code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return 1 if input_a == input_a else 0 def UpperCamelCase__ ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
717
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowercase_ = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = '''AutoTokenizer''' lowercase : List[str] = ['''tokenizer'''] lowercase : str = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self , __A , __A=None ) -> Any: super().__init__(A__ ) _lowerCAmelCase =speaker_embeddings @classmethod def UpperCamelCase__ ( cls , __A , __A="speaker_embeddings_path.json" , **__A ) -> List[str]: if speaker_embeddings_dict_path is not None: _lowerCAmelCase =get_file_from_repo( A__ , A__ , subfolder=kwargs.pop('subfolder' , A__ ) , cache_dir=kwargs.pop('cache_dir' , A__ ) , force_download=kwargs.pop('force_download' , A__ ) , proxies=kwargs.pop('proxies' , A__ ) , resume_download=kwargs.pop('resume_download' , A__ ) , local_files_only=kwargs.pop('local_files_only' , A__ ) , use_auth_token=kwargs.pop('use_auth_token' , A__ ) , revision=kwargs.pop('revision' , A__ ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(A__ , A__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _lowerCAmelCase =None else: with open(A__ ) as speaker_embeddings_json: _lowerCAmelCase =json.load(A__ ) else: _lowerCAmelCase =None _lowerCAmelCase =AutoTokenizer.from_pretrained(A__ , **A__ ) return cls(tokenizer=A__ , speaker_embeddings=A__ ) def UpperCamelCase__ ( self , __A , __A="speaker_embeddings_path.json" , __A="speaker_embeddings" , __A = False , **__A , ) -> Dict: if self.speaker_embeddings is not None: os.makedirs(os.path.join(A__ , A__ , 'v2' ) , exist_ok=A__ ) _lowerCAmelCase ={} _lowerCAmelCase =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCAmelCase =self._load_voice_preset(A__ ) _lowerCAmelCase ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , A__ , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=A__ , ) _lowerCAmelCase =os.path.join(A__ , F'''{prompt_key}_{key}.npy''' ) _lowerCAmelCase =tmp_dict with open(os.path.join(A__ , A__ ) , 'w' ) as fp: json.dump(A__ , A__ ) super().save_pretrained(A__ , A__ , **A__ ) def UpperCamelCase__ ( self , __A = None , **__A ) -> int: _lowerCAmelCase =self.speaker_embeddings[voice_preset] _lowerCAmelCase ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _lowerCAmelCase =get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , A__ ) , cache_dir=kwargs.pop('cache_dir' , A__ ) , force_download=kwargs.pop('force_download' , A__ ) , proxies=kwargs.pop('proxies' , A__ ) , resume_download=kwargs.pop('resume_download' , A__ ) , local_files_only=kwargs.pop('local_files_only' , A__ ) , use_auth_token=kwargs.pop('use_auth_token' , A__ ) , revision=kwargs.pop('revision' , A__ ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _lowerCAmelCase =np.load(A__ ) return voice_preset_dict def UpperCamelCase__ ( self , __A = None ) -> Optional[int]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , __A=None , __A=None , __A="pt" , __A=256 , __A=False , __A=True , __A=False , **__A , ) -> Tuple: if voice_preset is not None and not isinstance(A__ , A__ ): if ( isinstance(A__ , A__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCAmelCase =self._load_voice_preset(A__ ) else: if isinstance(A__ , A__ ) and not voice_preset.endswith('.npz' ): _lowerCAmelCase =voice_preset + """.npz""" _lowerCAmelCase =np.load(A__ ) if voice_preset is not None: self._validate_voice_preset_dict(A__ , **A__ ) _lowerCAmelCase =BatchFeature(data=A__ , tensor_type=A__ ) _lowerCAmelCase =self.tokenizer( A__ , return_tensors=A__ , padding='max_length' , max_length=A__ , return_attention_mask=A__ , return_token_type_ids=A__ , add_special_tokens=A__ , **A__ , ) if voice_preset is not None: _lowerCAmelCase =voice_preset return encoded_text
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
'''simple docstring''' import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowercase_ = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : str lowercase : Optional[str] = None lowercase : Optional[Union[str, int]] = None lowercase : Optional[Union[str, int]] = None lowercase : Optional[Union[str, int]] = None def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =_str_to_version_tuple(self.version_str ) def __repr__( self ) -> Tuple: return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def UpperCamelCase__ ( self ) -> List[str]: return self.major, self.minor, self.patch def UpperCamelCase__ ( self , __A ) -> List[str]: if isinstance(_a , _a ): return Version(_a ) elif isinstance(_a , _a ): return other raise TypeError(F'''{other} (type {type(_a )}) cannot be compared to version.''' ) def __eq__( self , __A ) -> Optional[Any]: try: _lowerCAmelCase =self._validate_operand(_a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , __A ) -> List[Any]: _lowerCAmelCase =self._validate_operand(_a ) return self.tuple < other.tuple def __hash__( self ) -> int: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase__ ( cls , __A ) -> Union[str, Any]: _lowerCAmelCase ={f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase__ ( self ) -> str: return self.version_str def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =_VERSION_REG.match(lowerCAmelCase__ ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(lowerCAmelCase__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return ".".join(str(lowerCAmelCase__ ) for v in version_tuple )
720
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowercase_ = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def UpperCamelCase__ ( a__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowercase_ = parser.parse_args() if args.check_lib: lowercase_ = importlib.import_module('''transformers''') lowercase_ = Path(transformers_module.__file__).parent else: lowercase_ = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowercase_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE ( _UpperCAmelCase): """simple docstring""" lowercase : int = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'}) lowercase : Tuple = field(default=_UpperCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'}) lowercase : Optional[Any] = field( default=_UpperCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'}) lowercase : List[str] = field(default=_UpperCAmelCase , metadata={'help': 'whether to use adafactor'}) lowercase : List[str] = field( default=_UpperCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'}) lowercase : Dict = field( default=_UpperCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'}) lowercase : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'}) lowercase : Any = field( default=_UpperCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'}) lowercase : Dict = field( default='linear' , metadata={'help': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}"""} , )
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = (KDPMaDiscreteScheduler,) lowercase : Optional[Any] = 10 def UpperCamelCase__ ( self , **__A ) -> Dict: _lowerCAmelCase ={ 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__A ) return config def UpperCamelCase__ ( self ) -> str: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def UpperCamelCase__ ( self ) -> List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def UpperCamelCase__ ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config(prediction_type='v_prediction' ) _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def UpperCamelCase__ ( self ) -> List[str]: if torch_device == "mps": return _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def UpperCamelCase__ ( self ) -> Any: if torch_device == "mps": return _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if str(__A ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE ( __A): """simple docstring""" pass class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> Union[str, Any]: _lowerCAmelCase =data _lowerCAmelCase =None def __iter__( self ) -> Any: _lowerCAmelCase =self _lowerCAmelCase =[] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data _lowerCAmelCase =node.next_node @property def UpperCamelCase__ ( self ) -> Union[str, Any]: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowercase_ = Node(1) lowercase_ = Node(2) lowercase_ = Node(3) lowercase_ = Node(4) print(root_node.has_loop) # False lowercase_ = root_node.next_node print(root_node.has_loop) # True lowercase_ = Node(5) lowercase_ = Node(6) lowercase_ = Node(5) lowercase_ = Node(6) print(root_node.has_loop) # False lowercase_ = Node(1) print(root_node.has_loop) # False
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def UpperCamelCase__ ( a__ ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def UpperCamelCase__ ( ): '''simple docstring''' with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" _lowerCAmelCase =[1, 2, 3] with pytest.raises(__snake_case ): with parallel_backend('unsupported backend' ): map_nested(__snake_case , __snake_case , num_proc=2 ) with pytest.raises(__snake_case ): with parallel_backend('unsupported backend' ): map_nested(__snake_case , __snake_case , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =[1, 2] _lowerCAmelCase ={'a': 1, 'b': 2} _lowerCAmelCase ={'a': [1, 2], 'b': [3, 4]} _lowerCAmelCase ={'a': {'1': 1}, 'b': 2} _lowerCAmelCase ={'a': 1, 'b': 2, 'c': 3, 'd': 4} _lowerCAmelCase =[2, 3] _lowerCAmelCase ={'a': 2, 'b': 3} _lowerCAmelCase ={'a': [2, 3], 'b': [4, 5]} _lowerCAmelCase ={'a': {'1': 2}, 'b': 3} _lowerCAmelCase ={'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( __a , unittest.TestCase): """simple docstring""" lowercase : Union[str, Any] = CTRLTokenizer lowercase : int = False lowercase : List[str] = False def UpperCamelCase__ ( self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase =['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowerCAmelCase =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase =['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowerCAmelCase ={'unk_token': '<unk>'} _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def UpperCamelCase__ ( self , **__A ) -> Tuple: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCamelCase__ ( self , __A ) -> str: _lowerCAmelCase ='adapt react readapt apt' _lowerCAmelCase ='adapt react readapt apt' return input_text, output_text def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase ='adapt react readapt apt' _lowerCAmelCase ='adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowerCAmelCase =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _lowerCAmelCase =tokens + [tokenizer.unk_token] _lowerCAmelCase =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> Any: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(a_ ): _lowerCAmelCase =AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) _lowerCAmelCase =FlaxAutoModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(a_ ): _lowerCAmelCase =AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) _lowerCAmelCase =FlaxAutoModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def UpperCamelCase__ ( self ) -> Dict: for model_name in ["bert-base-cased", "bert-large-uncased"]: _lowerCAmelCase =AutoTokenizer.from_pretrained(a_ ) _lowerCAmelCase =FlaxBertModel.from_pretrained(a_ ) _lowerCAmelCase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__A ): return model(**a_ ) eval(**a_ ).block_until_ready() @slow def UpperCamelCase__ ( self ) -> Optional[Any]: for model_name in ["roberta-base", "roberta-large"]: _lowerCAmelCase =AutoTokenizer.from_pretrained(a_ ) _lowerCAmelCase =FlaxRobertaModel.from_pretrained(a_ ) _lowerCAmelCase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__A ): return model(**a_ ) eval(**a_ ).block_until_ready() def UpperCamelCase__ ( self ) -> Tuple: with self.assertRaisesRegex( a_ , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase__ ( self ) -> Tuple: with self.assertRaisesRegex( a_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained(a_ , revision='aaaaaa' ) def UpperCamelCase__ ( self ) -> str: with self.assertRaisesRegex( a_ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase__ ( self ) -> Tuple: with self.assertRaisesRegex(a_ , 'Use `from_pt=True` to load this model' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowerCAmelCase =str(bin(_snake_case ) )[2:] # remove the leading "0b" _lowerCAmelCase =str(bin(_snake_case ) )[2:] # remove the leading "0b" _lowerCAmelCase =max(len(_snake_case ) , len(_snake_case ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(_snake_case ) , b_binary.zfill(_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCAmelCase__): """simple docstring""" def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'num_attention_heads' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=13 , __A=32 , __A=2 , __A=3 , __A=640 , __A=4 , __A="silu" , __A=3 , __A=32 , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.02 , __A=True , __A=True , __A=10 , __A=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =last_hidden_size _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =conv_kernel_size _lowerCAmelCase =output_stride _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =classifier_dropout_prob _lowerCAmelCase =use_labels _lowerCAmelCase =is_training _lowerCAmelCase =num_labels _lowerCAmelCase =initializer_range _lowerCAmelCase =scope def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase__ ( self ) -> List[str]: return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: _lowerCAmelCase =MobileViTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowerCAmelCase =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: _lowerCAmelCase =self.num_labels _lowerCAmelCase =MobileViTForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowerCAmelCase =model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Tuple: _lowerCAmelCase =self.num_labels _lowerCAmelCase =MobileViTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowerCAmelCase =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCAmelCase =model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): """simple docstring""" lowercase : Union[str, Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowercase : List[Any] = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase : List[str] = False lowercase : Union[str, Any] = False lowercase : List[Any] = False lowercase : Optional[int] = False def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =MobileViTModelTester(self ) _lowerCAmelCase =MobileViTConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase__ ( self ) -> int: pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase__ ( self ) -> Dict: pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase__ ( self ) -> Tuple: pass def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase__ ( self ) -> Optional[int]: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ) -> List[str]: def check_hidden_states_output(__A , __A , __A ): _lowerCAmelCase =model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase =outputs.hidden_states _lowerCAmelCase =5 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowerCAmelCase =2 for i in range(len(_SCREAMING_SNAKE_CASE ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =MobileViTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> List[str]: return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**_SCREAMING_SNAKE_CASE ) # verify the logits _lowerCAmelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase =torch.tensor([-1.9_364, -1.2_327, -0.4_653] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) _lowerCAmelCase =model.to(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase =MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase =outputs.logits # verify the logits _lowerCAmelCase =torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase =torch.tensor( [ [[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9_868, -9.7_132], [-11.0405, -11.0221, -10.7318]], [[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]], ] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) _lowerCAmelCase =model.to(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase =MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase =outputs.logits.detach().cpu() _lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE , target_sizes=[(50, 60)] ) _lowerCAmelCase =torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase =torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE )
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE ( _A): """simple docstring""" def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase =Rectangle(height=0.25 , width=0.25 ) _lowerCAmelCase =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =Text('CPU' , font_size=24 ) _lowerCAmelCase =Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase__ ) _lowerCAmelCase =[mem.copy() for i in range(4 )] _lowerCAmelCase =VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =Text('GPU' , font_size=24 ) _lowerCAmelCase =Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase__ ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =Text('Model' , font_size=24 ) _lowerCAmelCase =Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase__ ) _lowerCAmelCase =[] _lowerCAmelCase =[] _lowerCAmelCase =[] for i, rect in enumerate(UpperCamelCase__ ): rect.set_stroke(UpperCamelCase__ ) _lowerCAmelCase =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCamelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCamelCase__ , buff=0.0 ) self.add(UpperCamelCase__ ) model_cpu_arr.append(UpperCamelCase__ ) self.add(*UpperCamelCase__ , *UpperCamelCase__ , *UpperCamelCase__ ) _lowerCAmelCase =[mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =Text('Loaded Checkpoint' , font_size=24 ) _lowerCAmelCase =Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCamelCase__ ) _lowerCAmelCase =[] _lowerCAmelCase =[] for i, rect in enumerate(UpperCamelCase__ ): _lowerCAmelCase =fill.copy().set_fill(UpperCamelCase__ , opacity=0.7 ) target.move_to(UpperCamelCase__ ) ckpt_arr.append(UpperCamelCase__ ) _lowerCAmelCase =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCamelCase__ ) self.add(*UpperCamelCase__ , *UpperCamelCase__ ) _lowerCAmelCase =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase =MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase__ , UpperCamelCase__ ) _lowerCAmelCase =MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(UpperCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCamelCase__ ) _lowerCAmelCase =MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) _lowerCAmelCase =[meta_mem.copy() for i in range(6 )] _lowerCAmelCase =[meta_mem.copy() for i in range(6 )] _lowerCAmelCase =VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) _lowerCAmelCase =Text('Disk' , font_size=24 ) _lowerCAmelCase =Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(UpperCamelCase__ , run_time=3 ) , Write(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) ) _lowerCAmelCase =[] for i, rect in enumerate(UpperCamelCase__ ): _lowerCAmelCase =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCamelCase__ , run_time=1.5 ) ) self.play(*UpperCamelCase__ ) self.play(FadeOut(UpperCamelCase__ ) ) _lowerCAmelCase =MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ , run_time=3 ) ) self.play( FadeOut(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , *UpperCamelCase__ ) , ) self.wait()
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' from __future__ import annotations import time lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =pos_x _lowerCAmelCase =pos_y _lowerCAmelCase =(pos_y, pos_x) _lowerCAmelCase =goal_x _lowerCAmelCase =goal_y _lowerCAmelCase =parent class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A ) -> Optional[int]: _lowerCAmelCase =Node(start[1] , start[0] , goal[1] , goal[0] , _A ) _lowerCAmelCase =Node(goal[1] , goal[0] , goal[1] , goal[0] , _A ) _lowerCAmelCase =[self.start] _lowerCAmelCase =False def UpperCamelCase__ ( self ) -> Optional[int]: while self.node_queue: _lowerCAmelCase =self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _lowerCAmelCase =True return self.retrace_path(_A ) _lowerCAmelCase =self.get_successors(_A ) for node in successors: self.node_queue.append(_A ) if not self.reached: return [self.start.pos] return None def UpperCamelCase__ ( self , __A ) -> int: _lowerCAmelCase =[] for action in delta: _lowerCAmelCase =parent.pos_x + action[1] _lowerCAmelCase =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_A , _A , self.target.pos_y , self.target.pos_x , _A ) ) return successors def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: _lowerCAmelCase =node _lowerCAmelCase =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase =current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =BreadthFirstSearch(_A , _A ) _lowerCAmelCase =BreadthFirstSearch(_A , _A ) _lowerCAmelCase =False def UpperCamelCase__ ( self ) -> str: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _lowerCAmelCase =self.fwd_bfs.node_queue.pop(0 ) _lowerCAmelCase =self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _lowerCAmelCase =True return self.retrace_bidirectional_path( _A , _A ) _lowerCAmelCase =current_bwd_node _lowerCAmelCase =current_fwd_node _lowerCAmelCase ={ self.fwd_bfs: self.fwd_bfs.get_successors(_A ), self.bwd_bfs: self.bwd_bfs.get_successors(_A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase__ ( self , __A , __A ) -> Dict: _lowerCAmelCase =self.fwd_bfs.retrace_path(_A ) _lowerCAmelCase =self.bwd_bfs.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase =fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase_ = time.time() lowercase_ = BreadthFirstSearch(init, goal) lowercase_ = bfs.search() lowercase_ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) lowercase_ = time.time() lowercase_ = BidirectionalBreadthFirstSearch(init, goal) lowercase_ = bd_bfs.search() lowercase_ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'efficientnet' def __init__( self , __A = 3 , __A = 600 , __A = 2.0 , __A = 3.1 , __A = 8 , __A = [3, 3, 5, 3, 5, 5, 3] , __A = [32, 16, 24, 40, 80, 112, 192] , __A = [16, 24, 40, 80, 112, 192, 320] , __A = [] , __A = [1, 2, 2, 2, 1, 2, 1] , __A = [1, 2, 2, 3, 3, 4, 1] , __A = [1, 6, 6, 6, 6, 6, 6] , __A = 0.25 , __A = "swish" , __A = 2560 , __A = "mean" , __A = 0.02 , __A = 0.001 , __A = 0.99 , __A = 0.5 , __A = 0.2 , **__A , ) -> Optional[int]: super().__init__(**__a ) _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =width_coefficient _lowerCAmelCase =depth_coefficient _lowerCAmelCase =depth_divisor _lowerCAmelCase =kernel_sizes _lowerCAmelCase =in_channels _lowerCAmelCase =out_channels _lowerCAmelCase =depthwise_padding _lowerCAmelCase =strides _lowerCAmelCase =num_block_repeats _lowerCAmelCase =expand_ratios _lowerCAmelCase =squeeze_expansion_ratio _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dim _lowerCAmelCase =pooling_type _lowerCAmelCase =initializer_range _lowerCAmelCase =batch_norm_eps _lowerCAmelCase =batch_norm_momentum _lowerCAmelCase =dropout_rate _lowerCAmelCase =drop_connect_rate _lowerCAmelCase =sum(__a ) * 4 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = version.parse('1.11') @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-5
711
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
0
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase__ ( a__ ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ="""mock-s3-bucket""" _lowerCAmelCase =F'''s3://{mock_bucket}''' _lowerCAmelCase =extract_path_from_uri(lowerCamelCase_ ) assert dataset_path.startswith('s3://' ) is False _lowerCAmelCase ="""./local/path""" _lowerCAmelCase =extract_path_from_uri(lowerCamelCase_ ) assert dataset_path == new_dataset_path def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =is_remote_filesystem(lowerCamelCase_ ) assert is_remote is True _lowerCAmelCase =fsspec.filesystem('file' ) _lowerCAmelCase =is_remote_filesystem(lowerCamelCase_ ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , lowerCamelCase_ ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase ={"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} _lowerCAmelCase =input_paths[compression_fs_class.protocol] if input_path is None: _lowerCAmelCase =F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) _lowerCAmelCase =fsspec.filesystem(compression_fs_class.protocol , fo=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =os.path.basename(lowerCamelCase_ ) _lowerCAmelCase =expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f, open(lowerCamelCase_ , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase ={"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} _lowerCAmelCase =compressed_file_paths[protocol] _lowerCAmelCase ="""dataset.jsonl""" _lowerCAmelCase =F'''{protocol}://{member_file_path}::{compressed_file_path}''' _lowerCAmelCase =fsspec.get_fs_token_paths(lowerCamelCase_ ) assert fs.isfile(lowerCamelCase_ ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =hf_api.dataset_info(lowerCamelCase_ , token=lowerCamelCase_ ) _lowerCAmelCase =HfFileSystem(repo_info=lowerCamelCase_ , token=lowerCamelCase_ ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(lowerCamelCase_ ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ="""bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCamelCase_ , lowerCamelCase_ , clobber=lowerCamelCase_ ) with pytest.warns(lowerCamelCase_ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCamelCase_ ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
712
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def run_func(a__ ): @wraps(A__ ) def run_in_eager_mode(*a__ , **a__ ): return func(*A__ , **A__ ) @wraps(A__ ) @tf.function(experimental_compile=A__ ) def run_in_graph_mode(*a__ , **a__ ): return func(*A__ , **A__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =random.Random() _lowerCAmelCase =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(A__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class SCREAMING_SNAKE_CASE ( __lowerCamelCase): """simple docstring""" lowercase : TensorFlowBenchmarkArguments lowercase : PretrainedConfig lowercase : str = "TensorFlow" @property def UpperCamelCase__ ( self ) -> Optional[int]: return tf.__version__ def UpperCamelCase__ ( self , __A , __A , __A ) -> Union[str, Any]: # initialize GPU on separate process _lowerCAmelCase =self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase =self._prepare_inference_func(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return self._measure_speed(_inference ) def UpperCamelCase__ ( self , __A , __A , __A ) -> List[str]: _lowerCAmelCase =self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase =self._prepare_train_func(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return self._measure_speed(_train ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase_ ) _lowerCAmelCase =self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase =self._prepare_inference_func(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return self._measure_memory(_inference ) def UpperCamelCase__ ( self , __A , __A , __A ) -> List[str]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase_ ) _lowerCAmelCase =self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase =self._prepare_train_func(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return self._measure_memory(_train ) def UpperCamelCase__ ( self , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _lowerCAmelCase =( hasattr(UpperCamelCase_ , 'architectures' ) and isinstance(config.architectures , UpperCamelCase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase ='TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase =__import__('transformers' , fromlist=[model_class] ) _lowerCAmelCase =getattr(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase =model_cls(UpperCamelCase_ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _lowerCAmelCase =TF_MODEL_MAPPING[config.__class__](UpperCamelCase_ ) # encoder-decoder has vocab size saved differently _lowerCAmelCase =config.vocab_size if hasattr(UpperCamelCase_ , 'vocab_size' ) else config.encoder.vocab_size _lowerCAmelCase =random_input_ids(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ , training=UpperCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase_ , training=UpperCamelCase_ ) _lowerCAmelCase =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase__ ( self , __A , __A , __A ) -> Any: _lowerCAmelCase =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _lowerCAmelCase =( hasattr(UpperCamelCase_ , 'architectures' ) and isinstance(config.architectures , UpperCamelCase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase ='TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase =__import__('transformers' , fromlist=[model_class] ) _lowerCAmelCase =getattr(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase =model_cls(UpperCamelCase_ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _lowerCAmelCase =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase_ ) # encoder-decoder has vocab size saved differently _lowerCAmelCase =config.vocab_size if hasattr(UpperCamelCase_ , 'vocab_size' ) else config.encoder.vocab_size _lowerCAmelCase =random_input_ids(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase =model(UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ )[0] _lowerCAmelCase =tf.gradients(UpperCamelCase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase =model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ )[0] _lowerCAmelCase =tf.gradients(UpperCamelCase_ , model.trainable_variables ) return gradients _lowerCAmelCase =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(UpperCamelCase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase =timeit.repeat( UpperCamelCase_ , repeat=self.args.repeat , number=10 , ) return min(UpperCamelCase_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def UpperCamelCase__ ( self , __A ) -> List[Any]: logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) _lowerCAmelCase =start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) _lowerCAmelCase ='N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase =nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase_ ) _lowerCAmelCase =meminfo.used _lowerCAmelCase =Memory(UpperCamelCase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) _lowerCAmelCase =None else: _lowerCAmelCase =measure_peak_memory_cpu(UpperCamelCase_ ) _lowerCAmelCase =Memory(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase =stop_memory_tracing(UpperCamelCase_ ) if memory is None: _lowerCAmelCase =summary.total else: _lowerCAmelCase =None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase): """simple docstring""" lowercase : Optional[Any] = GPTaTokenizer lowercase : int = GPTaTokenizerFast lowercase : int = True lowercase : Any = {'add_prefix_space': True} lowercase : Optional[Any] = False def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCAmelCase =dict(zip(__A , range(len(__A ) ) ) ) _lowerCAmelCase =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCAmelCase ={"unk_token": "<unk>"} _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def UpperCamelCase__ ( self , **__A ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__A ) def UpperCamelCase__ ( self , **__A ) -> List[Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__A ) def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase ="lower newer" _lowerCAmelCase ="lower newer" return input_text, output_text def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase ="lower newer" _lowerCAmelCase =["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCAmelCase =tokenizer.tokenize(__A , add_prefix_space=__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =tokens + [tokenizer.unk_token] _lowerCAmelCase =[14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def UpperCamelCase__ ( self ) -> Tuple: if not self.test_rust_tokenizer: return _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCAmelCase ="lower newer" # Testing tokenization _lowerCAmelCase =tokenizer.tokenize(__A , add_prefix_space=__A ) _lowerCAmelCase =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids without special tokens _lowerCAmelCase =tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A ) _lowerCAmelCase =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids with special tokens _lowerCAmelCase =self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCAmelCase =tokenizer.encode(__A , add_prefix_space=__A ) _lowerCAmelCase =rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) # Testing the unknown token _lowerCAmelCase =tokens + [rust_tokenizer.unk_token] _lowerCAmelCase =[14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ) , __A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Tuple: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def UpperCamelCase__ ( self , __A=15 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCAmelCase =self.rust_tokenizer_class.from_pretrained(__A , **__A ) # Simple input _lowerCAmelCase ="This is a simple input" _lowerCAmelCase =["This is a simple input 1", "This is a simple input 2"] _lowerCAmelCase =("This is a simple input", "This is a pair") _lowerCAmelCase =[ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding='max_length' ) # Simple input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding='max_length' ) # Simple input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding='max_length' , ) # Pair input self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding='max_length' ) # Pair input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding='max_length' ) # Pair input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding='max_length' , ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _lowerCAmelCase ="This is a simple input" _lowerCAmelCase =["This is a simple input looooooooong", "This is a simple input"] _lowerCAmelCase =("This is a simple input", "This is a pair") _lowerCAmelCase =[ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCAmelCase =tokenizer.pad_token_id _lowerCAmelCase =tokenizer(__A , padding='max_length' , max_length=30 , return_tensors='np' ) _lowerCAmelCase =tokenizer(__A , padding=__A , truncate=__A , return_tensors='np' ) _lowerCAmelCase =tokenizer(*__A , padding='max_length' , max_length=60 , return_tensors='np' ) _lowerCAmelCase =tokenizer(__A , padding=__A , truncate=__A , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase ="$$$" _lowerCAmelCase =GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__A , add_bos_token=__A ) _lowerCAmelCase ="This is a simple input" _lowerCAmelCase =["This is a simple input 1", "This is a simple input 2"] _lowerCAmelCase =tokenizer.bos_token_id _lowerCAmelCase =tokenizer(__A ) _lowerCAmelCase =tokenizer(__A ) self.assertEqual(out_s.input_ids[0] , __A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase =tokenizer.decode(out_s.input_ids ) _lowerCAmelCase =tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCamelCase__ ( self ) -> int: pass def UpperCamelCase__ ( self ) -> Union[str, Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _lowerCAmelCase =[self.get_tokenizer(do_lower_case=__A , add_bos_token=__A )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowerCAmelCase ="Encode this." _lowerCAmelCase ="This one too please." _lowerCAmelCase =tokenizer.encode(__A , add_special_tokens=__A ) encoded_sequence += tokenizer.encode(__A , add_special_tokens=__A ) _lowerCAmelCase =tokenizer.encode_plus( __A , __A , add_special_tokens=__A , return_special_tokens_mask=__A , ) _lowerCAmelCase =encoded_sequence_dict["input_ids"] _lowerCAmelCase =encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__A ) , len(__A ) ) _lowerCAmelCase =[ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__A ) ] _lowerCAmelCase =[x for x in filtered_sequence if x is not None] self.assertEqual(__A , __A ) @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Tuple: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _lowerCAmelCase =AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=__A ) _lowerCAmelCase ="A photo of a cat" _lowerCAmelCase =tokenizer.encode( __A , ) self.assertEqual(__A , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) _lowerCAmelCase =AutoTokenizer.from_pretrained('./test_opt' ) _lowerCAmelCase =tokenizer.encode( __A , ) self.assertEqual(__A , [2, 250, 1345, 9, 10, 4758] ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=__A ) _lowerCAmelCase ="A photo of a cat" _lowerCAmelCase =tokenizer.encode( __A , ) # Same as above self.assertEqual(__A , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=__A ) _lowerCAmelCase ="bos" _lowerCAmelCase =tokenizer.get_vocab()["bos"] _lowerCAmelCase ="A photo of a cat" _lowerCAmelCase =tokenizer.encode( __A , ) # We changed the bos token self.assertEqual(__A , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) _lowerCAmelCase =AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) _lowerCAmelCase =tokenizer.encode( __A , ) self.assertEqual(__A , [3_1957, 250, 1345, 9, 10, 4758] )
714
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=2 , __A=3 , __A=4 , __A=2 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=36 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=6 , __A=6 , __A=3 , __A=4 , __A=None , __A=1000 , ) -> List[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =coordinate_size _lowerCAmelCase =shape_size _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =scope _lowerCAmelCase =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase =text_seq_length _lowerCAmelCase =(image_size // patch_size) ** 2 + 1 _lowerCAmelCase =self.text_seq_length + self.image_seq_length def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _lowerCAmelCase =bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase =bbox[i, j, 3] _lowerCAmelCase =bbox[i, j, 1] _lowerCAmelCase =tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase =bbox[i, j, 2] _lowerCAmelCase =bbox[i, j, 0] _lowerCAmelCase =tmp_coordinate _lowerCAmelCase =tf.constant(lowercase_ ) _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCAmelCase =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A ) -> Dict: _lowerCAmelCase =TFLayoutLMvaModel(config=lowercase_ ) # text + image _lowerCAmelCase =model(lowercase_ , pixel_values=lowercase_ , training=lowercase_ ) _lowerCAmelCase =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , training=lowercase_ , ) _lowerCAmelCase =model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase =model(lowercase_ , training=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase =model({'pixel_values': pixel_values} , training=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Dict: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFLayoutLMvaForSequenceClassification(config=lowercase_ ) _lowerCAmelCase =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , training=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFLayoutLMvaForTokenClassification(config=lowercase_ ) _lowerCAmelCase =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , training=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[int]: _lowerCAmelCase =2 _lowerCAmelCase =TFLayoutLMvaForQuestionAnswering(config=lowercase_ ) _lowerCAmelCase =model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , training=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =config_and_inputs _lowerCAmelCase ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Any = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase : List[Any] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase : List[Any] = False lowercase : List[Any] = False lowercase : List[Any] = False def UpperCamelCase__ ( self , __A , __A , __A , __A , __A ) -> Optional[int]: return True def UpperCamelCase__ ( self , __A , __A , __A=False ) -> dict: _lowerCAmelCase =copy.deepcopy(lowercase_ ) if model_class in get_values(lowercase_ ): _lowerCAmelCase ={ k: tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowercase_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_ ): _lowerCAmelCase =tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase_ ): _lowerCAmelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _lowerCAmelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase_ ): _lowerCAmelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase_ ): _lowerCAmelCase =tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =TFLayoutLMvaModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(lowercase_ ) if getattr(lowercase_ , 'hf_compute_loss' , lowercase_ ): # The number of elements in the loss should be the same as the number of elements in the label _lowerCAmelCase =self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _lowerCAmelCase =prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowercase_ )[0] ] _lowerCAmelCase =added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _lowerCAmelCase =self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _lowerCAmelCase =prepared_for_class.pop('input_ids' ) _lowerCAmelCase =model(lowercase_ , **lowercase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _lowerCAmelCase =self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _lowerCAmelCase =prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: _lowerCAmelCase =prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _lowerCAmelCase =-100 _lowerCAmelCase =tf.convert_to_tensor(lowercase_ ) _lowerCAmelCase =model(lowercase_ , **lowercase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _lowerCAmelCase =self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _lowerCAmelCase =model(lowercase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _lowerCAmelCase =self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) # Get keys that were added with the _prepare_for_class function _lowerCAmelCase =prepared_for_class.keys() - inputs_dict.keys() _lowerCAmelCase =inspect.signature(model.call ).parameters _lowerCAmelCase =list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _lowerCAmelCase ={0: 'input_ids'} for label_key in label_keys: _lowerCAmelCase =signature_names.index(lowercase_ ) _lowerCAmelCase =label_key _lowerCAmelCase =sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _lowerCAmelCase =[] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _lowerCAmelCase =prepared_for_class[value] _lowerCAmelCase =tuple(lowercase_ ) # Send to model _lowerCAmelCase =model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCamelCase__ ( self ) -> Optional[int]: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ) -> Dict: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase =type self.model_tester.create_and_check_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ) -> Optional[int]: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ) -> Optional[int]: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ) -> int: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFLayoutLMvaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase__ ( ) -> Any: '''simple docstring''' _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> Optional[int]: return LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=lowercase_ , return_tensors='tf' ).pixel_values _lowerCAmelCase =tf.constant([[1, 2]] ) _lowerCAmelCase =tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _lowerCAmelCase =model(input_ids=lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , training=lowercase_ ) # verify the logits _lowerCAmelCase =(1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) _lowerCAmelCase =tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ) )
715
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowercase_ = parser.parse_args() lowercase_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
716
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _lowerCAmelCase =TOKENIZER_CLASSES else: _lowerCAmelCase ={tokenizer_name: getattr(a__ , tokenizer_name + 'Fast' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _lowerCAmelCase =TOKENIZER_CLASSES[tokenizer_name] _lowerCAmelCase =True if checkpoint_name is None: _lowerCAmelCase =list(tokenizer_class.max_model_input_sizes.keys() ) else: _lowerCAmelCase =[checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _lowerCAmelCase =tokenizer_class.from_pretrained(a__ , force_download=a__ ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _lowerCAmelCase =checkpoint.split('/' ) _lowerCAmelCase =os.path.join(a__ , a__ ) elif add_prefix: _lowerCAmelCase =checkpoint _lowerCAmelCase =dump_path else: _lowerCAmelCase =None _lowerCAmelCase =dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _lowerCAmelCase =list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _lowerCAmelCase =file_path.split(a__ )[-1][0] if next_char == "/": _lowerCAmelCase =os.path.join(a__ , a__ ) _lowerCAmelCase =None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _lowerCAmelCase =tokenizer.save_pretrained( a__ , legacy_format=a__ , filename_prefix=a__ ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(a__ ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowercase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
717
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''{sampling_rate}''' _lowerCAmelCase ="1" _lowerCAmelCase ="f32le" _lowerCAmelCase =[ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _lowerCAmelCase =ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error _lowerCAmelCase =output_stream[0] _lowerCAmelCase =np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def UpperCamelCase__ ( a__ , a__ , a__ = "f32le" , ): '''simple docstring''' _lowerCAmelCase =F'''{sampling_rate}''' _lowerCAmelCase ="1" if format_for_conversion == "s16le": _lowerCAmelCase =2 elif format_for_conversion == "f32le": _lowerCAmelCase =4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) _lowerCAmelCase =platform.system() if system == "Linux": _lowerCAmelCase ="alsa" _lowerCAmelCase ="default" elif system == "Darwin": _lowerCAmelCase ="avfoundation" _lowerCAmelCase =":0" elif system == "Windows": _lowerCAmelCase ="dshow" _lowerCAmelCase ="default" _lowerCAmelCase =[ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] _lowerCAmelCase =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _lowerCAmelCase =_ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCamelCase__ ( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: _lowerCAmelCase =stream_chunk_s else: _lowerCAmelCase =chunk_length_s _lowerCAmelCase =ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": _lowerCAmelCase =np.intaa _lowerCAmelCase =2 elif format_for_conversion == "f32le": _lowerCAmelCase =np.floataa _lowerCAmelCase =4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: _lowerCAmelCase =chunk_length_s / 6 _lowerCAmelCase =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): _lowerCAmelCase =[stride_length_s, stride_length_s] _lowerCAmelCase =int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _lowerCAmelCase =int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _lowerCAmelCase =datetime.datetime.now() _lowerCAmelCase =datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale _lowerCAmelCase =np.frombuffer(item['raw'] , dtype=a__ ) _lowerCAmelCase =( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) _lowerCAmelCase =sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def UpperCamelCase__ ( a__ , a__ , a__ , a__ = False ): '''simple docstring''' _lowerCAmelCase =b"" _lowerCAmelCase =stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) _lowerCAmelCase =0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: _lowerCAmelCase =(_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator _lowerCAmelCase =(_stride_left, stride_right) _lowerCAmelCase ={"raw": acc[:chunk_len], "stride": stride} if stream: _lowerCAmelCase =False yield item _lowerCAmelCase =stride_left _lowerCAmelCase =acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: _lowerCAmelCase ={"raw": acc, "stride": (_stride_left, 0)} if stream: _lowerCAmelCase =False yield item def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =2**2_4 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: _lowerCAmelCase =ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
718
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase_ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowerCamelCase): """simple docstring""" lowercase : Optional[int] = 'tapas' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=1024 , __A=[3, 256, 256, 2, 256, 256, 10] , __A=0.02 , __A=1E-12 , __A=0 , __A=10.0 , __A=0 , __A=1.0 , __A=None , __A=1.0 , __A=False , __A=None , __A=1.0 , __A=1.0 , __A=False , __A=False , __A="ratio" , __A=None , __A=None , __A=64 , __A=32 , __A=False , __A=True , __A=False , __A=False , __A=True , __A=False , __A=None , __A=None , **__A , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_sizes _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps # Fine-tuning task hyperparameters _lowerCAmelCase =positive_label_weight _lowerCAmelCase =num_aggregation_labels _lowerCAmelCase =aggregation_loss_weight _lowerCAmelCase =use_answer_as_supervision _lowerCAmelCase =answer_loss_importance _lowerCAmelCase =use_normalized_answer_loss _lowerCAmelCase =huber_loss_delta _lowerCAmelCase =temperature _lowerCAmelCase =aggregation_temperature _lowerCAmelCase =use_gumbel_for_cells _lowerCAmelCase =use_gumbel_for_aggregation _lowerCAmelCase =average_approximation_function _lowerCAmelCase =cell_selection_preference _lowerCAmelCase =answer_loss_cutoff _lowerCAmelCase =max_num_rows _lowerCAmelCase =max_num_columns _lowerCAmelCase =average_logits_per_cell _lowerCAmelCase =select_one_column _lowerCAmelCase =allow_empty_column_selection _lowerCAmelCase =init_cell_selection_weights_to_zero _lowerCAmelCase =reset_position_index_per_cell _lowerCAmelCase =disable_per_token_loss # Aggregation hyperparameters _lowerCAmelCase =aggregation_labels _lowerCAmelCase =no_aggregation_label_index if isinstance(self.aggregation_labels , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase ={int(SCREAMING_SNAKE_CASE_ ): v for k, v in aggregation_labels.items()}
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' def constraint_to_multiple_of(a__ , a__ , a__=0 , a__=None ): _lowerCAmelCase =round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase =math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase =math.ceil(val / multiple ) * multiple return x _lowerCAmelCase =(output_size, output_size) if isinstance(a__ , a__ ) else output_size _lowerCAmelCase =get_image_size(a__ ) _lowerCAmelCase =output_size # determine new height and width _lowerCAmelCase =output_height / input_height _lowerCAmelCase =output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase =scale_width else: # fit height _lowerCAmelCase =scale_height _lowerCAmelCase =constraint_to_multiple_of(scale_height * input_height , multiple=a__ ) _lowerCAmelCase =constraint_to_multiple_of(scale_width * input_width , multiple=a__ ) return (new_height, new_width) class SCREAMING_SNAKE_CASE ( _snake_case): """simple docstring""" lowercase : Any = ["""pixel_values"""] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BILINEAR , __A = False , __A = 1 , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , **__A , ) -> str: super().__init__(**snake_case_ ) _lowerCAmelCase =size if size is not None else {"height": 384, "width": 384} _lowerCAmelCase =get_size_dict(snake_case_ ) _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =keep_aspect_ratio _lowerCAmelCase =ensure_multiple_of _lowerCAmelCase =resample _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , __A , __A , __A = False , __A = 1 , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> Optional[int]: _lowerCAmelCase =get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowerCAmelCase =get_resize_output_image_size( snake_case_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=snake_case_ , multiple=snake_case_ , ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A , ) -> List[str]: return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , __A , __A , __A , __A = None , **__A , ) -> List[Any]: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> Any: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(snake_case_ ) _lowerCAmelCase =keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase =ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(snake_case_ ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _lowerCAmelCase ={"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def UpperCamelCase__ ( self , __A , __A = None ) -> int: _lowerCAmelCase =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(snake_case_ ): _lowerCAmelCase =target_sizes.numpy() _lowerCAmelCase =[] for idx in range(len(snake_case_ ) ): _lowerCAmelCase =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=snake_case_ ) _lowerCAmelCase =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: _lowerCAmelCase =logits.argmax(dim=1 ) _lowerCAmelCase =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
720
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowercase__): """simple docstring""" def __init__( self , *__A , **__A ) -> Dict: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
721
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(_lowerCAmelCase ): print(F'''{i}\t\t{d}''' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' for j in range(_lowerCAmelCase ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =(graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[float('inf' )] * vertex_count _lowerCAmelCase =0.0 for _ in range(vertex_count - 1 ): for j in range(_lowerCAmelCase ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =(graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: _lowerCAmelCase =distance[u] + w _lowerCAmelCase =check_negative_cycle(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('''Enter number of vertices: ''').strip()) lowercase_ = int(input('''Enter number of edges: ''').strip()) lowercase_ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowercase_ , lowercase_ , lowercase_ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowercase_ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowercase_ = int(input('''\nEnter shortest path source:''').strip()) lowercase_ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ , a__ = None , a__ = None , a__ = False , ): '''simple docstring''' _lowerCAmelCase =cipher_alphabet or [chr(lowerCamelCase_ ) for i in range(9_7 , 1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _lowerCAmelCase ={ '''a''': 0.08_497, '''b''': 0.01_492, '''c''': 0.02_202, '''d''': 0.04_253, '''e''': 0.11_162, '''f''': 0.02_228, '''g''': 0.02_015, '''h''': 0.06_094, '''i''': 0.07_546, '''j''': 0.00_153, '''k''': 0.01_292, '''l''': 0.04_025, '''m''': 0.02_406, '''n''': 0.06_749, '''o''': 0.07_507, '''p''': 0.01_929, '''q''': 0.00_095, '''r''': 0.07_587, '''s''': 0.06_327, '''t''': 0.09_356, '''u''': 0.02_758, '''v''': 0.00_978, '''w''': 0.02_560, '''x''': 0.00_150, '''y''': 0.01_994, '''z''': 0.00_077, } else: # Custom frequencies dictionary _lowerCAmelCase =frequencies_dict if not case_sensitive: _lowerCAmelCase =ciphertext.lower() # Chi squared statistic values _lowerCAmelCase ={} # cycle through all of the shifts for shift in range(len(lowerCamelCase_ ) ): _lowerCAmelCase ='''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _lowerCAmelCase =(alphabet_letters.index(letter.lower() ) - shift) % len( lowerCamelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _lowerCAmelCase =0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _lowerCAmelCase =letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _lowerCAmelCase =decrypted_with_shift.lower().count(lowerCamelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCAmelCase =frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCAmelCase =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _lowerCAmelCase =decrypted_with_shift.count(lowerCamelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _lowerCAmelCase =frequencies[letter] * occurrences # Complete the chi squared statistic formula _lowerCAmelCase =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _lowerCAmelCase =( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(a__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] _lowerCAmelCase =min( lowerCamelCase_ , key=lowerCamelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( _lowerCAmelCase ) =chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self , __A , __A , __A ) -> int: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =None ops.enable_eager_execution_internal() _lowerCAmelCase =tf.config.list_physical_devices('CPU' ) if len(_lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _lowerCAmelCase =tf.config.list_logical_devices(device_type='CPU' ) _lowerCAmelCase =tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _lowerCAmelCase =GradientAccumulator() _lowerCAmelCase =tf.Variable([4.0, 3.0] ) _lowerCAmelCase , _lowerCAmelCase =create_optimizer(5E-5 , 10 , 5 ) _lowerCAmelCase =tf.Variable([0.0, 0.0] , trainable=_lowercase ) def accumulate_on_replica(__A ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__A , __A ): with strategy.scope(): _lowerCAmelCase =strategy.experimental_local_results(_lowercase ) local_variables[0].assign(_lowercase ) local_variables[1].assign(_lowercase ) strategy.run(_lowercase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase ) def _check_local_values(__A , __A ): _lowerCAmelCase =strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> Tuple: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_labels _lowerCAmelCase =use_mc_token_ids _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =scope _lowerCAmelCase =self.vocab_size - 1 def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =None if self.use_mc_token_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self ) -> Optional[int]: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , *__A ) -> Union[str, Any]: _lowerCAmelCase =CTRLModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) model(lowercase_ , token_type_ids=lowercase_ ) _lowerCAmelCase =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , *__A ) -> Tuple: _lowerCAmelCase =CTRLLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCAmelCase =model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.prepare_config_and_inputs() ( _lowerCAmelCase ) =config_and_inputs _lowerCAmelCase ={"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def UpperCamelCase__ ( self , __A , __A , __A , __A , *__A ) -> Union[str, Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =CTRLForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" lowercase : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase : List[str] = (CTRLLMHeadModel,) if is_torch_available() else () lowercase : Optional[int] = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase : str = True lowercase : Any = False lowercase : List[str] = False def UpperCamelCase__ ( self , __A , __A , __A , __A , __A ) -> Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =CTRLModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def UpperCamelCase__ ( self ) -> Optional[int]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowercase_ ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase__ ( self ) -> Tuple: pass @slow def UpperCamelCase__ ( self ) -> int: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =CTRLModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ ( self ) -> List[str]: pass @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Dict: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(lowercase_ ) _lowerCAmelCase =torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=lowercase_ ) # Legal the president is _lowerCAmelCase =[ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _lowerCAmelCase =model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowercase_ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowercase_ = {"facebook/blenderbot-3B": 128} class SCREAMING_SNAKE_CASE ( _UpperCAmelCase): """simple docstring""" lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : int = PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : int = ['''input_ids''', '''attention_mask'''] lowercase : str = BlenderbotTokenizer def __init__( self , __A=None , __A=None , __A=None , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , __A=True , **__A , ) -> int: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , A_ ) != add_prefix_space: _lowerCAmelCase =getattr(A_ , pre_tok_state.pop('type' ) ) _lowerCAmelCase =add_prefix_space _lowerCAmelCase =pre_tok_class(**A_ ) _lowerCAmelCase =add_prefix_space _lowerCAmelCase ='post_processor' _lowerCAmelCase =getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: _lowerCAmelCase =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase =tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase =tuple(state['cls'] ) _lowerCAmelCase =False if state.get('add_prefix_space' , A_ ) != add_prefix_space: _lowerCAmelCase =add_prefix_space _lowerCAmelCase =True if state.get('trim_offsets' , A_ ) != trim_offsets: _lowerCAmelCase =trim_offsets _lowerCAmelCase =True if changes_to_apply: _lowerCAmelCase =getattr(A_ , state.pop('type' ) ) _lowerCAmelCase =component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCamelCase__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value _lowerCAmelCase =value def UpperCamelCase__ ( self , *__A , **__A ) -> BatchEncoding: _lowerCAmelCase =kwargs.get('is_split_into_words' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def UpperCamelCase__ ( self , *__A , **__A ) -> BatchEncoding: _lowerCAmelCase =kwargs.get('is_split_into_words' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , __A , __A = None ) -> Any: return token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , __A ) -> List[int]: _lowerCAmelCase =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) _lowerCAmelCase =' '.join(A_ ) _lowerCAmelCase =self.encode(A_ ) if len(A_ ) > self.model_max_length: _lowerCAmelCase =input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'distilbert' lowercase : Union[str, Any] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , __A=3_0522 , __A=512 , __A=False , __A=6 , __A=12 , __A=768 , __A=4 * 768 , __A=0.1 , __A=0.1 , __A="gelu" , __A=0.02 , __A=0.1 , __A=0.2 , __A=0 , **__A , ) -> Tuple: _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =sinusoidal_pos_embds _lowerCAmelCase =n_layers _lowerCAmelCase =n_heads _lowerCAmelCase =dim _lowerCAmelCase =hidden_dim _lowerCAmelCase =dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =activation _lowerCAmelCase =initializer_range _lowerCAmelCase =qa_dropout _lowerCAmelCase =seq_classif_dropout super().__init__(**__A , pad_token_id=__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase ={0: "batch", 1: "sequence"} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =inspect.getfile(accelerate.test_utils ) _lowerCAmelCase =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowerCAmelCase =test_metrics @require_cpu def UpperCamelCase__ ( self ) -> int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase__ ( self ) -> List[str]: debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase__ ( self ) -> Dict: self.test_metrics.main() @require_multi_gpu def UpperCamelCase__ ( self ) -> int: print(F'''Found {torch.cuda.device_count()} devices.''' ) _lowerCAmelCase =['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() )
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0
'''simple docstring''' class UpperCamelCase_ : # Public class to implement a graph """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =row _lowerCAmelCase =col _lowerCAmelCase =graph def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: # Checking all 8 elements surrounding nth element _lowerCAmelCase =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _lowerCAmelCase =[-1, 0, 1, -1, 1, -1, 0, 1] _lowerCAmelCase =True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __A ) def UpperCamelCase__ ( self ) -> Optional[int]: # And finally, count all islands. _lowerCAmelCase =[[False for j in range(self.COL )] for i in range(self.ROW )] _lowerCAmelCase =0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__A , __A , __A ) count += 1 return count
707
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
0
'''simple docstring''' import string def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ='' for i in sequence: _lowerCAmelCase =ord(lowerCAmelCase__ ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =string.ascii_letters _lowerCAmelCase =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase__ )] if c in letters else c for c in sequence ) def UpperCamelCase__ ( ): '''simple docstring''' from timeit import timeit print('Running performance benchmarks...' ) _lowerCAmelCase ='from string import printable ; from __main__ import atbash, atbash_slow' print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=lowerCAmelCase__ )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=lowerCAmelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'{example} encrypted in atbash: {atbash(example)}') benchmark()
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.dummy_uncond_unet _lowerCAmelCase =PNDMScheduler() _lowerCAmelCase =PNDMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) pndm.to(lowerCamelCase_ ) pndm.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pndm(generator=lowerCamelCase_ , num_inference_steps=20 , output_type='numpy' ).images _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pndm(generator=lowerCamelCase_ , num_inference_steps=20 , output_type='numpy' , return_dict=lowerCamelCase_ )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase ='google/ddpm-cifar10-32' _lowerCAmelCase =UNetaDModel.from_pretrained(lowerCamelCase_ ) _lowerCAmelCase =PNDMScheduler() _lowerCAmelCase =PNDMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) pndm.to(lowerCamelCase_ ) pndm.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pndm(generator=lowerCamelCase_ , output_type='numpy' ).images _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase =np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , ) -> Optional[Any]: _lowerCAmelCase =parent _lowerCAmelCase =13 _lowerCAmelCase =7 _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =99 _lowerCAmelCase =32 _lowerCAmelCase =2 _lowerCAmelCase =4 _lowerCAmelCase =37 _lowerCAmelCase ='gelu' _lowerCAmelCase =0.1 _lowerCAmelCase =0.1 _lowerCAmelCase =512 _lowerCAmelCase =16 _lowerCAmelCase =2 _lowerCAmelCase =0.02 _lowerCAmelCase =3 _lowerCAmelCase =4 _lowerCAmelCase =None def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> str: ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.prepare_config_and_inputs() _lowerCAmelCase =True _lowerCAmelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A ) -> List[str]: _lowerCAmelCase =TFEsmModel(config=UpperCamelCase__ ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask} _lowerCAmelCase =model(UpperCamelCase__ ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(UpperCamelCase__ ) _lowerCAmelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A , __A , ) -> Any: _lowerCAmelCase =True _lowerCAmelCase =TFEsmModel(config=UpperCamelCase__ ) _lowerCAmelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } _lowerCAmelCase =model(UpperCamelCase__ ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ) # Also check the case where encoder outputs are not passed _lowerCAmelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =TFEsmForMaskedLM(config=UpperCamelCase__ ) _lowerCAmelCase =model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFEsmForTokenClassification(config=UpperCamelCase__ ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask} _lowerCAmelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" lowercase : Tuple = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowercase : List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowercase : Tuple = False lowercase : Optional[int] = False def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =TFEsmModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Any: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def UpperCamelCase__ ( self ) -> int: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFEsmModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ) -> Tuple: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCAmelCase =model.get_bias() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for k, v in name.items(): assert isinstance(UpperCamelCase__ , tf.Variable ) else: _lowerCAmelCase =model.get_output_embeddings() assert x is None _lowerCAmelCase =model.get_bias() assert name is None @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _lowerCAmelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase =model(UpperCamelCase__ )[0] _lowerCAmelCase =[1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase__ ) # compare the actual values for a slice. _lowerCAmelCase =tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) _lowerCAmelCase =tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCAmelCase =model(UpperCamelCase__ )[0] # compare the actual values for a slice. _lowerCAmelCase =tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
0
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowercase_ = TypeVar('''KT''') lowercase_ = TypeVar('''VT''') class SCREAMING_SNAKE_CASE ( Generic[KT, VT]): """simple docstring""" def __init__( self , __A = "root" , __A = None ) -> int: _lowerCAmelCase =key _lowerCAmelCase =value _lowerCAmelCase =[] def __repr__( self ) -> Union[str, Any]: return F'''Node({self.key}: {self.value})''' @property def UpperCamelCase__ ( self ) -> Optional[Any]: return len(self.forward ) class SCREAMING_SNAKE_CASE ( Generic[KT, VT]): """simple docstring""" def __init__( self , __A = 0.5 , __A = 16 ) -> Tuple: _lowerCAmelCase =Node[KT, VT]() _lowerCAmelCase =0 _lowerCAmelCase =p _lowerCAmelCase =max_level def __str__( self ) -> List[Any]: _lowerCAmelCase =list(self ) if len(lowerCAmelCase_ ) == 0: return F'''SkipList(level={self.level})''' _lowerCAmelCase =max((len(str(lowerCAmelCase_ ) ) for item in items) , default=4 ) _lowerCAmelCase =max(lowerCAmelCase_ , 4 ) + 4 _lowerCAmelCase =self.head _lowerCAmelCase =[] _lowerCAmelCase =node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(lowerCAmelCase_ , '-' ) + '* ' * len(lowerCAmelCase_ ) ) lines.append(' ' * label_size + '| ' * len(lowerCAmelCase_ ) ) while len(node.forward ) != 0: _lowerCAmelCase =node.forward[0] lines.append( F'''[{node.key}]'''.ljust(lowerCAmelCase_ , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(lowerCAmelCase_ ) ) _lowerCAmelCase =node.forward lines.append('None'.ljust(lowerCAmelCase_ ) + '* ' * len(lowerCAmelCase_ ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(lowerCAmelCase_ ) def __iter__( self ) -> Optional[int]: _lowerCAmelCase =self.head while len(node.forward ) != 0: yield node.forward[0].key _lowerCAmelCase =node.forward[0] def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCamelCase__ ( self , __A ) -> List[str]: _lowerCAmelCase =[] _lowerCAmelCase =self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _lowerCAmelCase =node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowerCAmelCase_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCamelCase__ ( self , __A ) -> List[str]: _lowerCAmelCase , _lowerCAmelCase =self._locate_node(lowerCAmelCase_ ) if node is not None: for i, update_node in enumerate(lowerCAmelCase_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _lowerCAmelCase =node.forward[i] else: _lowerCAmelCase =update_node.forward[:i] def UpperCamelCase__ ( self , __A , __A ) -> Dict: _lowerCAmelCase , _lowerCAmelCase =self._locate_node(lowerCAmelCase_ ) if node is not None: _lowerCAmelCase =value else: _lowerCAmelCase =self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , lowerCAmelCase_ ): update_vector.append(self.head ) _lowerCAmelCase =level _lowerCAmelCase =Node(lowerCAmelCase_ , lowerCAmelCase_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowerCAmelCase_ ) else: _lowerCAmelCase =new_node def UpperCamelCase__ ( self , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase =self._locate_node(lowerCAmelCase_ ) if node is not None: return node.value return None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 1_2 ) skip_list.insert('Key3' , 4_1 ) skip_list.insert('Key4' , -1_9 ) _lowerCAmelCase =skip_list.head _lowerCAmelCase ={} while node.level != 0: _lowerCAmelCase =node.forward[0] _lowerCAmelCase =node.value assert len(__lowerCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_0 ) skip_list.insert('Key1' , 1_2 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 1_0 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 1_0 ) _lowerCAmelCase =skip_list.head _lowerCAmelCase ={} while node.level != 0: _lowerCAmelCase =node.forward[0] _lowerCAmelCase =node.value if len(__lowerCAmelCase ) != 4: print() assert len(__lowerCAmelCase ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() assert skip_list.find('Some key' ) is None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key2' , 2_0 ) assert skip_list.find('Key2' ) == 2_0 skip_list.insert('Some Key' , 1_0 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 1_3 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 1_0 assert skip_list.find('V' ) == 1_3 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 1_4 assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4_2 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('X' ) def traverse_keys(a__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(__lowerCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def UpperCamelCase__ ( ): '''simple docstring''' def is_sorted(a__ ): return all(next_item >= item for item, next_item in zip(__lowerCAmelCase , lst[1:] ) ) _lowerCAmelCase =SkipList() for i in range(1_0 ): skip_list.insert(__lowerCAmelCase , __lowerCAmelCase ) assert is_sorted(list(__lowerCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__lowerCAmelCase ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(__lowerCAmelCase ) ) def UpperCamelCase__ ( ): '''simple docstring''' for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
711
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _UpperCamelCase): """simple docstring""" lowercase : str = ['pixel_values'] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , __A = True , **__A , ) -> str: super().__init__(**_UpperCAmelCase ) _lowerCAmelCase =size if size is not None else {'''height''': 384, '''width''': 384} _lowerCAmelCase =get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =resample _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase =image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase =do_convert_rgb def UpperCamelCase__ ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> Dict: _lowerCAmelCase =get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) _lowerCAmelCase =(size['''height'''], size['''width''']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , __A , __A , __A , __A = None , **__A , ) -> str: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> List[Any]: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) _lowerCAmelCase =make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase =[convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _lowerCAmelCase =BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
712
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase ='' for word_or_phrase in separated: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(UpperCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCAmelCase =[p / w for p, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCAmelCase =sorted(UpperCAmelCase__ ) # declaring useful variables _lowerCAmelCase =len(UpperCAmelCase__ ) _lowerCAmelCase =0 _lowerCAmelCase =0 _lowerCAmelCase =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCAmelCase =sorted_profit_by_weight[length - i - 1] _lowerCAmelCase =profit_by_weight.index(UpperCAmelCase__ ) _lowerCAmelCase =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowercase_ = [int(x) for x in input('''Input profits separated by spaces: ''').split()] lowercase_ = [int(x) for x in input('''Input weights separated by spaces: ''').split()] lowercase_ = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
714
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = """falcon""" lowercase : Tuple = ["""past_key_values"""] def __init__( self , __A=6_5024 , __A=4544 , __A=32 , __A=71 , __A=1E-5 , __A=0.02 , __A=True , __A=0.0 , __A=0.0 , __A=None , __A=False , __A=False , __A=True , __A=True , __A=False , __A=11 , __A=11 , **__A , ) -> str: _lowerCAmelCase =vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase =kwargs.pop('n_embed' , __A ) _lowerCAmelCase =hidden_size if n_embed is None else n_embed _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =layer_norm_epsilon _lowerCAmelCase =initializer_range _lowerCAmelCase =use_cache _lowerCAmelCase =hidden_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =bos_token_id _lowerCAmelCase =eos_token_id _lowerCAmelCase =num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase =alibi _lowerCAmelCase =new_decoder_architecture _lowerCAmelCase =multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase =parallel_attn _lowerCAmelCase =bias super().__init__(bos_token_id=__A , eos_token_id=__A , **__A ) @property def UpperCamelCase__ ( self ) -> List[Any]: return self.hidden_size // self.num_attention_heads @property def UpperCamelCase__ ( self ) -> Optional[int]: return not self.alibi
715
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
0
'''simple docstring''' import cva import numpy as np class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A ) -> Optional[int]: if k in (0.04, 0.06): _lowerCAmelCase =k _lowerCAmelCase =window_size else: raise ValueError('invalid k value' ) def __str__( self ) -> Optional[int]: return str(self.k ) def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase =cva.imread(__A , 0 ) _lowerCAmelCase , _lowerCAmelCase =img.shape _lowerCAmelCase =[] _lowerCAmelCase =img.copy() _lowerCAmelCase =cva.cvtColor(__A , cva.COLOR_GRAY2RGB ) _lowerCAmelCase , _lowerCAmelCase =np.gradient(__A ) _lowerCAmelCase =dx**2 _lowerCAmelCase =dy**2 _lowerCAmelCase =dx * dy _lowerCAmelCase =0.04 _lowerCAmelCase =self.window_size // 2 for y in range(__A , h - offset ): for x in range(__A , w - offset ): _lowerCAmelCase =ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase =iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase =ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase =(wxx * wyy) - (wxy**2) _lowerCAmelCase =wxx + wyy _lowerCAmelCase =det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowercase_ = HarrisCorner(0.04, 3) lowercase_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
716
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
0
'''simple docstring''' lowercase_ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase_ = [None] * 1000_0000 lowercase_ = True lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowerCAmelCase =chain(next_number(a__ ) ) _lowerCAmelCase =number_chain while number < 1_0_0_0_0_0_0_0: _lowerCAmelCase =number_chain number *= 1_0 return number_chain def UpperCamelCase__ ( a__ = 1_0_0_0_0_0_0_0 ): '''simple docstring''' for i in range(1 , a__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(a__ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
717
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = '▁' lowercase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowercase_ = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } lowercase_ = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off lowercase_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class SCREAMING_SNAKE_CASE ( UpperCamelCase_): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = ['input_ids', 'attention_mask'] lowercase : Optional[Any] = [] lowercase : Dict = [] def __init__( self , __A , __A=None , __A=None , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A = None , **__A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__A , tgt_lang=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) _lowerCAmelCase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase =1 _lowerCAmelCase =len(self.sp_model ) _lowerCAmelCase ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__A ) } _lowerCAmelCase ={v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase =src_lang if src_lang is not None else '''en_XX''' _lowerCAmelCase =self.lang_code_to_id[self._src_lang] _lowerCAmelCase =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase__ ( self ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase__ ( self ) -> str: return self._src_lang @src_lang.setter def UpperCamelCase__ ( self , __A ) -> None: _lowerCAmelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __A ) -> None: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase ={self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , __A ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def UpperCamelCase__ ( self , __A ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase =self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self , __A ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =[] _lowerCAmelCase ='''''' _lowerCAmelCase =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCAmelCase =True _lowerCAmelCase =[] else: current_sub_tokens.append(__A ) _lowerCAmelCase =False out_string += self.sp_model.decode(__A ) return out_string.strip() def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , 'wb' ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def UpperCamelCase__ ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) _lowerCAmelCase =[1] * len(self.prefix_tokens ) _lowerCAmelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase__ ( self , __A , __A , __A , __A , **__A ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase =src_lang _lowerCAmelCase =self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) _lowerCAmelCase =self.convert_tokens_to_ids(__A ) _lowerCAmelCase =tgt_lang_id return inputs def UpperCamelCase__ ( self , __A , __A = "en_XX" , __A = None , __A = "ro_RO" , **__A , ) -> BatchEncoding: _lowerCAmelCase =src_lang _lowerCAmelCase =tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def UpperCamelCase__ ( self ) -> Dict: return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase__ ( self ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase__ ( self , __A ) -> None: _lowerCAmelCase =self.lang_code_to_id[src_lang] _lowerCAmelCase =[self.cur_lang_code_id] _lowerCAmelCase =[self.eos_token_id] def UpperCamelCase__ ( self , __A ) -> None: _lowerCAmelCase =self.lang_code_to_id[tgt_lang] _lowerCAmelCase =[self.cur_lang_code_id] _lowerCAmelCase =[self.eos_token_id]
718
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE ( lowercase_): """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=False , __A=True , __A="None" , __A=3 , __A=4 , __A=None , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =relative_attention _lowerCAmelCase =position_biased_input _lowerCAmelCase =pos_att_type _lowerCAmelCase =scope def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Optional[int]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self , __A ) -> str: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]: _lowerCAmelCase =DebertaVaModel(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A )[0] _lowerCAmelCase =model(__A , token_type_ids=__A )[0] _lowerCAmelCase =model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: _lowerCAmelCase =DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Tuple: _lowerCAmelCase =DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" lowercase : List[Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowercase : Union[str, Any] = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowercase : Dict = True lowercase : List[Any] = False lowercase : Optional[int] = False lowercase : Dict = False lowercase : Optional[Any] = False def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =DebertaVaModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def UpperCamelCase__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def UpperCamelCase__ ( self ) -> int: pass @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) _lowerCAmelCase =torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _lowerCAmelCase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase =model(__A , attention_mask=__A )[0] # compare the actual values for a slice. _lowerCAmelCase =torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase_ = sys.version_info >= (3, 10) def UpperCamelCase__ ( a__=None , a__=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : int lowercase : float lowercase : str lowercase : bool @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : int = 42 lowercase : str = field(default='toto' , metadata={'help': 'help message'}) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : bool = False lowercase : bool = True lowercase : Optional[bool] = None class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = """titi""" lowercase : Optional[int] = """toto""" class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = """titi""" lowercase : Dict = """toto""" lowercase : Dict = 42 @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : BasicEnum = "toto" def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =BasicEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : MixedTypeEnum = "toto" def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =MixedTypeEnum(self.foo ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : Optional[int] = None lowercase : Optional[float] = field(default=__lowercase , metadata={'help': 'help message'}) lowercase : Optional[str] = None lowercase : Optional[List[str]] = list_field(default=[]) lowercase : Optional[List[int]] = list_field(default=[]) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : List[int] = list_field(default=[]) lowercase : List[int] = list_field(default=[1, 2, 3]) lowercase : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello']) lowercase : List[float] = list_field(default=[0.1, 0.2, 0.3]) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : List[int] = field() lowercase : str = field() lowercase : BasicEnum = field() def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =BasicEnum(self.required_enum ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : int lowercase : "BasicEnum" = field() lowercase : "Optional[bool]" = None lowercase : "str" = field(default='toto' , metadata={'help': 'help message'}) lowercase : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello']) if is_python_no_less_than_3_10: @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : bool = False lowercase : bool = True lowercase : bool | None = None @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : int | None = None lowercase : float | None = field(default=__lowercase , metadata={'help': 'help message'}) lowercase : str | None = None lowercase : list[str] | None = list_field(default=[]) lowercase : list[int] | None = list_field(default=[]) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self , __A , __A ) -> str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _lowerCAmelCase ={k: v for k, v in vars(__A ).items() if k != 'container'} _lowerCAmelCase ={k: v for k, v in vars(__A ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , __A ) and yy.get('choices' , __A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](__A ) , yy['type'](__A ) ) del xx["type"], yy["type"] self.assertEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument('--foo' , type=__A , required=__A ) expected.add_argument('--bar' , type=__A , required=__A ) expected.add_argument('--baz' , type=__A , required=__A ) expected.add_argument('--flag' , type=__A , default=__A , const=__A , nargs='?' ) self.argparsersEqual(__A , __A ) _lowerCAmelCase =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((_lowerCAmelCase ) , ) =parser.parse_args_into_dataclasses(__A , look_for_args_file=__A ) self.assertFalse(example.flag ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=__A ) expected.add_argument('--baz' , default='toto' , type=__A , help='help message' ) self.argparsersEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument('--foo' , type=__A , default=__A , const=__A , nargs='?' ) expected.add_argument('--baz' , type=__A , default=__A , const=__A , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=__A , dest='baz' ) expected.add_argument('--opt' , type=__A , default=__A ) _lowerCAmelCase =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowerCAmelCase =HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowerCAmelCase =parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowerCAmelCase =parser.parse_args(['--foo', '--baz'] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowerCAmelCase =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) _lowerCAmelCase =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__A , __A ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) _lowerCAmelCase =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _lowerCAmelCase =parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) _lowerCAmelCase =parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _lowerCAmelCase =parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) _lowerCAmelCase =parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCamelCase__ ( self ) -> Tuple: @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : Literal["titi", "toto", 42] = "toto" _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__A , __A ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) _lowerCAmelCase =parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) _lowerCAmelCase =parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=__A ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=__A ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__A ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=__A ) self.argparsersEqual(__A , __A ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual( __A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) _lowerCAmelCase =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(__A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument('--foo' , default=__A , type=__A ) expected.add_argument('--bar' , default=__A , type=__A , help='help message' ) expected.add_argument('--baz' , default=__A , type=__A ) expected.add_argument('--ces' , nargs='+' , default=[] , type=__A ) expected.add_argument('--des' , nargs='+' , default=[] , type=__A ) _lowerCAmelCase =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowerCAmelCase =HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) _lowerCAmelCase =parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , bar=__A , baz=__A , ces=[] , des=[] ) ) _lowerCAmelCase =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(__A , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=__A , required=__A ) expected.add_argument('--required_str' , type=__A , required=__A ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__A , ) self.argparsersEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase =argparse.ArgumentParser() expected.add_argument('--foo' , type=__A , required=__A ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__A , ) expected.add_argument('--opt' , type=__A , default=__A ) expected.add_argument('--baz' , default='toto' , type=__A , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__A ) self.argparsersEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } _lowerCAmelCase =parser.parse_dict(__A )[0] _lowerCAmelCase =BasicExample(**__A ) self.assertEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(__A , parser.parse_dict , __A , allow_extra_keys=__A ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase =os.path.join(__A , 'temp_json' ) os.mkdir(__A ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(__A , __A ) _lowerCAmelCase =parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] _lowerCAmelCase =BasicExample(**__A ) self.assertEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =HfArgumentParser(__A ) _lowerCAmelCase ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase =os.path.join(__A , 'temp_yaml' ) os.mkdir(__A ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(__A , __A ) _lowerCAmelCase =parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] _lowerCAmelCase =BasicExample(**__A ) self.assertEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =HfArgumentParser(__A ) self.assertIsNotNone(__A )
720
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" def __init__( self , __A , __A = None , __A = None , __A = None , __A = False , __A = False , __A = None , **__A , ) -> Optional[Any]: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _lowerCAmelCase =path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} _lowerCAmelCase =Text( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def UpperCamelCase__ ( self ) -> Any: # Build iterable dataset if self.streaming: _lowerCAmelCase =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) _lowerCAmelCase =self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset
721
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A , __A ) -> Tuple: _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =graph self._normalize_graph(__A , __A ) _lowerCAmelCase =len(__A ) _lowerCAmelCase =None def UpperCamelCase__ ( self , __A , __A ) -> Optional[int]: if sources is int: _lowerCAmelCase =[sources] if sinks is int: _lowerCAmelCase =[sinks] if len(__A ) == 0 or len(__A ) == 0: return _lowerCAmelCase =sources[0] _lowerCAmelCase =sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: _lowerCAmelCase =0 for i in sources: max_input_flow += sum(self.graph[i] ) _lowerCAmelCase =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _lowerCAmelCase =max_input_flow _lowerCAmelCase =0 _lowerCAmelCase =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _lowerCAmelCase =max_input_flow _lowerCAmelCase =size - 1 def UpperCamelCase__ ( self ) -> Optional[Any]: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCamelCase__ ( self , __A ) -> Dict: _lowerCAmelCase =algorithm(self ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> Dict: _lowerCAmelCase =flow_network _lowerCAmelCase =flow_network.verticesCount _lowerCAmelCase =flow_network.sourceIndex _lowerCAmelCase =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _lowerCAmelCase =flow_network.graph _lowerCAmelCase =False def UpperCamelCase__ ( self ) -> List[str]: if not self.executed: self._algorithm() _lowerCAmelCase =True def UpperCamelCase__ ( self ) -> Tuple: pass class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A ) -> List[Any]: super().__init__(__A ) # use this to save your result _lowerCAmelCase =-1 def UpperCamelCase__ ( self ) -> Dict: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A ) -> List[str]: super().__init__(__A ) _lowerCAmelCase =[[0] * self.verticies_count for i in range(self.verticies_count )] _lowerCAmelCase =[0] * self.verticies_count _lowerCAmelCase =[0] * self.verticies_count def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _lowerCAmelCase =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _lowerCAmelCase =0 while i < len(__A ): _lowerCAmelCase =vertices_list[i] _lowerCAmelCase =self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) _lowerCAmelCase =0 else: i += 1 _lowerCAmelCase =sum(self.preflow[self.source_index] ) def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def UpperCamelCase__ ( self , __A , __A ) -> List[Any]: _lowerCAmelCase =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCamelCase__ ( self , __A ) -> Optional[int]: _lowerCAmelCase =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _lowerCAmelCase =self.heights[to_index] if min_height is not None: _lowerCAmelCase =min_height + 1 if __name__ == "__main__": lowercase_ = [0] lowercase_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowercase_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowercase_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowercase_ = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = ['image_processor', 'tokenizer'] lowercase : List[Any] = 'BlipImageProcessor' lowercase : str = 'AutoTokenizer' def __init__( self , __A , __A , __A ) -> Optional[Any]: super().__init__(__A , __A ) # add QFormer tokenizer _lowerCAmelCase =qformer_tokenizer def __call__( self , __A = None , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _lowerCAmelCase =BatchFeature() if text is not None: _lowerCAmelCase =self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) encoding.update(__A ) _lowerCAmelCase =self.qformer_tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) _lowerCAmelCase =qformer_text_encoding.pop('input_ids' ) _lowerCAmelCase =qformer_text_encoding.pop('attention_mask' ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A ) encoding.update(__A ) return encoding def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Tuple: return self.tokenizer.decode(*__A , **__A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase__ ( self , __A , **__A ) -> List[str]: if os.path.isfile(__A ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__A , exist_ok=__A ) _lowerCAmelCase =os.path.join(__A , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__A ) return super().save_pretrained(__A , **__A ) @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> int: _lowerCAmelCase =AutoTokenizer.from_pretrained(__A , subfolder='qformer_tokenizer' ) _lowerCAmelCase =cls._get_arguments_from_pretrained(__A , **__A ) args.append(__A ) return cls(*__A )
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowercase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowercase_ = '''Dummy User''' lowercase_ = '''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''' lowercase_ = '''https://hub-ci.huggingface.co''' lowercase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowercase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowercase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , a__ ) @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' monkeypatch.setattr('datasets.config.HF_ENDPOINT' , a__ ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , a__ ) @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , a__ ) @pytest.fixture def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' HfFolder.save_token(a__ ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def UpperCamelCase__ ( ): '''simple docstring''' return HfApi(endpoint=a__ ) @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =HfFolder.get_token() HfFolder.save_token(a__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(a__ ) @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' def _cleanup_repo(a__ ): hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' @contextmanager def _temporary_repo(a__ ): try: yield repo_id finally: cleanup_repo(a__ ) return _temporary_repo @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''repo_txt_data-{int(time.time() * 10E3 )}''' _lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type='dataset' , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo='data/text_data.txt' , repo_id=a__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' _lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type='dataset' , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo='data.zip' , repo_id=a__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' _lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type='dataset' , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo='data.zip' , repo_id=a__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def UpperCamelCase__ ( a__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =2 while True: if is_prime(a__ ): yield num num += 1 def UpperCamelCase__ ( a__ = 2_0_0_0_0_0_0 ): '''simple docstring''' return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' from collections import defaultdict def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =True for v in tree[start]: if v not in visited: ret += dfs(a__ ) if ret % 2 == 0: cuts.append(a__ ) return ret def UpperCamelCase__ ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": lowercase_ , lowercase_ = 10, 9 lowercase_ = defaultdict(list) lowercase_ = {} lowercase_ = [] lowercase_ = 0 lowercase_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ = object() # For specifying empty leaf dict `{}` lowercase_ = object() def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(a__ ) - len(a__ ) + 1 ): _lowerCAmelCase =[x.match(a__ ) for x, y in zip(a__ , ks[i:] )] if matches and all(a__ ): return True return False def UpperCamelCase__ ( a__ ): '''simple docstring''' def replace(a__ , a__ ): for rule, replacement in rules: if _match(a__ , a__ ): return replacement return val return replace def UpperCamelCase__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , a__ )), (("transformer", "wte", "embedding"), P('mp' , a__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a__ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , a__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a__ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , a__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =_get_partition_rules() _lowerCAmelCase =_replacement_rules(a__ ) _lowerCAmelCase ={k: _unmatched for k in flatten_dict(a__ )} _lowerCAmelCase ={k: replace(a__ , a__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a__ ) )
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
707
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'ibert' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=False , __A="none" , **__A , ) -> Any: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =quant_mode _lowerCAmelCase =force_dequant class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase__ ( a__ ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return max(metric_fn(a__ , a__ ) for gt in ground_truths ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =[] if args.gold_data_mode == "qa": _lowerCAmelCase =pd.read_csv(a__ , sep='\t' , header=a__ ) for answer_list in data[1]: _lowerCAmelCase =ast.literal_eval(a__ ) answers.append(a__ ) else: _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =[[reference] for reference in references] _lowerCAmelCase =_lowerCAmelCase =_lowerCAmelCase =0 for prediction, ground_truths in zip(a__ , a__ ): total += 1 em += metric_max_over_ground_truths(a__ , a__ , a__ ) fa += metric_max_over_ground_truths(a__ , a__ , a__ ) _lowerCAmelCase =100.0 * em / total _lowerCAmelCase =100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =args.k _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =[line.strip() for line in open(a__ , 'r' ).readlines()] _lowerCAmelCase =_lowerCAmelCase =0 for hypo, reference in zip(a__ , a__ ): _lowerCAmelCase =set(hypo.split('\t' )[:k] ) _lowerCAmelCase =set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase =100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' def strip_title(a__ ): if title.startswith('"' ): _lowerCAmelCase =title[1:] if title.endswith('"' ): _lowerCAmelCase =title[:-1] return title _lowerCAmelCase =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a__ , return_tensors='pt' , padding=a__ , truncation=a__ , )['input_ids'].to(args.device ) _lowerCAmelCase =rag_model.rag.question_encoder(a__ ) _lowerCAmelCase =question_enc_outputs[0] _lowerCAmelCase =rag_model.retriever( a__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) _lowerCAmelCase =rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase =[] for docs in all_docs: _lowerCAmelCase =[strip_title(a__ ) for title in docs['title']] provenance_strings.append('\t'.join(a__ ) ) return provenance_strings def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a__ , return_tensors='pt' , padding=a__ , truncation=a__ ) _lowerCAmelCase =inputs_dict.input_ids.to(args.device ) _lowerCAmelCase =inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase =rag_model.generate( # rag_model overwrites generate a__ , attention_mask=a__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase =rag_model.retriever.generator_tokenizer.batch_decode(a__ , skip_special_tokens=a__ ) if args.print_predictions: for q, a in zip(a__ , a__ ): logger.info('Q: {} - A: {}'.format(a__ , a__ ) ) return answers def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=a__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=a__ , choices=['exact', 'compressed', 'legacy'] , type=a__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=a__ , type=a__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=a__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=a__ , type=a__ , required=a__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=a__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=a__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=a__ , type=a__ , required=a__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=a__ , type=a__ , required=a__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=a__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=a__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=a__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=a__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=a__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=5_0 , type=a__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={} if args.model_type is None: _lowerCAmelCase =infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): _lowerCAmelCase =RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration _lowerCAmelCase =args.n_docs if args.index_name is not None: _lowerCAmelCase =args.index_name if args.index_path is not None: _lowerCAmelCase =args.index_path else: _lowerCAmelCase =BartForConditionalGeneration _lowerCAmelCase =( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , a__ ) _lowerCAmelCase =get_scores if args.eval_mode == 'e2e' else get_precision_at_k _lowerCAmelCase =evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(a__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(a__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): _lowerCAmelCase =RagRetriever.from_pretrained(a__ , **a__ ) _lowerCAmelCase =model_class.from_pretrained(a__ , retriever=a__ , **a__ ) model.retriever.init_retrieval() else: _lowerCAmelCase =model_class.from_pretrained(a__ , **a__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: _lowerCAmelCase =[] for line in tqdm(a__ ): questions.append(line.strip() ) if len(a__ ) == args.eval_batch_size: _lowerCAmelCase =evaluate_batch_fn(a__ , a__ , a__ ) preds_file.write('\n'.join(a__ ) + '\n' ) preds_file.flush() _lowerCAmelCase =[] if len(a__ ) > 0: _lowerCAmelCase =evaluate_batch_fn(a__ , a__ , a__ ) preds_file.write('\n'.join(a__ ) ) preds_file.flush() score_fn(a__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase_ = get_args() main(args)
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase__ ( a__ , a__ = "cpu" , a__ = None ): '''simple docstring''' _lowerCAmelCase =torch.load(a__ , map_location=a__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(a__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _lowerCAmelCase =v.half() if save_path is None: # overwrite src_path _lowerCAmelCase =src_path torch.save(a__ , a__ ) if __name__ == "__main__": fire.Fire(convert)
711
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
712
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
'''simple docstring''' from math import sqrt def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 for i in range(1 , int(sqrt(a__ ) + 1 ) ): if n % i == 0 and i != sqrt(a__ ): total += i + n // i elif i == sqrt(a__ ): total += i return total - n def UpperCamelCase__ ( a__ = 1_0_0_0_0 ): '''simple docstring''' _lowerCAmelCase =sum( i for i in range(1 , a__ ) if sum_of_divisors(sum_of_divisors(a__ ) ) == i and sum_of_divisors(a__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
714
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Dict = 'roformer' def __init__( self , __A=5_0000 , __A=None , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=1536 , __A=2 , __A=0.02 , __A=1E-12 , __A=0 , __A=False , __A=True , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size if embedding_size is None else embedding_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =rotary_value _lowerCAmelCase =use_cache class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
715
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCamelCase__ ( a__ = "isbn/0140328726" ): '''simple docstring''' _lowerCAmelCase =olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _lowerCAmelCase =F'''{olid} is not a valid Open Library olid''' raise ValueError(a__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={ 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _lowerCAmelCase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _lowerCAmelCase =[ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _lowerCAmelCase =data['First sentence']['value'] for key, value in data.items(): if isinstance(a__ , a__ ): _lowerCAmelCase =', '.join(a__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowercase_ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: lowercase_ = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print('''\n'''.join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
716
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if not isinstance(a__ , a__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(a__ , a__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) _lowerCAmelCase ='' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 0 lowercase : bool = False lowercase : float = 3.0 class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=__A ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCamelCase__ ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. _lowerCAmelCase =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase =Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , __A ) @require_multi_gpu def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__A , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(100, 200) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = '''''' lowercase_ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
718
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
'''simple docstring''' import math import sys def UpperCamelCase__ ( a__ ): '''simple docstring''' if number != int(a__ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 _lowerCAmelCase =[-1] * (number + 1) _lowerCAmelCase =0 for i in range(1 , number + 1 ): _lowerCAmelCase =sys.maxsize _lowerCAmelCase =int(math.sqrt(a__ ) ) for j in range(1 , root + 1 ): _lowerCAmelCase =1 + answers[i - (j**2)] _lowerCAmelCase =min(a__ , a__ ) _lowerCAmelCase =answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =(1 - _cos) / 2 _lowerCAmelCase =1 - _cos _lowerCAmelCase =1 + alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =(1 + _cos) / 2 _lowerCAmelCase =-1 - _cos _lowerCAmelCase =1 + alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =_sin / 2 _lowerCAmelCase =0 _lowerCAmelCase =-ba _lowerCAmelCase =1 + alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ = 1 / sqrt(2 ) ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1 - alpha _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 + alpha _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1_0 ** (gain_db / 4_0) _lowerCAmelCase =1 + alpha * big_a _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha * big_a _lowerCAmelCase =1 + alpha / big_a _lowerCAmelCase =-2 * _cos _lowerCAmelCase =1 - alpha / big_a _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1_0 ** (gain_db / 4_0) _lowerCAmelCase =(big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase =(big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase =(big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase =(big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase =2 * sqrt(a__ ) * alpha _lowerCAmelCase =big_a * (pmc + aaa) _lowerCAmelCase =2 * big_a * mpc _lowerCAmelCase =big_a * (pmc - aaa) _lowerCAmelCase =ppmc + aaa _lowerCAmelCase =-2 * pmpc _lowerCAmelCase =ppmc - aaa _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ): '''simple docstring''' _lowerCAmelCase =tau * frequency / samplerate _lowerCAmelCase =sin(a__ ) _lowerCAmelCase =cos(a__ ) _lowerCAmelCase =_sin / (2 * q_factor) _lowerCAmelCase =1_0 ** (gain_db / 4_0) _lowerCAmelCase =(big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase =(big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase =(big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase =(big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase =2 * sqrt(a__ ) * alpha _lowerCAmelCase =big_a * (ppmc + aaa) _lowerCAmelCase =-2 * big_a * pmpc _lowerCAmelCase =big_a * (ppmc - aaa) _lowerCAmelCase =pmc + aaa _lowerCAmelCase =2 * mpc _lowerCAmelCase =pmc - aaa _lowerCAmelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
720
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=3 , __A=32 , __A=3 , __A=10 , __A=[10, 20, 30, 40] , __A=[1, 1, 2, 1] , __A=True , __A=True , __A="relu" , __A=3 , __A=None , ) -> Union[str, Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =num_channels _lowerCAmelCase =embeddings_size _lowerCAmelCase =hidden_sizes _lowerCAmelCase =depths _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =hidden_act _lowerCAmelCase =num_labels _lowerCAmelCase =scope _lowerCAmelCase =len(__A ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> int: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: _lowerCAmelCase =TFResNetModel(config=__A ) _lowerCAmelCase =model(__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFResNetForImageClassification(__A ) _lowerCAmelCase =model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase : List[Any] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) lowercase : List[str] = False lowercase : Optional[Any] = False lowercase : List[str] = False lowercase : Union[str, Any] = False lowercase : List[str] = False def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =TFResNetModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , has_text_modality=__A ) def UpperCamelCase__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ) -> Optional[Any]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase__ ( self ) -> str: pass def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(__A ) _lowerCAmelCase =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , __A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: def check_hidden_states_output(__A , __A , __A ): _lowerCAmelCase =model_class(__A ) _lowerCAmelCase =model(**self._prepare_for_class(__A , __A ) ) _lowerCAmelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase =self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase =layer_type _lowerCAmelCase =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(__A , __A , __A ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def UpperCamelCase__ ( self ) -> str: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFResNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> Dict: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__A , return_tensors='tf' ) # forward pass _lowerCAmelCase =model(**__A ) # verify the logits _lowerCAmelCase =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __A ) _lowerCAmelCase =tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __A , atol=1E-4 ) )
721
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = 'ClapFeatureExtractor' lowercase : List[Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , __A , __A ) -> Union[str, Any]: super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> List[Any]: _lowerCAmelCase =kwargs.pop('sampling_rate' , __A ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if audios is not None: _lowerCAmelCase =self.feature_extractor( __A , sampling_rate=__A , return_tensors=__A , **__A ) if text is not None and audios is not None: _lowerCAmelCase =audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> int: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase__ ( a__ = "" ): '''simple docstring''' _lowerCAmelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' _lowerCAmelCase =BeautifulSoup(requests.get(a__ ).text , 'html.parser' ) _lowerCAmelCase =soup.find_all('td' , attrs='titleColumn' ) _lowerCAmelCase =soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(a__ , a__ ) } def UpperCamelCase__ ( a__ = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' _lowerCAmelCase =get_imdb_top_aaa_movies() with open(a__ , 'w' , newline='' ) as out_file: _lowerCAmelCase =csv.writer(a__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue _lowerCAmelCase =cst_fwd.get(a__ , np.inf ) _lowerCAmelCase =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _lowerCAmelCase =new_cost_f _lowerCAmelCase =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _lowerCAmelCase =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =-1 _lowerCAmelCase =set() _lowerCAmelCase =set() _lowerCAmelCase ={source: 0} _lowerCAmelCase ={destination: 0} _lowerCAmelCase ={source: None} _lowerCAmelCase ={destination: None} _lowerCAmelCase =PriorityQueue() _lowerCAmelCase =PriorityQueue() _lowerCAmelCase =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _lowerCAmelCase , _lowerCAmelCase =queue_forward.get() visited_forward.add(a__ ) _lowerCAmelCase , _lowerCAmelCase =queue_backward.get() visited_backward.add(a__ ) _lowerCAmelCase =pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) _lowerCAmelCase =pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _lowerCAmelCase =shortest_distance return shortest_path_distance lowercase_ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowercase_ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowercase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowercase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') lowercase_ = [file for file in filepaths if ''' ''' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') lowercase_ = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') lowercase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') lowercase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' import os from pathlib import Path def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase ={ 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCAmelCase ={ 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } _lowerCAmelCase =F'''{src_lang}-{tgt_lang}''' _lowerCAmelCase =F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(a__ , exist_ok=a__ ) _lowerCAmelCase =os.path.join(a__ , 'README.md' ) print(F'''Generating {path}''' ) with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(a__ ) # make sure we are under the root of the project lowercase_ = Path(__file__).resolve().parent.parent.parent lowercase_ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase_ , lowercase_ , lowercase_ = model_name.split('''-''') lowercase_ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
707
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig lowercase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __A = 25_0002 , __A = 768 , __A = 12 , __A = 12 , __A = 3072 , __A = "gelu" , __A = 0.1 , __A = 0.1 , __A = 514 , __A = 0.02 , __A = 1 , __A = 1E-05 , __A=None , __A=False , __A=0.0 , **__A , ) -> Optional[Any]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =classifier_dropout _lowerCAmelCase =is_decoder _lowerCAmelCase =act_dropout
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : float lowercase : TreeNode | None = None lowercase : TreeNode | None = None def UpperCamelCase__ ( a__ ): '''simple docstring''' def is_valid_tree(a__ ) -> bool: if node is None: return True if not isinstance(a__ , a__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(a__ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( a__ , a__ , a__ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , a__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , a__ ) ) return is_binary_search_tree_recursive_check(a__ , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A = "cpu" , __A = "openai/clip-vit-large-patch14" ) -> None: _lowerCAmelCase =device _lowerCAmelCase =CLIPTokenizerFast.from_pretrained(__A ) _lowerCAmelCase =[0.48_145_466, 0.4_578_275, 0.40_821_073] _lowerCAmelCase =[0.26_862_954, 0.26_130_258, 0.27_577_711] _lowerCAmelCase =torchvision.transforms.Normalize(self.image_mean , self.image_std ) _lowerCAmelCase =torchvision.transforms.Resize(224 ) _lowerCAmelCase =torchvision.transforms.CenterCrop(224 ) def UpperCamelCase__ ( self , __A ) -> List[str]: _lowerCAmelCase =self.resize(__A ) _lowerCAmelCase =self.center_crop(__A ) _lowerCAmelCase =self.normalize(__A ) return images def __call__( self , __A=None , __A=None , **__A ) -> List[Any]: _lowerCAmelCase =self.tokenizer(text=__A , **__A ) _lowerCAmelCase =self.preprocess_img(__A ) _lowerCAmelCase ={key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A=10 , __A=0.01 , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=False , __A=True , __A="image" , __A=True , __A=False , __A=False , __A=False , ) -> None: super().__init__() _lowerCAmelCase =None _lowerCAmelCase =device if device else get_device() if vqgan: _lowerCAmelCase =vqgan else: _lowerCAmelCase =load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: _lowerCAmelCase =clip else: _lowerCAmelCase =CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) _lowerCAmelCase =ProcessorGradientFlow(device=self.device ) _lowerCAmelCase =iterations _lowerCAmelCase =lr _lowerCAmelCase =log _lowerCAmelCase =make_grid _lowerCAmelCase =return_val _lowerCAmelCase =quantize _lowerCAmelCase =self.vqgan.decoder.z_shape def UpperCamelCase__ ( self , __A=None , __A=None , __A=5 , __A=True ) -> Dict: _lowerCAmelCase =[] if output_path is None: _lowerCAmelCase ='./animation.gif' if input_path is None: _lowerCAmelCase =self.save_path _lowerCAmelCase =sorted(glob(input_path + '/*' ) ) if not len(__A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(__A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) _lowerCAmelCase =total_duration / len(__A ) _lowerCAmelCase =[frame_duration] * len(__A ) if extend_frames: _lowerCAmelCase =1.5 _lowerCAmelCase =3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(F'''gif saved to {output_path}''' ) def UpperCamelCase__ ( self , __A=None , __A=None ) -> List[Any]: if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError _lowerCAmelCase =preprocess(Image.open(__A ) , target_image_size=256 ).to(self.device ) _lowerCAmelCase =preprocess_vqgan(__A ) _lowerCAmelCase , *_lowerCAmelCase =self.vqgan.encode(__A ) return z def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase =self.latent.detach().requires_grad_() _lowerCAmelCase =base_latent + transform_vector if self.quantize: _lowerCAmelCase , *_lowerCAmelCase =self.vqgan.quantize(__A ) else: _lowerCAmelCase =trans_latent return self.vqgan.decode(__A ) def UpperCamelCase__ ( self , __A , __A , __A=None ) -> Any: _lowerCAmelCase =self.clip_preprocessor(text=__A , images=__A , return_tensors='pt' , padding=__A ) _lowerCAmelCase =self.clip(**__A ) _lowerCAmelCase =clip_outputs.logits_per_image if weights is not None: _lowerCAmelCase =similarity_logits * weights return similarity_logits.sum() def UpperCamelCase__ ( self , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =self._get_clip_similarity(pos_prompts['prompts'] , __A , weights=(1 / pos_prompts['weights']) ) if neg_prompts: _lowerCAmelCase =self._get_clip_similarity(neg_prompts['prompts'] , __A , weights=neg_prompts['weights'] ) else: _lowerCAmelCase =torch.tensor([1] , device=self.device ) _lowerCAmelCase =-torch.log(__A ) + torch.log(__A ) return loss def UpperCamelCase__ ( self , __A , __A , __A ) -> str: _lowerCAmelCase =torch.randn_like(self.latent , requires_grad=__A , device=self.device ) _lowerCAmelCase =torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _lowerCAmelCase =self._add_vector(__A ) _lowerCAmelCase =loop_post_process(__A ) _lowerCAmelCase =self._get_CLIP_loss(__A , __A , __A ) print('CLIP loss' , __A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: wandb.init(reinit=__A , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: _lowerCAmelCase =Image.open(__A ) _lowerCAmelCase =image.resize((256, 256) ) wandb.log('Original Image' , wandb.Image(__A ) ) def UpperCamelCase__ ( self , __A ) -> int: if not prompts: return [] _lowerCAmelCase =[] _lowerCAmelCase =[] if isinstance(__A , __A ): _lowerCAmelCase =[prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(__A , (tuple, list) ): _lowerCAmelCase =prompt[0] _lowerCAmelCase =float(prompt[1] ) elif ":" in prompt: _lowerCAmelCase , _lowerCAmelCase =prompt.split(':' ) _lowerCAmelCase =float(__A ) else: _lowerCAmelCase =prompt _lowerCAmelCase =1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=True , __A=False , __A=True , __A=True , __A=None , ) -> Dict: if image_path: _lowerCAmelCase =self._get_latent(__A ) else: _lowerCAmelCase =torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." _lowerCAmelCase =self.process_prompts(__A ) _lowerCAmelCase =self.process_prompts(__A ) if save_final and save_path is None: _lowerCAmelCase =os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: _lowerCAmelCase =save_path + '_' + get_timestamp() os.makedirs(__A ) _lowerCAmelCase =save_path _lowerCAmelCase =self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(__A ) ) _lowerCAmelCase =loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'Image': wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
0
'''simple docstring''' import math import sys import cva import numpy as np def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =math.sqrt(a__ ) _lowerCAmelCase =1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =np.zeros((kernel_size, kernel_size) ) for i in range(0 , a__ ): for j in range(0 , a__ ): _lowerCAmelCase =math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(a__ , a__ ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ , ): '''simple docstring''' _lowerCAmelCase =np.zeros(img.shape ) _lowerCAmelCase =get_gauss_kernel(a__ , a__ ) _lowerCAmelCase , _lowerCAmelCase =img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _lowerCAmelCase =get_slice(a__ , a__ , a__ , a__ ) _lowerCAmelCase =img_s - img_s[kernel_size // 2, kernel_size // 2] _lowerCAmelCase =vec_gaussian(a__ , a__ ) _lowerCAmelCase =np.multiply(a__ , a__ ) _lowerCAmelCase =np.multiply(a__ , a__ ) _lowerCAmelCase =np.sum(a__ ) / np.sum(a__ ) _lowerCAmelCase =val return imga def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =args[1] if args[1:] else '../image_data/lena.jpg' _lowerCAmelCase =float(args[2] ) if args[2:] else 1.0 _lowerCAmelCase =float(args[3] ) if args[3:] else 1.0 if args[4:]: _lowerCAmelCase =int(args[4] ) _lowerCAmelCase =kernel_size + abs(kernel_size % 2 - 1 ) else: _lowerCAmelCase =5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase_ , lowercase_ , lowercase_ , lowercase_ = parse_args(sys.argv) lowercase_ = cva.imread(filename, 0) cva.imshow('''input image''', img) lowercase_ = img / 255 lowercase_ = out.astype('''float32''') lowercase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase_ = out * 255 lowercase_ = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
711
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=False , __A=True , __A=False , __A=False , __A=19 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =scope def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__A , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase =EsmForProteinFolding(config=__A ).float() model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A ) _lowerCAmelCase =model(__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Dict = False lowercase : str = (EsmForProteinFolding,) if is_torch_available() else () lowercase : Dict = () lowercase : Union[str, Any] = {} if is_torch_available() else {} lowercase : Dict = False def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =EsmFoldModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @unittest.skip('Does not support attention outputs' ) def UpperCamelCase__ ( self ) -> Tuple: pass @unittest.skip def UpperCamelCase__ ( self ) -> str: pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase__ ( self ) -> List[Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def UpperCamelCase__ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> List[Any]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('ESMFold only has one output format.' ) def UpperCamelCase__ ( self ) -> List[str]: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support input chunking.' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def UpperCamelCase__ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCamelCase__ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCamelCase__ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def UpperCamelCase__ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase__ ( self ) -> int: pass @require_torch class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() _lowerCAmelCase =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCAmelCase =model(__A )['positions'] _lowerCAmelCase =torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __A , atol=1E-4 ) )
712
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
'''simple docstring''' import math def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
714
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def UpperCamelCase__ ( *__A , **__A ) -> Union[str, Any]: pass @is_pipeline_test @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @require_torch def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__A ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], ] , ) @require_tf def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(__A ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], ] , ) @slow @require_torch def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(__A ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(__A ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
715
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCamelCase__ ( a__ , a__ , a__ = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path _lowerCAmelCase =quote(a__ ) return hfh.hf_hub_url(a__ , a__ , repo_type='dataset' , revision=a__ )
716
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : str = ShapEPipeline lowercase : int = ['prompt'] lowercase : str = ['prompt'] lowercase : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase : Optional[int] = False @property def UpperCamelCase__ ( self ) -> str: return 32 @property def UpperCamelCase__ ( self ) -> List[Any]: return 32 @property def UpperCamelCase__ ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ) -> Optional[Any]: return 8 @property def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def UpperCamelCase__ ( self ) -> int: torch.manual_seed(0 ) _lowerCAmelCase ={ 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCAmelCase =PriorTransformer(**__A ) return model @property def UpperCamelCase__ ( self ) -> int: torch.manual_seed(0 ) _lowerCAmelCase ={ 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase =ShapERenderer(**__A ) return model def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.dummy_prior _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =self.dummy_tokenizer _lowerCAmelCase =self.dummy_renderer _lowerCAmelCase =HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__A , clip_sample=__A , clip_sample_range=1.0 , ) _lowerCAmelCase ={ 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , __A , __A=0 ) -> Dict: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase ='cpu' _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**__A ) _lowerCAmelCase =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =pipe(**self.get_dummy_inputs(__A ) ) _lowerCAmelCase =output.images[0] _lowerCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase =np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =torch_device == 'cpu' _lowerCAmelCase =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__A , relax_max_difference=__A , ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**__A ) _lowerCAmelCase =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =1 _lowerCAmelCase =2 _lowerCAmelCase =self.get_dummy_inputs(__A ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase =batch_size * [inputs[key]] _lowerCAmelCase =pipe(**__A , num_images_per_prompt=__A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) _lowerCAmelCase =ShapEPipeline.from_pretrained('openai/shap-e' ) _lowerCAmelCase =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(0 ) _lowerCAmelCase =pipe( 'a shark' , generator=__A , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__A , __A )
717
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
0
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowercase_ = parser.parse_args() lowercase_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
718
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = True lowercase : bool = False lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =[] _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) _lowerCAmelCase =resnets _lowerCAmelCase =attentions if self.add_downsample: _lowerCAmelCase =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A , __A=True ) -> Optional[Any]: _lowerCAmelCase =() for resnet, attn in zip(self.resnets , self.attentions ): _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) _lowerCAmelCase =attn(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase =self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : bool = True lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =resnets if self.add_downsample: _lowerCAmelCase =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A=True ) -> Optional[int]: _lowerCAmelCase =() for resnet in self.resnets: _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase =self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = True lowercase : bool = False lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =[] _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase =self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) _lowerCAmelCase =resnets _lowerCAmelCase =attentions if self.add_upsample: _lowerCAmelCase =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A , __A , __A=True ) -> Any: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCAmelCase =res_hidden_states_tuple[-1] _lowerCAmelCase =res_hidden_states_tuple[:-1] _lowerCAmelCase =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) _lowerCAmelCase =attn(__A , __A , deterministic=__A ) if self.add_upsample: _lowerCAmelCase =self.upsamplers_a(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : bool = True lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase =self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =resnets if self.add_upsample: _lowerCAmelCase =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A , __A=True ) -> Any: for resnet in self.resnets: # pop res hidden states _lowerCAmelCase =res_hidden_states_tuple[-1] _lowerCAmelCase =res_hidden_states_tuple[:-1] _lowerCAmelCase =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) if self.add_upsample: _lowerCAmelCase =self.upsamplers_a(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> int: # there is always at least one resnet _lowerCAmelCase =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCAmelCase =[] for _ in range(self.num_layers ): _lowerCAmelCase =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) _lowerCAmelCase =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =resnets _lowerCAmelCase =attentions def __call__( self , __A , __A , __A , __A=True ) -> int: _lowerCAmelCase =self.resnets[0](__A , __A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCAmelCase =attn(__A , __A , deterministic=__A ) _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) return hidden_states
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowercase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A ) -> Tuple: super().__init__() _lowerCAmelCase =torchvision.models.resnetaaa(pretrained=__A ) _lowerCAmelCase =list(model.children() )[:-2] _lowerCAmelCase =nn.Sequential(*__A ) _lowerCAmelCase =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCamelCase__ ( self , __A ) -> List[Any]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _lowerCAmelCase =self.pool(self.model(__A ) ) _lowerCAmelCase =torch.flatten(__A , start_dim=2 ) _lowerCAmelCase =out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase =[json.loads(__A ) for l in open(__A )] _lowerCAmelCase =os.path.dirname(__A ) _lowerCAmelCase =tokenizer _lowerCAmelCase =labels _lowerCAmelCase =len(__A ) _lowerCAmelCase =max_seq_length _lowerCAmelCase =transforms def __len__( self ) -> Tuple: return len(self.data ) def __getitem__( self , __A ) -> Dict: _lowerCAmelCase =torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__A ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =sentence[0], sentence[1:-1], sentence[-1] _lowerCAmelCase =sentence[: self.max_seq_length] _lowerCAmelCase =torch.zeros(self.n_classes ) _lowerCAmelCase =1 _lowerCAmelCase =Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) _lowerCAmelCase =self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =[len(row['sentence'] ) for row in batch] _lowerCAmelCase , _lowerCAmelCase =len(a__ ), max(a__ ) _lowerCAmelCase =torch.zeros(a__ , a__ , dtype=torch.long ) _lowerCAmelCase =torch.zeros(a__ , a__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(a__ , a__ ) ): _lowerCAmelCase =input_row['sentence'] _lowerCAmelCase =1 _lowerCAmelCase =torch.stack([row['image'] for row in batch] ) _lowerCAmelCase =torch.stack([row['label'] for row in batch] ) _lowerCAmelCase =torch.stack([row['image_start_token'] for row in batch] ) _lowerCAmelCase =torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def UpperCamelCase__ ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def UpperCamelCase__ ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
720
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase__ ( a__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _lowerCAmelCase =k.replace(a__ , a__ ) return k def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =DEFAULTS.copy() cfg_kwargs.update(a__ ) _lowerCAmelCase =PegasusConfig(**a__ ) _lowerCAmelCase =PegasusForConditionalGeneration(a__ ) _lowerCAmelCase =torch_model.model.state_dict() _lowerCAmelCase ={} for k, v in tf_weights.items(): _lowerCAmelCase =rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: _lowerCAmelCase =v.T _lowerCAmelCase =torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected _lowerCAmelCase =torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) _lowerCAmelCase =mapping['shared.weight'] _lowerCAmelCase =mapping['shared.weight'] _lowerCAmelCase ={k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**a__ ) _lowerCAmelCase , _lowerCAmelCase =torch_model.model.load_state_dict(a__ , strict=a__ ) _lowerCAmelCase =[ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase__ ( a__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _lowerCAmelCase =tf.train.list_variables(a__ ) _lowerCAmelCase ={} _lowerCAmelCase =['Adafactor', 'global_step'] for name, shape in tqdm(a__ , desc='converting tf checkpoint to dict' ): _lowerCAmelCase =any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCAmelCase =tf.train.load_variable(a__ , a__ ) _lowerCAmelCase =array return tf_weights def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =Path(a__ ).parent.name _lowerCAmelCase =task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] _lowerCAmelCase =PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model _lowerCAmelCase =get_tf_weights_as_numpy(a__ ) _lowerCAmelCase =task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": _lowerCAmelCase =task_specific_params _lowerCAmelCase =convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) _lowerCAmelCase =torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(a__ , Path(a__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase_ = parser.parse_args() if args.save_dir is None: lowercase_ = Path(args.tf_ckpt_path).parent.name lowercase_ = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
721
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import datasets from .evaluate import evaluate lowercase_ = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowercase_ = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowercase_ = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def UpperCamelCase__ ( self , __A , __A ) -> List[Any]: _lowerCAmelCase ={prediction['id']: prediction['prediction_text'] for prediction in predictions} _lowerCAmelCase =[ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] _lowerCAmelCase =evaluate(dataset=__A , predictions=__A ) return score
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A , __A = None , __A = None ) -> Tuple: super().__init__() _lowerCAmelCase =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCAmelCase =torch.zeros(__A , __A ) else: _lowerCAmelCase =None _lowerCAmelCase =torch.nn.Parameter(__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : VQModel lowercase : CLIPTextModel lowercase : CLIPTokenizer lowercase : TransformeraDModel lowercase : LearnedClassifierFreeSamplingEmbeddings lowercase : VQDiffusionScheduler def __init__( self , __A , __A , __A , __A , __A , __A , ) -> int: super().__init__() self.register_modules( vqvae=__A , transformer=__A , text_encoder=__A , tokenizer=__A , scheduler=__A , learned_classifier_free_sampling_embeddings=__A , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: _lowerCAmelCase =len(__A ) if isinstance(__A , __A ) else 1 # get prompt text embeddings _lowerCAmelCase =self.tokenizer( __A , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowerCAmelCase =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _lowerCAmelCase =text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCAmelCase =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__A ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase =prompt_embeds.repeat_interleave(__A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCAmelCase =self.learned_classifier_free_sampling_embeddings.embeddings _lowerCAmelCase =negative_prompt_embeds.unsqueeze(0 ).repeat(__A , 1 , 1 ) else: _lowerCAmelCase =[''] * batch_size _lowerCAmelCase =text_input_ids.shape[-1] _lowerCAmelCase =self.tokenizer( __A , padding='max_length' , max_length=__A , truncation=__A , return_tensors='pt' , ) _lowerCAmelCase =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCAmelCase =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase =negative_prompt_embeds.shape[1] _lowerCAmelCase =negative_prompt_embeds.repeat(1 , __A , 1 ) _lowerCAmelCase =negative_prompt_embeds.view(batch_size * num_images_per_prompt , __A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __A , __A = 100 , __A = 5.0 , __A = 1.0 , __A = 1 , __A = None , __A = None , __A = "pil" , __A = True , __A = None , __A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__A , __A ): _lowerCAmelCase =1 elif isinstance(__A , __A ): _lowerCAmelCase =len(__A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__A )}''' ) _lowerCAmelCase =batch_size * num_images_per_prompt _lowerCAmelCase =guidance_scale > 1.0 _lowerCAmelCase =self._encode_prompt(__A , __A , __A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__A )}.''' ) # get the initial completely masked latents unless the user supplied it _lowerCAmelCase =(batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCAmelCase =self.transformer.num_vector_embeds - 1 _lowerCAmelCase =torch.full(__A , __A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _lowerCAmelCase =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__A , device=self.device ) _lowerCAmelCase =self.scheduler.timesteps.to(self.device ) _lowerCAmelCase =latents for i, t in enumerate(self.progress_bar(__A ) ): # expand the sample if we are doing classifier free guidance _lowerCAmelCase =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCAmelCase =self.transformer(__A , encoder_hidden_states=__A , timestep=__A ).sample if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase =model_output.chunk(2 ) _lowerCAmelCase =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__A , dim=1 , keepdim=__A ) _lowerCAmelCase =self.truncate(__A , __A ) # remove `log(0)`'s (`-inf`s) _lowerCAmelCase =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase =self.scheduler.step(__A , timestep=__A , sample=__A , generator=__A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A , __A ) _lowerCAmelCase =self.vqvae.config.vq_embed_dim _lowerCAmelCase =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCAmelCase =self.vqvae.quantize.get_codebook_entry(__A , shape=__A ) _lowerCAmelCase =self.vqvae.decode(__A , force_not_quantize=__A ).sample _lowerCAmelCase =(image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase =self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A ) def UpperCamelCase__ ( self , __A , __A ) -> torch.FloatTensor: _lowerCAmelCase , _lowerCAmelCase =torch.sort(__A , 1 , descending=__A ) _lowerCAmelCase =torch.exp(__A ) _lowerCAmelCase =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCAmelCase =torch.full_like(keep_mask[:, 0:1, :] , __A ) _lowerCAmelCase =torch.cat((all_true, keep_mask) , dim=1 ) _lowerCAmelCase =keep_mask[:, :-1, :] _lowerCAmelCase =keep_mask.gather(1 , indices.argsort(1 ) ) _lowerCAmelCase =log_p_x_0.clone() _lowerCAmelCase =-torch.inf # -inf = log(0) return rv
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' import argparse from collections import defaultdict import yaml lowercase_ = '''docs/source/en/_toctree.yml''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =defaultdict(a__ ) _lowerCAmelCase =[] _lowerCAmelCase =[] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(a__ ) _lowerCAmelCase =new_doc_list _lowerCAmelCase =[key for key, value in counts.items() if value > 1] _lowerCAmelCase =[] for duplicate_key in duplicates: _lowerCAmelCase =list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(a__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowerCAmelCase =sorted(a__ , key=lambda a__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(a__ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(a__ ) # Sort return overview_doc def UpperCamelCase__ ( a__=False ): '''simple docstring''' with open(a__ , encoding='utf-8' ) as f: _lowerCAmelCase =yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase =0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase =content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase =0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase =api_doc[scheduler_idx]['sections'] _lowerCAmelCase =clean_doc_toc(a__ ) _lowerCAmelCase =False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase =True if overwrite: _lowerCAmelCase =new_scheduler_doc if diff: if overwrite: _lowerCAmelCase =api_doc with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(a__ , allow_unicode=a__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase__ ( a__=False ): '''simple docstring''' with open(a__ , encoding='utf-8' ) as f: _lowerCAmelCase =yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase =0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase =content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase =0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase =False _lowerCAmelCase =api_doc[pipeline_idx]['sections'] _lowerCAmelCase =[] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase =pipeline_doc['section'] _lowerCAmelCase =clean_doc_toc(a__ ) if overwrite: _lowerCAmelCase =new_sub_pipeline_doc new_pipeline_docs.append(a__ ) # sort overall pipeline doc _lowerCAmelCase =clean_doc_toc(a__ ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase =True if overwrite: _lowerCAmelCase =new_pipeline_docs if diff: if overwrite: _lowerCAmelCase =api_doc with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(a__ , allow_unicode=a__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase_ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCamelCase__ ( a__ , a__ , a__ , a__=5 ): '''simple docstring''' assert masked_input.count('<mask>' ) == 1 _lowerCAmelCase =torch.tensor(tokenizer.encode(a__ , add_special_tokens=a__ ) ).unsqueeze(0 ) # Batch size 1 _lowerCAmelCase =model(a__ )[0] # The last hidden-state is the first element of the output tuple _lowerCAmelCase =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCAmelCase =logits[0, masked_index, :] _lowerCAmelCase =logits.softmax(dim=0 ) _lowerCAmelCase , _lowerCAmelCase =prob.topk(k=a__ , dim=0 ) _lowerCAmelCase =' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(a__ ) )] ) _lowerCAmelCase =tokenizer.mask_token _lowerCAmelCase =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): _lowerCAmelCase =predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(a__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(a__ ) , a__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(a__ , a__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase_ = CamembertTokenizer.from_pretrained('''camembert-base''') lowercase_ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowercase_ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase_ = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' lowercase_ = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' lowercase_ = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return float((preds == labels).mean() ) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =simple_accuracy(a__ , a__ ) _lowerCAmelCase =float(fa_score(y_true=a__ , y_pred=a__ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =float(pearsonr(a__ , a__ )[0] ) _lowerCAmelCase =float(spearmanr(a__ , a__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self ) -> int: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def UpperCamelCase__ ( self , __A , __A ) -> str: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__A , __A )} elif self.config_name == "stsb": return pearson_and_spearman(__A , __A ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__A , __A ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__A , __A )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__lowercase) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , *__A , **__A ) -> Optional[int]: super().__init__(*__A , **__A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase__ ( self , __A=None , __A=None , __A=None ) -> Tuple: _lowerCAmelCase ={} _lowerCAmelCase ={} if prompt is not None: _lowerCAmelCase =prompt if generate_kwargs is not None: _lowerCAmelCase =generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _lowerCAmelCase ={} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _lowerCAmelCase =max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , __A , **__A ) -> str: return super().__call__(__A , **__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> Union[str, Any]: _lowerCAmelCase =load_image(__A ) if prompt is not None: if not isinstance(__A , __A ): raise ValueError( F'''Received an invalid text input, got - {type(__A )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _lowerCAmelCase =self.model.config.model_type if model_type == "git": _lowerCAmelCase =self.image_processor(images=__A , return_tensors=self.framework ) _lowerCAmelCase =self.tokenizer(text=__A , add_special_tokens=__A ).input_ids _lowerCAmelCase =[self.tokenizer.cls_token_id] + input_ids _lowerCAmelCase =torch.tensor(__A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _lowerCAmelCase =self.image_processor(images=__A , header_text=__A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _lowerCAmelCase =self.image_processor(images=__A , return_tensors=self.framework ) _lowerCAmelCase =self.tokenizer(__A , return_tensors=self.framework ) model_inputs.update(__A ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: _lowerCAmelCase =self.image_processor(images=__A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _lowerCAmelCase =None return model_inputs def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , __A ) and all(x is None for x in model_inputs['input_ids'] ) ): _lowerCAmelCase =None if generate_kwargs is None: _lowerCAmelCase ={} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _lowerCAmelCase =model_inputs.pop(self.model.main_input_name ) _lowerCAmelCase =self.model.generate(__A , **__A , **__A ) return model_outputs def UpperCamelCase__ ( self , __A ) -> List[str]: _lowerCAmelCase =[] for output_ids in model_outputs: _lowerCAmelCase ={ 'generated_text': self.tokenizer.decode( __A , skip_special_tokens=__A , ) } records.append(__A ) return records
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =question_encoder _lowerCAmelCase =generator _lowerCAmelCase =self.question_encoder def UpperCamelCase__ ( self , __A ) -> Optional[int]: if os.path.isfile(__A ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__A , exist_ok=__A ) _lowerCAmelCase =os.path.join(__A , 'question_encoder_tokenizer' ) _lowerCAmelCase =os.path.join(__A , 'generator_tokenizer' ) self.question_encoder.save_pretrained(__A ) self.generator.save_pretrained(__A ) @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> Optional[int]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase =kwargs.pop('config' , __A ) if config is None: _lowerCAmelCase =RagConfig.from_pretrained(__A ) _lowerCAmelCase =AutoTokenizer.from_pretrained( __A , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCAmelCase =AutoTokenizer.from_pretrained( __A , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=__A , generator=__A ) def __call__( self , *__A , **__A ) -> Union[str, Any]: return self.current_tokenizer(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.generator.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> List[Any]: return self.generator.decode(*__A , **__A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.question_encoder def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.generator def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = "longest" , __A = None , __A = True , **__A , ) -> BatchEncoding: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , __A , ) if max_length is None: _lowerCAmelCase =self.current_tokenizer.model_max_length _lowerCAmelCase =self( __A , add_special_tokens=__A , return_tensors=__A , max_length=__A , padding=__A , truncation=__A , **__A , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase =self.current_tokenizer.model_max_length _lowerCAmelCase =self( text_target=__A , add_special_tokens=__A , return_tensors=__A , padding=__A , max_length=__A , truncation=__A , **__A , ) _lowerCAmelCase =labels['input_ids'] return model_inputs
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0