_labels'] if isinstance(__A , __A ): _lowerCAmelCase =candidate_labels.split(',' ) _lowerCAmelCase =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__A ): _lowerCAmelCase =self.tokenizer(__A , return_tensors=self.framework ) _lowerCAmelCase =self.image_processor(__A , return_tensors=self.framework ) yield { "is_last": i == len(__A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase__ ( self , __A ) -> Optional[Any]: _lowerCAmelCase =model_inputs.pop('target_size' ) _lowerCAmelCase =model_inputs.pop('candidate_label' ) _lowerCAmelCase =model_inputs.pop('is_last' ) _lowerCAmelCase =self.model(**__A ) _lowerCAmelCase ={'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase__ ( self , __A , __A=0.1 , __A=None ) -> Any: _lowerCAmelCase =[] for model_output in model_outputs: _lowerCAmelCase =model_output['candidate_label'] _lowerCAmelCase =BaseModelOutput(__A ) _lowerCAmelCase =self.image_processor.post_process_object_detection( outputs=__A , threshold=__A , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): _lowerCAmelCase =outputs['scores'][index].item() _lowerCAmelCase =self._get_bounding_box(outputs['boxes'][index][0] ) _lowerCAmelCase ={'score': score, 'label': label, 'box': box} results.append(__A ) _lowerCAmelCase =sorted(__A , key=lambda __A : x["score"] , reverse=__A ) if top_k: _lowerCAmelCase =results[:top_k] return results def UpperCamelCase__ ( self , __A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =box.int().tolist() _lowerCAmelCase ={ 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A = None , __A = None , __A = False , __A = False , __A = None , __A = None , **__A , ) -> List[str]: super().__init__( features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) _lowerCAmelCase =Generator( cache_dir=__A , features=__A , generator=__A , gen_kwargs=__A , **__A , ) def UpperCamelCase__ ( self ) -> List[str]: # Build iterable dataset if self.streaming: _lowerCAmelCase =self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) _lowerCAmelCase =self.builder.as_dataset( split='train' , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'ibert' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=False , __A="none" , **__A , ) -> Any: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =quant_mode _lowerCAmelCase =force_dequant class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCamelCase__ ( a__ ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return (-y * np.log(a__ ) - (1 - y) * np.log(1 - h )).mean() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =np.dot(a__ , a__ ) return np.sum(y * scores - np.log(1 + np.exp(a__ ) ) ) def UpperCamelCase__ ( a__ , a__ , a__ , a__=7_0_0_0_0 ): '''simple docstring''' _lowerCAmelCase =np.zeros(x.shape[1] ) for iterations in range(a__ ): _lowerCAmelCase =np.dot(a__ , a__ ) _lowerCAmelCase =sigmoid_function(a__ ) _lowerCAmelCase =np.dot(x.T , h - y ) / y.size _lowerCAmelCase =theta - alpha * gradient # updating the weights _lowerCAmelCase =np.dot(a__ , a__ ) _lowerCAmelCase =sigmoid_function(a__ ) _lowerCAmelCase =cost_function(a__ , a__ ) if iterations % 1_0_0 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase_ = datasets.load_iris() lowercase_ = iris.data[:, :2] lowercase_ = (iris.target != 0) * 1 lowercase_ = 0.1 lowercase_ = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def UpperCamelCase__ ( a__ ): '''simple docstring''' return sigmoid_function( np.dot(a__ , a__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((lowercase_) , (lowercase_)) = (x[:, 0].min(), x[:, 0].max()) ((lowercase_) , (lowercase_)) = (x[:, 1].min(), x[:, 1].max()) ((lowercase_) , (lowercase_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase_ = np.c_[xxa.ravel(), xxa.ravel()] lowercase_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'perceiver' def __init__( self , __A=256 , __A=1280 , __A=768 , __A=1 , __A=26 , __A=8 , __A=8 , __A=None , __A=None , __A="kv" , __A=1 , __A=1 , __A="gelu" , __A=0.1 , __A=0.02 , __A=1E-12 , __A=True , __A=262 , __A=2048 , __A=56 , __A=[368, 496] , __A=16 , __A=1920 , __A=16 , __A=[1, 16, 224, 224] , **__A , ) -> Union[str, Any]: super().__init__(**__A ) _lowerCAmelCase =num_latents _lowerCAmelCase =d_latents _lowerCAmelCase =d_model _lowerCAmelCase =num_blocks _lowerCAmelCase =num_self_attends_per_block _lowerCAmelCase =num_self_attention_heads _lowerCAmelCase =num_cross_attention_heads _lowerCAmelCase =qk_channels _lowerCAmelCase =v_channels _lowerCAmelCase =cross_attention_shape_for_attention _lowerCAmelCase =self_attention_widening_factor _lowerCAmelCase =cross_attention_widening_factor _lowerCAmelCase =hidden_act _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =use_query_residual # masked language modeling attributes _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings # image classification attributes _lowerCAmelCase =image_size # flow attributes _lowerCAmelCase =train_size # multimodal autoencoding attributes _lowerCAmelCase =num_frames _lowerCAmelCase =audio_samples_per_frame _lowerCAmelCase =samples_per_patch _lowerCAmelCase =output_shape class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-4 def UpperCamelCase__ ( self , __A , __A = -1 , __A = -1 , __A = -1 , __A = False , __A = None , __A = 3 , __A = 40 , __A = 40 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(__A , __A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase =compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase =preprocessor.num_special_tokens_to_add(__A ) _lowerCAmelCase =compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase =[' '.join(['a'] ) * seq_length] * batch_size _lowerCAmelCase =dict(preprocessor(__A , return_tensors=__A ) ) _lowerCAmelCase =inputs.pop('input_ids' ) return inputs elif isinstance(__A , __A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase =compute_effective_axis_dimension(__A , fixed_dimension=OnnxConfig.default_fixed_batch ) _lowerCAmelCase =self._generate_dummy_images(__A , __A , __A , __A ) _lowerCAmelCase =dict(preprocessor(images=__A , return_tensors=__A ) ) _lowerCAmelCase =inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import datasets from .evaluate import evaluate lowercase_ = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowercase_ = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowercase_ = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def UpperCamelCase__ ( self , __A , __A ) -> List[Any]: _lowerCAmelCase ={prediction['id']: prediction['prediction_text'] for prediction in predictions} _lowerCAmelCase =[ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _lowerCAmelCase =evaluate(dataset=__A , predictions=__A ) return score
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[Any] = 'conditional_detr' lowercase : Dict = ['past_key_values'] lowercase : Optional[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __A=True , __A=None , __A=3 , __A=300 , __A=6 , __A=2048 , __A=8 , __A=6 , __A=2048 , __A=8 , __A=0.0 , __A=0.0 , __A=True , __A="relu" , __A=256 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.02 , __A=1.0 , __A=False , __A="sine" , __A="resnet50" , __A=True , __A=False , __A=2 , __A=5 , __A=2 , __A=1 , __A=1 , __A=2 , __A=5 , __A=2 , __A=0.25 , **__A , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCAmelCase =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__A , __A ): _lowerCAmelCase =backbone_config.get('model_type' ) _lowerCAmelCase =CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase =config_class.from_dict(__A ) _lowerCAmelCase =use_timm_backbone _lowerCAmelCase =backbone_config _lowerCAmelCase =num_channels _lowerCAmelCase =num_queries _lowerCAmelCase =d_model _lowerCAmelCase =encoder_ffn_dim _lowerCAmelCase =encoder_layers _lowerCAmelCase =encoder_attention_heads _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =activation_dropout _lowerCAmelCase =activation_function _lowerCAmelCase =init_std _lowerCAmelCase =init_xavier_std _lowerCAmelCase =encoder_layerdrop _lowerCAmelCase =decoder_layerdrop _lowerCAmelCase =encoder_layers _lowerCAmelCase =auxiliary_loss _lowerCAmelCase =position_embedding_type _lowerCAmelCase =backbone _lowerCAmelCase =use_pretrained_backbone _lowerCAmelCase =dilation # Hungarian matcher _lowerCAmelCase =class_cost _lowerCAmelCase =bbox_cost _lowerCAmelCase =giou_cost # Loss coefficients _lowerCAmelCase =mask_loss_coefficient _lowerCAmelCase =dice_loss_coefficient _lowerCAmelCase =cls_loss_coefficient _lowerCAmelCase =bbox_loss_coefficient _lowerCAmelCase =giou_loss_coefficient _lowerCAmelCase =focal_alpha super().__init__(is_encoder_decoder=__A , **__A ) @property def UpperCamelCase__ ( self ) -> int: return self.encoder_attention_heads @property def UpperCamelCase__ ( self ) -> int: return self.d_model def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowerCAmelCase =self.backbone_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[Any] = version.parse('1.11') @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-5 @property def UpperCamelCase__ ( self ) -> int: return 12
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : str = ShapEPipeline lowercase : int = ['prompt'] lowercase : str = ['prompt'] lowercase : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : Optional[int] = False @property def UpperCamelCase__ ( self ) -> str: return 32 @property def UpperCamelCase__ ( self ) -> List[Any]: return 32 @property def UpperCamelCase__ ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ) -> Optional[Any]: return 8 @property def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def UpperCamelCase__ ( self ) -> int: torch.manual_seed(0 ) _lowerCAmelCase ={ 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCAmelCase =PriorTransformer(**__A ) return model @property def UpperCamelCase__ ( self ) -> int: torch.manual_seed(0 ) _lowerCAmelCase ={ 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase =ShapERenderer(**__A ) return model def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.dummy_prior _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =self.dummy_tokenizer _lowerCAmelCase =self.dummy_renderer _lowerCAmelCase =HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__A , clip_sample=__A , clip_sample_range=1.0 , ) _lowerCAmelCase ={ 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , __A , __A=0 ) -> Dict: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase ='cpu' _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**__A ) _lowerCAmelCase =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =pipe(**self.get_dummy_inputs(__A ) ) _lowerCAmelCase =output.images[0] _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase =np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =torch_device == 'cpu' _lowerCAmelCase =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__A , relax_max_difference=__A , ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**__A ) _lowerCAmelCase =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =1 _lowerCAmelCase =2 _lowerCAmelCase =self.get_dummy_inputs(__A ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase =batch_size * [inputs[key]] _lowerCAmelCase =pipe(**__A , num_images_per_prompt=__A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) _lowerCAmelCase =ShapEPipeline.from_pretrained('openai/shap-e' ) _lowerCAmelCase =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(0 ) _lowerCAmelCase =pipe( 'a shark' , generator=__A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__A , __A )
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class SCREAMING_SNAKE_CASE : """simple docstring""" @property def UpperCamelCase__ ( self ) -> Tuple: return self.get_dummy_input() @property def UpperCamelCase__ ( self ) -> Optional[int]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def UpperCamelCase__ ( self , __A=True , __A=False , __A=False , __A=False , ) -> List[Any]: _lowerCAmelCase =4 _lowerCAmelCase =32 _lowerCAmelCase =(32, 32) _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =torch.device(__A ) _lowerCAmelCase =(batch_size, num_channels) + sizes _lowerCAmelCase =randn_tensor(__A , generator=__A , device=__A ) _lowerCAmelCase ={'hidden_states': hidden_states} if include_temb: _lowerCAmelCase =128 _lowerCAmelCase =randn_tensor((batch_size, temb_channels) , generator=__A , device=__A ) if include_res_hidden_states_tuple: _lowerCAmelCase =torch.manual_seed(1 ) _lowerCAmelCase =(randn_tensor(__A , generator=__A , device=__A ),) if include_encoder_hidden_states: _lowerCAmelCase =floats_tensor((batch_size, 32, 32) ).to(__A ) if include_skip_sample: _lowerCAmelCase =randn_tensor(((batch_size, 3) + sizes) , generator=__A , device=__A ) return dummy_input def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase ={ 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _lowerCAmelCase =32 if self.block_type == "mid": init_dict.pop('out_channels' ) _lowerCAmelCase =self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase =self.block_class(**__A ) unet_block.to(__A ) unet_block.eval() with torch.no_grad(): _lowerCAmelCase =unet_block(**__A ) if isinstance(__A , __A ): _lowerCAmelCase =output[0] self.assertEqual(output.shape , self.output_shape ) _lowerCAmelCase =output[0, -1, -3:, -3:] _lowerCAmelCase =torch.tensor(__A ).to(__A ) assert torch_all_close(output_slice.flatten() , __A , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase =self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase =self.block_class(**__A ) model.to(__A ) model.train() _lowerCAmelCase =model(**__A ) if isinstance(__A , __A ): _lowerCAmelCase =output[0] _lowerCAmelCase =torch.device(__A ) _lowerCAmelCase =randn_tensor(output.shape , device=__A ) _lowerCAmelCase =torch.nn.functional.mse_loss(__A , __A ) loss.backward()
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[Any] = 'microsoft/speecht5_tts' lowercase : Tuple = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) lowercase : Any = 'text_reader' lowercase : str = SpeechTaProcessor lowercase : List[str] = SpeechTaForTextToSpeech lowercase : List[Any] = SpeechTaHifiGan lowercase : List[str] = ['text'] lowercase : Any = ['audio'] def UpperCamelCase__ ( self ) -> Dict: if self.post_processor is None: _lowerCAmelCase ='microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , __A , __A=None ) -> str: _lowerCAmelCase =self.pre_processor(text=__A , return_tensors='pt' , truncation=__A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) _lowerCAmelCase =load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) _lowerCAmelCase =torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , __A ) -> Any: with torch.no_grad(): return self.model.generate_speech(**__A ) def UpperCamelCase__ ( self , __A ) -> Dict: with torch.no_grad(): return self.post_processor(__A ).cpu().detach()
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''MobileViTFeatureExtractor'''] lowercase_ = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase__ ( a__ , a__=0.999 , a__="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(a__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase =[] for i in range(a__ ): _lowerCAmelCase =i / num_diffusion_timesteps _lowerCAmelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a__ ) / alpha_bar_fn(a__ ) , a__ ) ) return torch.tensor(a__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" lowercase : List[str] = [e.name for e in KarrasDiffusionSchedulers] lowercase : Any = 2 @register_to_config def __init__( self , __A = 1000 , __A = 0.00_085 , __A = 0.012 , __A = "linear" , __A = None , __A = "epsilon" , __A = "linspace" , __A = 0 , ) -> str: if trained_betas is not None: _lowerCAmelCase =torch.tensor(__A , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase =torch.linspace(__A , __A , __A , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase =( torch.linspace(beta_start**0.5 , beta_end**0.5 , __A , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase =betas_for_alpha_bar(__A ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase =1.0 - self.betas _lowerCAmelCase =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__A , __A , __A ) def UpperCamelCase__ ( self , __A , __A=None ) -> Optional[Any]: if schedule_timesteps is None: _lowerCAmelCase =self.timesteps _lowerCAmelCase =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCAmelCase =1 if len(__A ) > 1 else 0 else: _lowerCAmelCase =timestep.cpu().item() if torch.is_tensor(__A ) else timestep _lowerCAmelCase =self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase__ ( self ) -> List[str]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase__ ( self , __A , __A , ) -> torch.FloatTensor: _lowerCAmelCase =self.index_for_timestep(__A ) if self.state_in_first_order: _lowerCAmelCase =self.sigmas[step_index] else: _lowerCAmelCase =self.sigmas_interpol[step_index] _lowerCAmelCase =sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase__ ( self , __A , __A = None , __A = None , ) -> List[Any]: _lowerCAmelCase =num_inference_steps _lowerCAmelCase =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCAmelCase =np.linspace(0 , num_train_timesteps - 1 , __A , dtype=__A )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCAmelCase =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase =(np.arange(0 , __A ) * step_ratio).round()[::-1].copy().astype(__A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCAmelCase =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase =(np.arange(__A , 0 , -step_ratio )).round().copy().astype(__A ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _lowerCAmelCase =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCAmelCase =torch.from_numpy(np.log(__A ) ).to(__A ) _lowerCAmelCase =np.interp(__A , np.arange(0 , len(__A ) ) , __A ) _lowerCAmelCase =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCAmelCase =torch.from_numpy(__A ).to(device=__A ) # interpolate sigmas _lowerCAmelCase =sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _lowerCAmelCase =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCAmelCase =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__A ).startswith('mps' ): # mps does not support float64 _lowerCAmelCase =torch.from_numpy(__A ).to(__A , dtype=torch.floataa ) else: _lowerCAmelCase =torch.from_numpy(__A ).to(__A ) # interpolate timesteps _lowerCAmelCase =self.sigma_to_t(__A ).to(__A , dtype=timesteps.dtype ) _lowerCAmelCase =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _lowerCAmelCase =torch.cat([timesteps[:1], interleaved_timesteps] ) _lowerCAmelCase =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCAmelCase =defaultdict(__A ) def UpperCamelCase__ ( self , __A ) -> int: # get log sigma _lowerCAmelCase =sigma.log() # get distribution _lowerCAmelCase =log_sigma - self.log_sigmas[:, None] # get sigmas range _lowerCAmelCase =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowerCAmelCase =low_idx + 1 _lowerCAmelCase =self.log_sigmas[low_idx] _lowerCAmelCase =self.log_sigmas[high_idx] # interpolate sigmas _lowerCAmelCase =(low - log_sigma) / (low - high) _lowerCAmelCase =w.clamp(0 , 1 ) # transform interpolation to time range _lowerCAmelCase =(1 - w) * low_idx + w * high_idx _lowerCAmelCase =t.view(sigma.shape ) return t @property def UpperCamelCase__ ( self ) -> Tuple: return self.sample is None def UpperCamelCase__ ( self , __A , __A , __A , __A = True , ) -> Union[SchedulerOutput, Tuple]: _lowerCAmelCase =self.index_for_timestep(__A ) # advance index counter by 1 _lowerCAmelCase =timestep.cpu().item() if torch.is_tensor(__A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCAmelCase =self.sigmas[step_index] _lowerCAmelCase =self.sigmas_interpol[step_index + 1] _lowerCAmelCase =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowerCAmelCase =self.sigmas[step_index - 1] _lowerCAmelCase =self.sigmas_interpol[step_index] _lowerCAmelCase =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCAmelCase =0 _lowerCAmelCase =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCAmelCase =sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase =sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCAmelCase =(sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCAmelCase =sigma_interpol - sigma_hat # store for 2nd order step _lowerCAmelCase =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowerCAmelCase =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowerCAmelCase =sigma_next - sigma_hat _lowerCAmelCase =self.sample _lowerCAmelCase =None _lowerCAmelCase =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def UpperCamelCase__ ( self , __A , __A , __A , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowerCAmelCase =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__A ): # mps does not support float64 _lowerCAmelCase =self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCAmelCase =timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCAmelCase =self.timesteps.to(original_samples.device ) _lowerCAmelCase =timesteps.to(original_samples.device ) _lowerCAmelCase =[self.index_for_timestep(__A , __A ) for t in timesteps] _lowerCAmelCase =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCAmelCase =sigma.unsqueeze(-1 ) _lowerCAmelCase =original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1