code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowercase_ = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowercase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowercase_ = '''Dummy User''' lowercase_ = '''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''' lowercase_ = '''https://hub-ci.huggingface.co''' lowercase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowercase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowercase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , a__ ) @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' monkeypatch.setattr('datasets.config.HF_ENDPOINT' , a__ ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , a__ ) @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , a__ ) @pytest.fixture def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' HfFolder.save_token(a__ ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def UpperCamelCase__ ( ): '''simple docstring''' return HfApi(endpoint=a__ ) @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =HfFolder.get_token() HfFolder.save_token(a__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(a__ ) @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' def _cleanup_repo(a__ ): hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def UpperCamelCase__ ( a__ ): '''simple docstring''' @contextmanager def _temporary_repo(a__ ): try: yield repo_id finally: cleanup_repo(a__ ) return _temporary_repo @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''repo_txt_data-{int(time.time() * 10E3 )}''' _lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type='dataset' , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo='data/text_data.txt' , repo_id=a__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' _lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type='dataset' , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo='data.zip' , repo_id=a__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' _lowerCAmelCase =F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(a__ , token=a__ , repo_type='dataset' , private=a__ ) hf_api.upload_file( token=a__ , path_or_fileobj=str(a__ ) , path_in_repo='data.zip' , repo_id=a__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(a__ , token=a__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = ['image_processor', 'tokenizer'] lowercase : List[Any] = 'BlipImageProcessor' lowercase : str = 'AutoTokenizer' def __init__( self , __A , __A , __A ) -> Optional[Any]: super().__init__(__A , __A ) # add QFormer tokenizer _lowerCAmelCase =qformer_tokenizer def __call__( self , __A = None , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _lowerCAmelCase =BatchFeature() if text is not None: _lowerCAmelCase =self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) encoding.update(__A ) _lowerCAmelCase =self.qformer_tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) _lowerCAmelCase =qformer_text_encoding.pop('input_ids' ) _lowerCAmelCase =qformer_text_encoding.pop('attention_mask' ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A ) encoding.update(__A ) return encoding def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Tuple: return self.tokenizer.decode(*__A , **__A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase__ ( self , __A , **__A ) -> List[str]: if os.path.isfile(__A ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__A , exist_ok=__A ) _lowerCAmelCase =os.path.join(__A , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__A ) return super().save_pretrained(__A , **__A ) @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> int: _lowerCAmelCase =AutoTokenizer.from_pretrained(__A , subfolder='qformer_tokenizer' ) _lowerCAmelCase =cls._get_arguments_from_pretrained(__A , **__A ) args.append(__A ) return cls(*__A )
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue _lowerCAmelCase =cst_fwd.get(a__ , np.inf ) _lowerCAmelCase =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _lowerCAmelCase =new_cost_f _lowerCAmelCase =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _lowerCAmelCase =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =-1 _lowerCAmelCase =set() _lowerCAmelCase =set() _lowerCAmelCase ={source: 0} _lowerCAmelCase ={destination: 0} _lowerCAmelCase ={source: None} _lowerCAmelCase ={destination: None} _lowerCAmelCase =PriorityQueue() _lowerCAmelCase =PriorityQueue() _lowerCAmelCase =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _lowerCAmelCase , _lowerCAmelCase =queue_forward.get() visited_forward.add(a__ ) _lowerCAmelCase , _lowerCAmelCase =queue_backward.get() visited_backward.add(a__ ) _lowerCAmelCase =pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) _lowerCAmelCase =pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _lowerCAmelCase =shortest_distance return shortest_path_distance lowercase_ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowercase_ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) _lowerCAmelCase =re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , a__ ) if matches: _lowerCAmelCase =float(matches[1] ) _lowerCAmelCase =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowerCAmelCase =1_0_0_1 _lowerCAmelCase ='imagenet-1k-id2label.json' _lowerCAmelCase ='huggingface/label-files' _lowerCAmelCase =json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase ={int(a__ ) + 1: v for k, v in idalabel.items()} _lowerCAmelCase ='background' _lowerCAmelCase =idalabel _lowerCAmelCase ={v: k for k, v in idalabel.items()} return config def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase =Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( a__ , a__ , a__ , a__=False ): '''simple docstring''' _lowerCAmelCase =get_mobilenet_va_config(a__ ) # Load 🤗 model _lowerCAmelCase =MobileNetVaForImageClassification(a__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(a__ , a__ , a__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowerCAmelCase =MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 3_2} , ) _lowerCAmelCase =image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCAmelCase =model(**a__ ) _lowerCAmelCase =outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": _lowerCAmelCase =torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": _lowerCAmelCase =torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: _lowerCAmelCase =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , a__ , atol=1E-4 ) Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if push_to_hub: print('Pushing to the hub...' ) _lowerCAmelCase ='google/' + model_name image_processor.push_to_hub(a__ ) model.push_to_hub(a__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' import os import string import sys lowercase_ = 1 << 8 lowercase_ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } lowercase_ = KEYMAP['''up'''] lowercase_ = KEYMAP['''left'''] if sys.platform == "win32": lowercase_ = [] lowercase_ = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): lowercase_ = ord(str(i)) def UpperCamelCase__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt _lowerCAmelCase ='mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(a__ ) == 0: # Read the keystroke _lowerCAmelCase =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCAmelCase =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCAmelCase =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(a__ ) if ord(a__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) _lowerCAmelCase =chr(KEYMAP['esc'] ) except KeyError: _lowerCAmelCase =cha[1] else: _lowerCAmelCase =ch.decode(a__ ) else: _lowerCAmelCase =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCAmelCase =sys.stdin.fileno() _lowerCAmelCase =termios.tcgetattr(a__ ) try: tty.setraw(a__ ) _lowerCAmelCase =sys.stdin.read(1 ) finally: termios.tcsetattr(a__ , termios.TCSADRAIN , a__ ) return ch def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =get_raw_chars() if ord(a__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(a__ ) == KEYMAP["esc"]: _lowerCAmelCase =get_raw_chars() if ord(a__ ) == KEYMAP["mod_int"]: _lowerCAmelCase =get_raw_chars() if ord(a__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(a__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(a__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" lowercase : str = 'bit' lowercase : Any = ['preactivation', 'bottleneck'] lowercase : List[str] = ['SAME', 'VALID'] def __init__( self , __A=3 , __A=64 , __A=[256, 512, 1024, 2048] , __A=[3, 4, 6, 3] , __A="preactivation" , __A="relu" , __A=None , __A=32 , __A=0.0 , __A=False , __A=32 , __A=1 , __A=None , __A=None , **__A , ) -> Tuple: super().__init__(**__A ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCAmelCase =global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) _lowerCAmelCase =num_channels _lowerCAmelCase =embedding_size _lowerCAmelCase =hidden_sizes _lowerCAmelCase =depths _lowerCAmelCase =layer_type _lowerCAmelCase =hidden_act _lowerCAmelCase =global_padding _lowerCAmelCase =num_groups _lowerCAmelCase =drop_path_rate _lowerCAmelCase =embedding_dynamic_padding _lowerCAmelCase =output_stride _lowerCAmelCase =width_factor _lowerCAmelCase =['stem'] + [F'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )] _lowerCAmelCase , _lowerCAmelCase =get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github lowercase_ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Github(os.environ['GITHUB_TOKEN'] ) _lowerCAmelCase =g.get_repo('huggingface/transformers' ) _lowerCAmelCase =repo.get_issues(state='open' ) for issue in open_issues: _lowerCAmelCase =sorted([comment for comment in issue.get_comments()] , key=lambda a__ : i.created_at , reverse=a__ ) _lowerCAmelCase =comments[0] if len(a__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase_ = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' from __future__ import annotations lowercase_ = '''#''' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ) -> None: _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A ) -> None: _lowerCAmelCase =self._trie for char in text: if char not in trie: _lowerCAmelCase ={} _lowerCAmelCase =trie[char] _lowerCAmelCase =True def UpperCamelCase__ ( self , __A ) -> tuple | list: _lowerCAmelCase =self._trie for char in prefix: if char in trie: _lowerCAmelCase =trie[char] else: return [] return self._elements(__A ) def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =[] for c, v in d.items(): _lowerCAmelCase =[' '] if c == END else [(c + s) for s in self._elements(__A )] result.extend(__A ) return tuple(__A ) lowercase_ = Trie() lowercase_ = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =trie.find_word(a__ ) return tuple(string + word for word in suffixes ) def UpperCamelCase__ ( ): '''simple docstring''' print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import os import sys import unittest lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =find_backend(' if not is_torch_available():' ) self.assertEqual(__A , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _lowerCAmelCase =find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(__A , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _lowerCAmelCase =find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(__A , 'torch_and_transformers_and_onnx' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , __A ) self.assertIn('torch_and_transformers' , __A ) self.assertIn('flax_and_transformers' , __A ) self.assertIn('torch_and_transformers_and_onnx' , __A ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(__A , '\nCONSTANT = None\n' ) _lowerCAmelCase =create_dummy_object('function' , '\'torch\'' ) self.assertEqual( __A , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _lowerCAmelCase ='\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' _lowerCAmelCase =create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(__A , __A ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase ='# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' _lowerCAmelCase =create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , __A )
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : Tuple = BlenderbotSmallConfig lowercase : List[Any] = {} lowercase : Tuple = 'gelu' def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=False , __A=99 , __A=32 , __A=2 , __A=4 , __A=37 , __A=0.1 , __A=0.1 , __A=20 , __A=2 , __A=1 , __A=0 , ) -> Dict: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =eos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =bos_token_id def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase =tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase =prepare_blenderbot_small_inputs_dict(__A , __A , __A ) return config, inputs_dict def UpperCamelCase__ ( self , __A , __A ) -> List[Any]: _lowerCAmelCase =TFBlenderbotSmallModel(config=__A ).get_decoder() _lowerCAmelCase =inputs_dict['input_ids'] _lowerCAmelCase =input_ids[:1, :] _lowerCAmelCase =inputs_dict['attention_mask'][:1, :] _lowerCAmelCase =inputs_dict['head_mask'] _lowerCAmelCase =1 # first forward pass _lowerCAmelCase =model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) _lowerCAmelCase , _lowerCAmelCase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase =tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase =model(__A , attention_mask=__A )[0] _lowerCAmelCase =model(__A , attention_mask=__A , past_key_values=__A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase =output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__A , __A , rtol=1E-3 ) def UpperCamelCase__ ( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase =tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[str] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowercase : Optional[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowercase : Union[str, Any] = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowercase : List[str] = True lowercase : Optional[Any] = False lowercase : Any = False def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =TFBlenderbotSmallModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A ) def UpperCamelCase__ ( self ) -> str: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" lowercase : Any = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] lowercase : Any = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase__ ( self ) -> Tuple: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.tokenizer(self.src_text , return_tensors='tf' ) _lowerCAmelCase =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__A , ) _lowerCAmelCase =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__A )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 768 , ) -> Tuple: super().__init__() _lowerCAmelCase =nn.Parameter(torch.zeros(1 , __A ) ) _lowerCAmelCase =nn.Parameter(torch.ones(1 , __A ) ) def UpperCamelCase__ ( self , __A = None , __A = None , ) -> int: _lowerCAmelCase =nn.Parameter(self.mean.to(__A ).to(__A ) ) _lowerCAmelCase =nn.Parameter(self.std.to(__A ).to(__A ) ) return self def UpperCamelCase__ ( self , __A ) -> str: _lowerCAmelCase =(embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =(embeds * self.std) + self.mean return embeds
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = '''src/diffusers''' lowercase_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowercase_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase_ = spec.loader.load_module() def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return line.startswith(a__ ) or len(a__ ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , a__ ) is not None def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =object_name.split('.' ) _lowerCAmelCase =0 # First let's find the module where our object lives. _lowerCAmelCase =parts[i] while i < len(a__ ) and not os.path.isfile(os.path.join(a__ , F'''{module}.py''' ) ): i += 1 if i < len(a__ ): _lowerCAmelCase =os.path.join(a__ , parts[i] ) if i >= len(a__ ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(a__ , F'''{module}.py''' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase =f.readlines() # Now let's find the class / func in the code! _lowerCAmelCase ='' _lowerCAmelCase =0 for name in parts[i + 1 :]: while ( line_index < len(a__ ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a__ ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCAmelCase =line_index while line_index < len(a__ ) and _should_continue(lines[line_index] , a__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase =lines[start_index:line_index] return "".join(a__ ) lowercase_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowercase_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowercase_ = re.compile(r'''<FILL\s+[^>]*>''') def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =code.split('\n' ) _lowerCAmelCase =0 while idx < len(a__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a__ ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(get_indent(a__ ) ) > 0 if has_indent: _lowerCAmelCase =F'''class Bla:\n{code}''' _lowerCAmelCase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=a__ ) _lowerCAmelCase =black.format_str(a__ , mode=a__ ) _lowerCAmelCase , _lowerCAmelCase =style_docstrings_in_code(a__ ) return result[len('class Bla:\n' ) :] if has_indent else result def UpperCamelCase__ ( a__ , a__=False ): '''simple docstring''' with open(a__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase =f.readlines() _lowerCAmelCase =[] _lowerCAmelCase =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a__ ): _lowerCAmelCase =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =search.groups() _lowerCAmelCase =find_code_in_diffusers(a__ ) _lowerCAmelCase =get_indent(a__ ) _lowerCAmelCase =line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCAmelCase =theoretical_indent _lowerCAmelCase =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCAmelCase =True while line_index < len(a__ ) and should_continue: line_index += 1 if line_index >= len(a__ ): break _lowerCAmelCase =lines[line_index] _lowerCAmelCase =_should_continue(a__ , a__ ) and re.search(F'''^{indent}# End copy''' , a__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase =lines[start_index:line_index] _lowerCAmelCase =''.join(a__ ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCAmelCase =[line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(a__ ) is None] _lowerCAmelCase ='\n'.join(a__ ) # Before comparing, use the `replace_pattern` on the original code. if len(a__ ) > 0: _lowerCAmelCase =replace_pattern.replace('with' , '' ).split(',' ) _lowerCAmelCase =[_re_replace_pattern.search(a__ ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =pattern.groups() _lowerCAmelCase =re.sub(a__ , a__ , a__ ) if option.strip() == "all-casing": _lowerCAmelCase =re.sub(obja.lower() , obja.lower() , a__ ) _lowerCAmelCase =re.sub(obja.upper() , obja.upper() , a__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCAmelCase =blackify(lines[start_index - 1] + theoretical_code ) _lowerCAmelCase =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCAmelCase =lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCAmelCase =start_index + 1 if overwrite and len(a__ ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(a__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(a__ ) return diffs def UpperCamelCase__ ( a__ = False ): '''simple docstring''' _lowerCAmelCase =glob.glob(os.path.join(a__ , '**/*.py' ) , recursive=a__ ) _lowerCAmelCase =[] for filename in all_files: _lowerCAmelCase =is_copy_consistent(a__ , a__ ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(a__ ) > 0: _lowerCAmelCase ='\n'.join(a__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowercase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A ) -> Tuple: super().__init__() _lowerCAmelCase =torchvision.models.resnetaaa(pretrained=__A ) _lowerCAmelCase =list(model.children() )[:-2] _lowerCAmelCase =nn.Sequential(*__A ) _lowerCAmelCase =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCamelCase__ ( self , __A ) -> List[Any]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _lowerCAmelCase =self.pool(self.model(__A ) ) _lowerCAmelCase =torch.flatten(__A , start_dim=2 ) _lowerCAmelCase =out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase =[json.loads(__A ) for l in open(__A )] _lowerCAmelCase =os.path.dirname(__A ) _lowerCAmelCase =tokenizer _lowerCAmelCase =labels _lowerCAmelCase =len(__A ) _lowerCAmelCase =max_seq_length _lowerCAmelCase =transforms def __len__( self ) -> Tuple: return len(self.data ) def __getitem__( self , __A ) -> Dict: _lowerCAmelCase =torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__A ) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =sentence[0], sentence[1:-1], sentence[-1] _lowerCAmelCase =sentence[: self.max_seq_length] _lowerCAmelCase =torch.zeros(self.n_classes ) _lowerCAmelCase =1 _lowerCAmelCase =Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) _lowerCAmelCase =self.transforms(__A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =[len(row['sentence'] ) for row in batch] _lowerCAmelCase , _lowerCAmelCase =len(a__ ), max(a__ ) _lowerCAmelCase =torch.zeros(a__ , a__ , dtype=torch.long ) _lowerCAmelCase =torch.zeros(a__ , a__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(a__ , a__ ) ): _lowerCAmelCase =input_row['sentence'] _lowerCAmelCase =1 _lowerCAmelCase =torch.stack([row['image'] for row in batch] ) _lowerCAmelCase =torch.stack([row['label'] for row in batch] ) _lowerCAmelCase =torch.stack([row['image_start_token'] for row in batch] ) _lowerCAmelCase =torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def UpperCamelCase__ ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def UpperCamelCase__ ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=False , __A=True , __A=False , __A=False , __A=19 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =scope def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__A , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase =EsmForProteinFolding(config=__A ).float() model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A ) _lowerCAmelCase =model(__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Dict = False lowercase : str = (EsmForProteinFolding,) if is_torch_available() else () lowercase : Dict = () lowercase : Union[str, Any] = {} if is_torch_available() else {} lowercase : Dict = False def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =EsmFoldModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @unittest.skip('Does not support attention outputs' ) def UpperCamelCase__ ( self ) -> Tuple: pass @unittest.skip def UpperCamelCase__ ( self ) -> str: pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def UpperCamelCase__ ( self ) -> List[Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def UpperCamelCase__ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def UpperCamelCase__ ( self ) -> List[Any]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip('ESMFold only has one output format.' ) def UpperCamelCase__ ( self ) -> List[str]: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support input chunking.' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def UpperCamelCase__ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCamelCase__ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def UpperCamelCase__ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def UpperCamelCase__ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase__ ( self ) -> int: pass @require_torch class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() _lowerCAmelCase =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCAmelCase =model(__A )['positions'] _lowerCAmelCase =torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __A , atol=1E-4 ) )
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput lowercase_ = '''scheduler_config.json''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = 1 lowercase : Any = 2 lowercase : List[str] = 3 lowercase : Dict = 4 lowercase : str = 5 @dataclass class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : jnp.ndarray class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : Tuple = SCHEDULER_CONFIG_NAME lowercase : List[Any] = ['dtype'] lowercase : str = [] lowercase : Union[str, Any] = True @classmethod def UpperCamelCase__ ( cls , __A = None , __A = None , __A=False , **__A , ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase =cls.load_config( pretrained_model_name_or_path=__A , subfolder=__A , return_unused_kwargs=__A , **__A , ) _lowerCAmelCase , _lowerCAmelCase =cls.from_config(__A , return_unused_kwargs=__A , **__A ) if hasattr(__A , 'create_state' ) and getattr(__A , 'has_state' , __A ): _lowerCAmelCase =scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCamelCase__ ( self , __A , __A = False , **__A ) -> Union[str, Any]: self.save_config(save_directory=__A , push_to_hub=__A , **__A ) @property def UpperCamelCase__ ( self ) -> Any: return self._get_compatibles() @classmethod def UpperCamelCase__ ( cls ) -> Tuple: _lowerCAmelCase =list(set([cls.__name__] + cls._compatibles ) ) _lowerCAmelCase =importlib.import_module(__name__.split('.' )[0] ) _lowerCAmelCase =[ getattr(__A , __A ) for c in compatible_classes_str if hasattr(__A , __A ) ] return compatible_classes def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' assert len(a__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(a__ ) - x.ndim) ) , a__ ) def UpperCamelCase__ ( a__ , a__=0.999 , a__=jnp.floataa ): '''simple docstring''' def alpha_bar(a__ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _lowerCAmelCase =[] for i in range(a__ ): _lowerCAmelCase =i / num_diffusion_timesteps _lowerCAmelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(a__ ) / alpha_bar(a__ ) , a__ ) ) return jnp.array(a__ , dtype=a__ ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : jnp.ndarray lowercase : jnp.ndarray lowercase : jnp.ndarray @classmethod def UpperCamelCase__ ( cls , __A ) -> Dict: _lowerCAmelCase =scheduler.config if config.trained_betas is not None: _lowerCAmelCase =jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _lowerCAmelCase =jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase =( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase =betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) _lowerCAmelCase =1.0 - betas _lowerCAmelCase =jnp.cumprod(__A , axis=0 ) return cls( alphas=__A , betas=__A , alphas_cumprod=__A , ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =state.alphas_cumprod _lowerCAmelCase =alphas_cumprod[timesteps] ** 0.5 _lowerCAmelCase =sqrt_alpha_prod.flatten() _lowerCAmelCase =broadcast_to_shape_from_left(a__ , original_samples.shape ) _lowerCAmelCase =(1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCAmelCase =sqrt_one_minus_alpha_prod.flatten() _lowerCAmelCase =broadcast_to_shape_from_left(a__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) _lowerCAmelCase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) _lowerCAmelCase =sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ) -> List[str]: _lowerCAmelCase ='' _lowerCAmelCase ='' _lowerCAmelCase =[] def UpperCamelCase__ ( self , __A , __A ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowerCAmelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _lowerCAmelCase =self.__min_dist_top_down_dp(__A , n - 1 ) _lowerCAmelCase =self.__min_dist_top_down_dp(m - 1 , __A ) _lowerCAmelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) _lowerCAmelCase =1 + min(__A , __A , __A ) return self.dp[m][n] def UpperCamelCase__ ( self , __A , __A ) -> int: _lowerCAmelCase =worda _lowerCAmelCase =worda _lowerCAmelCase =[[-1 for _ in range(len(__A ) )] for _ in range(len(__A ) )] return self.__min_dist_top_down_dp(len(__A ) - 1 , len(__A ) - 1 ) def UpperCamelCase__ ( self , __A , __A ) -> int: _lowerCAmelCase =worda _lowerCAmelCase =worda _lowerCAmelCase =len(__A ) _lowerCAmelCase =len(__A ) _lowerCAmelCase =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowerCAmelCase =j elif j == 0: # second string is empty _lowerCAmelCase =i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowerCAmelCase =self.dp[i - 1][j - 1] else: _lowerCAmelCase =self.dp[i][j - 1] _lowerCAmelCase =self.dp[i - 1][j] _lowerCAmelCase =self.dp[i - 1][j - 1] _lowerCAmelCase =1 + min(__A , __A , __A ) return self.dp[m][n] if __name__ == "__main__": lowercase_ = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowercase_ = input('''Enter the first string: ''').strip() lowercase_ = input('''Enter the second string: ''').strip() print() print(F'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(F'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Dict = ['image_processor', 'tokenizer'] lowercase : Dict = 'AutoImageProcessor' lowercase : Tuple = 'AutoTokenizer' def __init__( self , __A , __A ) -> Optional[int]: super().__init__(__A , __A ) _lowerCAmelCase =self.image_processor def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> List[str]: return ["input_ids", "attention_mask", "pixel_values"]
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : Optional[int] = LxmertTokenizer lowercase : int = LxmertTokenizerFast lowercase : Union[str, Any] = True lowercase : str = True def UpperCamelCase__ ( self ) -> str: super().setUp() _lowerCAmelCase =[ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase__ ( self , __A ) -> int: _lowerCAmelCase ='UNwant\u00E9d,running' _lowerCAmelCase ='unwanted, running' return input_text, output_text def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.tokenizer_class(self.vocab_file ) _lowerCAmelCase =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase__ ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =tokenizer.tokenize(__A ) _lowerCAmelCase =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =tokenizer.encode(__A , add_special_tokens=__A ) _lowerCAmelCase =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase =tokenizer.encode(__A ) _lowerCAmelCase =rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A )
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase__ ( a__ ): '''simple docstring''' if not isinstance(a__ , a__ ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) _lowerCAmelCase =precision _lowerCAmelCase =ceil(precision / 1_4 ) _lowerCAmelCase =4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() _lowerCAmelCase =1 _lowerCAmelCase =1_3_5_9_1_4_0_9 _lowerCAmelCase =Decimal(a__ ) for k in range(1 , a__ ): _lowerCAmelCase =factorial(6 * k ) // (factorial(3 * k ) * factorial(a__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowercase_ = 50 print(F'The first {n} digits of pi is: {pi(n)}')
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase_ = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__A , 'num_attention_heads' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=13 , __A=64 , __A=3 , __A=3 , __A=2 , __A=1 , __A=16 , __A=[128, 256, 384] , __A=[4, 6, 8] , __A=[2, 3, 4] , __A=[16, 16, 16] , __A=0 , __A=[2, 2, 2] , __A=[2, 2, 2] , __A=0.02 , __A=True , __A=True , __A=2 , ) -> Optional[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =num_channels _lowerCAmelCase =kernel_size _lowerCAmelCase =stride _lowerCAmelCase =padding _lowerCAmelCase =hidden_sizes _lowerCAmelCase =num_attention_heads _lowerCAmelCase =depths _lowerCAmelCase =key_dim _lowerCAmelCase =drop_path_rate _lowerCAmelCase =patch_size _lowerCAmelCase =attention_ratio _lowerCAmelCase =mlp_ratio _lowerCAmelCase =initializer_range _lowerCAmelCase =[ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =num_labels _lowerCAmelCase =initializer_range def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> List[str]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =LevitModel(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A ) _lowerCAmelCase =(self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase =floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _lowerCAmelCase =floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> int: _lowerCAmelCase =self.num_labels _lowerCAmelCase =LevitForImageClassification(__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase : Optional[Any] = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase : Union[str, Any] = False lowercase : List[Any] = False lowercase : str = False lowercase : int = False lowercase : Dict = False def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =LevitModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ) -> Optional[int]: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def UpperCamelCase__ ( self ) -> List[Any]: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def UpperCamelCase__ ( self ) -> List[str]: pass @unittest.skip(reason='Levit does not output attentions' ) def UpperCamelCase__ ( self ) -> Any: pass def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(__A ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , __A ) def UpperCamelCase__ ( self ) -> str: def check_hidden_states_output(__A , __A , __A ): _lowerCAmelCase =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCAmelCase =model(**self._prepare_for_class(__A , __A ) ) _lowerCAmelCase =outputs.hidden_states _lowerCAmelCase =len(self.model_tester.depths ) + 1 self.assertEqual(len(__A ) , __A ) _lowerCAmelCase =(self.model_tester.image_size, self.model_tester.image_size) _lowerCAmelCase , _lowerCAmelCase =image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase =floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _lowerCAmelCase =floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(__A , __A , __A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase__ ( self ) -> str: pass def UpperCamelCase__ ( self , __A , __A , __A=False ) -> Any: _lowerCAmelCase =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def UpperCamelCase__ ( self ) -> str: if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowerCAmelCase =model_class(__A ) model.to(__A ) model.train() _lowerCAmelCase =self._prepare_for_class(__A , __A , return_labels=__A ) _lowerCAmelCase =model(**__A ).loss loss.backward() def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase =False _lowerCAmelCase =True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowerCAmelCase =model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() _lowerCAmelCase =self._prepare_for_class(__A , __A , return_labels=__A ) _lowerCAmelCase =model(**__A ).loss loss.backward() def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =[ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): _lowerCAmelCase =problem_type['title'] _lowerCAmelCase =problem_type['num_labels'] _lowerCAmelCase =model_class(__A ) model.to(__A ) model.train() _lowerCAmelCase =self._prepare_for_class(__A , __A , return_labels=__A ) if problem_type["num_labels"] > 1: _lowerCAmelCase =inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) _lowerCAmelCase =inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: _lowerCAmelCase =model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCamelCase__ ( self ) -> List[Any]: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =LevitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> Any: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**__A ) # verify the logits _lowerCAmelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __A ) _lowerCAmelCase =torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) )
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = 'deberta-v2' def __init__( self , __A=12_8100 , __A=1536 , __A=24 , __A=24 , __A=6144 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0 , __A=0.02 , __A=1E-7 , __A=False , __A=-1 , __A=0 , __A=True , __A=None , __A=0 , __A="gelu" , **__A , ) -> Dict: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =relative_attention _lowerCAmelCase =max_relative_positions _lowerCAmelCase =pad_token_id _lowerCAmelCase =position_biased_input # Backwards compatibility if type(__A ) == str: _lowerCAmelCase =[x.strip() for x in pos_att_type.lower().split('|' )] _lowerCAmelCase =pos_att_type _lowerCAmelCase =vocab_size _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =kwargs.get('pooler_hidden_size' , __A ) _lowerCAmelCase =pooler_dropout _lowerCAmelCase =pooler_hidden_act class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def UpperCamelCase__ ( self ) -> int: return 12 def UpperCamelCase__ ( self , __A , __A = -1 , __A = -1 , __A = -1 , __A = False , __A = None , __A = 3 , __A = 40 , __A = 40 , __A = None , ) -> Mapping[str, Any]: _lowerCAmelCase =super().generate_dummy_inputs(preprocessor=__A , framework=__A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' if n == 1 or not isinstance(a__ , a__ ): return 0 elif n == 2: return 1 else: _lowerCAmelCase =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =2 while digits < n: index += 1 _lowerCAmelCase =len(str(fibonacci(a__ ) ) ) return index def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' return fibonacci_digits_index(a__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' # Lint as: python3 import itertools import os import re lowercase_ = re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowercase_ = re.compile(r'''([a-z\d])([A-Z])''') lowercase_ = re.compile(r'''(?<!_)_(?!_)''') lowercase_ = re.compile(r'''(_{2,})''') lowercase_ = r'''^\w+(\.\w+)*$''' lowercase_ = r'''<>:/\|?*''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =_uppercase_uppercase_re.sub(r'\1_\2' , a__ ) _lowerCAmelCase =_lowercase_uppercase_re.sub(r'\1_\2' , a__ ) return name.lower() def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =_single_underscore_re.split(a__ ) _lowerCAmelCase =[_multiple_underscores_re.split(a__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(a__ ) if n != '' ) def UpperCamelCase__ ( a__ ): '''simple docstring''' if os.path.basename(a__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(a__ ) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if os.path.basename(a__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , a__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(a__ )}-{split}''' def UpperCamelCase__ ( a__ , a__ , a__ , a__=None ): '''simple docstring''' _lowerCAmelCase =filename_prefix_for_split(a__ , a__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' _lowerCAmelCase =os.path.join(a__ , a__ ) return F'''{filepath}*''' def UpperCamelCase__ ( a__ , a__ , a__ , a__=None , a__=None ): '''simple docstring''' _lowerCAmelCase =filename_prefix_for_split(a__ , a__ ) _lowerCAmelCase =os.path.join(a__ , a__ ) if shard_lengths: _lowerCAmelCase =len(a__ ) _lowerCAmelCase =[F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(a__ )] if filetype_suffix: _lowerCAmelCase =[filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: _lowerCAmelCase =prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase : Union[str, Any] = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase : List[str] = False lowercase : str = False def UpperCamelCase__ ( self , __A , __A , __A=False ) -> Optional[int]: _lowerCAmelCase =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): _lowerCAmelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=32 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =scope _lowerCAmelCase =embedding_size def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =TFMobileBertModel(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> int: _lowerCAmelCase =TFMobileBertForMaskedLM(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> int: _lowerCAmelCase =TFMobileBertForNextSentencePrediction(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[int]: _lowerCAmelCase =TFMobileBertForPreTraining(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFMobileBertForSequenceClassification(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Any: _lowerCAmelCase =self.num_choices _lowerCAmelCase =TFMobileBertForMultipleChoice(config=__A ) _lowerCAmelCase =tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase =tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase =tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFMobileBertForTokenClassification(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[int]: _lowerCAmelCase =TFMobileBertForQuestionAnswering(config=__A ) _lowerCAmelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__A ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__A ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__A ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__A ) @slow def UpperCamelCase__ ( self ) -> Tuple: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase =TFMobileBertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowerCAmelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase =model(__A )[0] _lowerCAmelCase =[1, 6, 3_0522] self.assertEqual(output.shape , __A ) _lowerCAmelCase =tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __A , atol=1E-4 )
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase_ = logging.get_logger('''transformers.models.encodec''') lowercase_ = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowercase_ = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowercase_ = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowercase_ = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowercase_ = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowercase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase_ = [] lowercase_ = [] def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__ ): '''simple docstring''' for attribute in key.split('.' ): _lowerCAmelCase =getattr(a__ , a__ ) if weight_type is not None: _lowerCAmelCase =getattr(a__ , a__ ).shape else: _lowerCAmelCase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCAmelCase =value elif weight_type == "weight_g": _lowerCAmelCase =value elif weight_type == "weight_v": _lowerCAmelCase =value elif weight_type == "bias": _lowerCAmelCase =value elif weight_type == "running_mean": _lowerCAmelCase =value elif weight_type == "running_var": _lowerCAmelCase =value elif weight_type == "num_batches_tracked": _lowerCAmelCase =value elif weight_type == "weight_ih_l0": _lowerCAmelCase =value elif weight_type == "weight_hh_l0": _lowerCAmelCase =value elif weight_type == "bias_ih_l0": _lowerCAmelCase =value elif weight_type == "bias_hh_l0": _lowerCAmelCase =value elif weight_type == "weight_ih_l1": _lowerCAmelCase =value elif weight_type == "weight_hh_l1": _lowerCAmelCase =value elif weight_type == "bias_ih_l1": _lowerCAmelCase =value elif weight_type == "bias_hh_l1": _lowerCAmelCase =value else: _lowerCAmelCase =value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCAmelCase , _lowerCAmelCase =key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[] if model_name == "encodec_24khz" or "encodec_32khz": _lowerCAmelCase =MAPPING_24K elif model_name == "encodec_48khz": _lowerCAmelCase =MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(a__ , a__ ): logger.info(F'''{name} was ignored''' ) continue _lowerCAmelCase =False for key, mapped_key in MAPPING.items(): if "*" in key: _lowerCAmelCase , _lowerCAmelCase =key.split('.*.' ) if prefix in name and suffix in name: _lowerCAmelCase =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue _lowerCAmelCase =True if "*" in mapped_key: _lowerCAmelCase =name.split(a__ )[0].split('.' )[-2] _lowerCAmelCase =mapped_key.replace('*' , a__ ) if "weight_g" in name: _lowerCAmelCase ='weight_g' elif "weight_v" in name: _lowerCAmelCase ='weight_v' elif "weight_ih_l0" in name: _lowerCAmelCase ='weight_ih_l0' elif "weight_hh_l0" in name: _lowerCAmelCase ='weight_hh_l0' elif "bias_ih_l0" in name: _lowerCAmelCase ='bias_ih_l0' elif "bias_hh_l0" in name: _lowerCAmelCase ='bias_hh_l0' elif "weight_ih_l1" in name: _lowerCAmelCase ='weight_ih_l1' elif "weight_hh_l1" in name: _lowerCAmelCase ='weight_hh_l1' elif "bias_ih_l1" in name: _lowerCAmelCase ='bias_ih_l1' elif "bias_hh_l1" in name: _lowerCAmelCase ='bias_hh_l1' elif "bias" in name: _lowerCAmelCase ='bias' elif "weight" in name: _lowerCAmelCase ='weight' elif "running_mean" in name: _lowerCAmelCase ='running_mean' elif "running_var" in name: _lowerCAmelCase ='running_var' elif "num_batches_tracked" in name: _lowerCAmelCase ='num_batches_tracked' else: _lowerCAmelCase =None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def UpperCamelCase__ ( a__ , a__ , a__ , a__=None , a__=None , ): '''simple docstring''' if config_path is not None: _lowerCAmelCase =EncodecConfig.from_pretrained(a__ ) else: _lowerCAmelCase =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _lowerCAmelCase =[8, 5, 4, 4] _lowerCAmelCase =[2.2] _lowerCAmelCase =6_4 _lowerCAmelCase =3_2_0_0_0 _lowerCAmelCase =2_0_4_8 _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False elif model_name == "encodec_48khz": _lowerCAmelCase =[8, 5, 4, 2] _lowerCAmelCase =[3.0, 6.0, 12.0, 24.0] _lowerCAmelCase =4_8_0_0_0 _lowerCAmelCase =2 _lowerCAmelCase =False _lowerCAmelCase ='time_group_norm' _lowerCAmelCase =True _lowerCAmelCase =1.0 _lowerCAmelCase =0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _lowerCAmelCase =EncodecModel(a__ ) _lowerCAmelCase =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a__ ) _lowerCAmelCase =torch.load(a__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _lowerCAmelCase =original_checkpoint['best_state'] recursively_load_weights(a__ , a__ , a__ ) model.save_pretrained(a__ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(a__ ) model.push_to_hub(a__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowercase_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __lt__( self , __A ) -> Tuple: return self[-1] < other[-1] def __eq__( self , __A ) -> Any: return self[-1] == other[-1] def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =[] # sort into stacks for element in collection: _lowerCAmelCase =Stack([element] ) _lowerCAmelCase =bisect_left(a__ , a__ ) if i != len(a__ ): stacks[i].append(a__ ) else: stacks.append(a__ ) # use a heap-based merge to merge stack efficiently _lowerCAmelCase =merge(*(reversed(a__ ) for stack in stacks) ) return collection if __name__ == "__main__": lowercase_ = input('''Enter numbers separated by a comma:\n''').strip() lowercase_ = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Dict = 'roformer' def __init__( self , __A=5_0000 , __A=None , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=1536 , __A=2 , __A=0.02 , __A=1E-12 , __A=0 , __A=False , __A=True , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size if embedding_size is None else embedding_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =rotary_value _lowerCAmelCase =use_cache class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' import math import sys def UpperCamelCase__ ( a__ ): '''simple docstring''' if number != int(a__ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 _lowerCAmelCase =[-1] * (number + 1) _lowerCAmelCase =0 for i in range(1 , number + 1 ): _lowerCAmelCase =sys.maxsize _lowerCAmelCase =int(math.sqrt(a__ ) ) for j in range(1 , root + 1 ): _lowerCAmelCase =1 + answers[i - (j**2)] _lowerCAmelCase =min(a__ , a__ ) _lowerCAmelCase =answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' from math import sqrt def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 for i in range(1 , int(sqrt(a__ ) + 1 ) ): if n % i == 0 and i != sqrt(a__ ): total += i + n // i elif i == sqrt(a__ ): total += i return total - n def UpperCamelCase__ ( a__ = 1_0_0_0_0 ): '''simple docstring''' _lowerCAmelCase =sum( i for i in range(1 , a__ ) if sum_of_divisors(sum_of_divisors(a__ ) ) == i and sum_of_divisors(a__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import argparse import os import re lowercase_ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase_ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase_ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase_ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase_ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase_ = re.compile(r'''\[([^\]]+)\]''') def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =_re_indent.search(a__ ) return "" if search is None else search.groups()[0] def UpperCamelCase__ ( a__ , a__="" , a__=None , a__=None ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(a__ ): index += 1 _lowerCAmelCase =['\n'.join(lines[:index] )] else: _lowerCAmelCase =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase =[lines[index]] index += 1 while index < len(a__ ) and (end_prompt is None or not lines[index].startswith(a__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(a__ ) ) if index < len(a__ ) - 1: _lowerCAmelCase =[lines[index + 1]] index += 1 else: _lowerCAmelCase =[] else: blocks.append('\n'.join(a__ ) ) _lowerCAmelCase =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a__ ) > 0: blocks.append('\n'.join(a__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def UpperCamelCase__ ( a__ ): '''simple docstring''' def _inner(a__ ): return key(a__ ).lower().replace('_' , '' ) return _inner def UpperCamelCase__ ( a__ , a__=None ): '''simple docstring''' def noop(a__ ): return x if key is None: _lowerCAmelCase =noop # Constants are all uppercase, they go first. _lowerCAmelCase =[obj for obj in objects if key(a__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase =[obj for obj in objects if key(a__ )[0].isupper() and not key(a__ ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase =[obj for obj in objects if not key(a__ )[0].isupper()] _lowerCAmelCase =ignore_underscore(a__ ) return sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) def UpperCamelCase__ ( a__ ): '''simple docstring''' def _replace(a__ ): _lowerCAmelCase =match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowerCAmelCase =[part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(a__ )] ) + "]" _lowerCAmelCase =import_statement.split('\n' ) if len(a__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase =2 if lines[1].strip() == '[' else 1 _lowerCAmelCase =[(i, _re_strip_line.search(a__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase =sort_objects(a__ , key=lambda a__ : x[1] ) _lowerCAmelCase =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase =_re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase =[part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase =keys[:-1] _lowerCAmelCase =get_indent(lines[1] ) + ', '.join([F'''"{k}"''' for k in sort_objects(a__ )] ) return "\n".join(a__ ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase =_re_bracket_content.sub(_replace , a__ ) return import_statement def UpperCamelCase__ ( a__ , a__=True ): '''simple docstring''' with open(a__ , 'r' ) as f: _lowerCAmelCase =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase =split_code_in_indented_blocks( a__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase =main_blocks[block_idx] _lowerCAmelCase =block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase =0 while line_idx < len(a__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase =len(a__ ) else: line_idx += 1 if line_idx >= len(a__ ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase ='\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase =split_code_in_indented_blocks(a__ , indent_level=a__ ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase =_re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase =[(pattern.search(a__ ).groups()[0] if pattern.search(a__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase =[(i, key) for i, key in enumerate(a__ ) if key is not None] _lowerCAmelCase =[x[0] for x in sorted(a__ , key=lambda a__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase =0 _lowerCAmelCase =[] for i in range(len(a__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(a__ ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase ='\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(a__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(a__ , 'w' ) as f: f.write('\n'.join(a__ ) ) def UpperCamelCase__ ( a__=True ): '''simple docstring''' _lowerCAmelCase =[] for root, _, files in os.walk(a__ ): if "__init__.py" in files: _lowerCAmelCase =sort_imports(os.path.join(a__ , '__init__.py' ) , check_only=a__ ) if result: _lowerCAmelCase =[os.path.join(a__ , '__init__.py' )] if len(a__ ) > 0: raise ValueError(F'''Would overwrite {len(a__ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE ( _lowerCamelCase): """simple docstring""" lowercase : Union[str, Any] = 'unispeech-sat' def __init__( self , __A=32 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.1 , __A=0.1 , __A=0.02 , __A=1E-5 , __A="group" , __A="gelu" , __A=(512, 512, 512, 512, 512, 512, 512) , __A=(5, 2, 2, 2, 2, 2, 2) , __A=(10, 3, 3, 3, 3, 2, 2) , __A=False , __A=128 , __A=16 , __A=False , __A=True , __A=0.05 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A=320 , __A=2 , __A=0.1 , __A=100 , __A=256 , __A=256 , __A=0.1 , __A="mean" , __A=False , __A=False , __A=256 , __A=(512, 512, 512, 512, 1500) , __A=(5, 3, 3, 1, 1) , __A=(1, 2, 3, 1, 1) , __A=512 , __A=0 , __A=1 , __A=2 , __A=504 , **__A , ) -> List[str]: super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) _lowerCAmelCase =hidden_size _lowerCAmelCase =feat_extract_norm _lowerCAmelCase =feat_extract_activation _lowerCAmelCase =list(A__ ) _lowerCAmelCase =list(A__ ) _lowerCAmelCase =list(A__ ) _lowerCAmelCase =conv_bias _lowerCAmelCase =num_conv_pos_embeddings _lowerCAmelCase =num_conv_pos_embedding_groups _lowerCAmelCase =len(self.conv_dim ) _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =activation_dropout _lowerCAmelCase =feat_proj_dropout _lowerCAmelCase =final_dropout _lowerCAmelCase =layerdrop _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =initializer_range _lowerCAmelCase =vocab_size _lowerCAmelCase =num_clusters _lowerCAmelCase =do_stable_layer_norm _lowerCAmelCase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase =apply_spec_augment _lowerCAmelCase =mask_time_prob _lowerCAmelCase =mask_time_length _lowerCAmelCase =mask_time_min_masks _lowerCAmelCase =mask_feature_prob _lowerCAmelCase =mask_feature_length _lowerCAmelCase =mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase =num_codevectors_per_group _lowerCAmelCase =num_codevector_groups _lowerCAmelCase =contrastive_logits_temperature _lowerCAmelCase =feat_quantizer_dropout _lowerCAmelCase =num_negatives _lowerCAmelCase =codevector_dim _lowerCAmelCase =proj_codevector_dim _lowerCAmelCase =diversity_loss_weight # ctc loss _lowerCAmelCase =ctc_loss_reduction _lowerCAmelCase =ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase =list(A__ ) _lowerCAmelCase =list(A__ ) _lowerCAmelCase =list(A__ ) _lowerCAmelCase =xvector_output_dim @property def UpperCamelCase__ ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _lowerCAmelCase =hex_num[0] == '-' if is_negative: _lowerCAmelCase =hex_num[1:] try: _lowerCAmelCase =int(__A , 1_6 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _lowerCAmelCase ='' while int_num > 0: _lowerCAmelCase =str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase__ ( a__ , a__=False ): '''simple docstring''' try: _lowerCAmelCase =os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowerCAmelCase =default else: # KEY is set, convert it to True or False. try: _lowerCAmelCase =strtobool(_SCREAMING_SNAKE_CASE ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value lowercase_ = parse_flag_from_env('''RUN_SLOW''', default=False) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skip('Test was skipped' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__=None , a__=None ): '''simple docstring''' if test_case is None: return partial(_SCREAMING_SNAKE_CASE , version=_SCREAMING_SNAKE_CASE ) return unittest.skipUnless(is_torch_version('>=' , _SCREAMING_SNAKE_CASE ) , F'''test requires torch version >= {version}''' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_SCREAMING_SNAKE_CASE ) lowercase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" lowercase : Tuple = True @classmethod def UpperCamelCase__ ( cls ) -> str: _lowerCAmelCase =tempfile.mkdtemp() @classmethod def UpperCamelCase__ ( cls ) -> Any: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def UpperCamelCase__ ( self ) -> Optional[Any]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> str: _lowerCAmelCase =mocks if isinstance(UpperCAmelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =AcceleratorState() _lowerCAmelCase =tensor[None].clone().to(state.device ) _lowerCAmelCase =gather(_SCREAMING_SNAKE_CASE ).cpu() _lowerCAmelCase =tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _SCREAMING_SNAKE_CASE ): return False return True class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A , __A ) -> Any: _lowerCAmelCase =returncode _lowerCAmelCase =stdout _lowerCAmelCase =stderr async def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' while True: _lowerCAmelCase =await stream.readline() if line: callback(_SCREAMING_SNAKE_CASE ) else: break async def UpperCamelCase__ ( a__ , a__=None , a__=None , a__=None , a__=False , a__=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase =await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_SCREAMING_SNAKE_CASE , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowerCAmelCase =[] _lowerCAmelCase =[] def tee(a__ , a__ , a__ , a__="" ): _lowerCAmelCase =line.decode('utf-8' ).rstrip() sink.append(_SCREAMING_SNAKE_CASE ) if not quiet: print(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , file=_SCREAMING_SNAKE_CASE ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda a__ : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda a__ : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stderr , label='stderr:' ) ) ), ] , timeout=_SCREAMING_SNAKE_CASE , ) return _RunOutput(await p.wait() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( a__ , a__=None , a__=None , a__=1_8_0 , a__=False , a__=True ): '''simple docstring''' _lowerCAmelCase =asyncio.get_event_loop() _lowerCAmelCase =loop.run_until_complete( _stream_subprocess(_SCREAMING_SNAKE_CASE , env=_SCREAMING_SNAKE_CASE , stdin=_SCREAMING_SNAKE_CASE , timeout=_SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE , echo=_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase =' '.join(_SCREAMING_SNAKE_CASE ) if result.returncode > 0: _lowerCAmelCase ='\n'.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" pass def UpperCamelCase__ ( a__ , a__=False ): '''simple docstring''' try: _lowerCAmelCase =subprocess.check_output(_SCREAMING_SNAKE_CASE , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_SCREAMING_SNAKE_CASE , 'decode' ): _lowerCAmelCase =output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(_SCREAMING_SNAKE_CASE )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , unittest.TestCase): """simple docstring""" lowercase : Dict = ProphetNetTokenizer lowercase : Tuple = False def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase ='UNwant\u00E9d,running' _lowerCAmelCase ='unwanted, running' return input_text, output_text def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.tokenizer_class(self.vocab_file ) _lowerCAmelCase =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _lowerCAmelCase ={} for i, token in enumerate(A_ ): _lowerCAmelCase =i _lowerCAmelCase =WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _lowerCAmelCase =['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase =[1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] _lowerCAmelCase =tokenizer(A_ , padding=A_ , return_tensors='pt' ) self.assertIsInstance(A_ , A_ ) _lowerCAmelCase =list(batch.input_ids.numpy()[0] ) self.assertListEqual(A_ , A_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def UpperCamelCase__ ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCamelCase__ ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCamelCase__ ( self ) -> List[Any]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _lowerCAmelCase =tokenizer.encode('sequence builders' , add_special_tokens=A_ ) _lowerCAmelCase =tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) _lowerCAmelCase =tokenizer.build_inputs_with_special_tokens(A_ ) _lowerCAmelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "nielsr/canine-s": 2048, } # Unicode defines 1,114,112 total “codepoints” lowercase_ = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowercase_ = 0 lowercase_ = 0XE0_00 lowercase_ = 0XE0_01 lowercase_ = 0XE0_02 lowercase_ = 0XE0_03 lowercase_ = 0XE0_04 # Maps special codepoints to human-readable names. lowercase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowercase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class SCREAMING_SNAKE_CASE ( lowercase__): """simple docstring""" lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __A=chr(__lowerCamelCase ) , __A=chr(__lowerCamelCase ) , __A=chr(__lowerCamelCase ) , __A=chr(__lowerCamelCase ) , __A=chr(__lowerCamelCase ) , __A=chr(__lowerCamelCase ) , __A=False , __A=2048 , **__A , ) -> int: _lowerCAmelCase =AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token _lowerCAmelCase =AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token _lowerCAmelCase =AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token _lowerCAmelCase =AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token _lowerCAmelCase =AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , model_max_length=__lowerCamelCase , **__lowerCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. _lowerCAmelCase ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): _lowerCAmelCase =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _lowerCAmelCase ={ codepoint: name for name, codepoint in self._special_codepoints.items() } _lowerCAmelCase =UNICODE_VOCAB_SIZE _lowerCAmelCase =len(self._special_codepoints ) @property def UpperCamelCase__ ( self ) -> Union[str, Any]: return self._unicode_vocab_size def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: return list(__lowerCamelCase ) def UpperCamelCase__ ( self , __A ) -> Any: try: return ord(__lowerCamelCase ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def UpperCamelCase__ ( self , __A ) -> List[str]: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__lowerCamelCase ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def UpperCamelCase__ ( self , __A ) -> Any: return "".join(__lowerCamelCase ) def UpperCamelCase__ ( self , __A , __A = None ) -> List[str]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase__ ( self , __A , __A = None , __A = False ) -> List[str]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) _lowerCAmelCase =[1] + ([0] * len(__lowerCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__lowerCamelCase )) + [1] return result def UpperCamelCase__ ( self , __A , __A = None ) -> List[Any]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase__ ( self , __A , __A = None ) -> Optional[int]: return ()
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE ( __lowerCamelCase): """simple docstring""" lowercase : str = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__A ) -> Tuple: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCAmelCase =deprecated_arg[3:] _lowerCAmelCase =not kwargs.pop(UpperCAmelCase_ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) _lowerCAmelCase =kwargs.pop('tpu_name' , self.tpu_name ) _lowerCAmelCase =kwargs.pop('device_idx' , self.device_idx ) _lowerCAmelCase =kwargs.pop('eager_mode' , self.eager_mode ) _lowerCAmelCase =kwargs.pop('use_xla' , self.use_xla ) super().__init__(**UpperCAmelCase_ ) lowercase : List[Any] = field( default=__lowerCamelCase , metadata={'help': 'Name of TPU'} , ) lowercase : Any = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) lowercase : Dict = field(default=__lowerCamelCase , metadata={'help': 'Benchmark models in eager model.'}) lowercase : Union[str, Any] = field( default=__lowerCamelCase , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: requires_backends(self , ['tf'] ) _lowerCAmelCase =None if self.tpu: try: if self.tpu_name: _lowerCAmelCase =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCAmelCase =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCAmelCase =None return tpu @cached_property def UpperCamelCase__ ( self ) -> Any: requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCAmelCase =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) _lowerCAmelCase =tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU _lowerCAmelCase =tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def UpperCamelCase__ ( self ) -> int: requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def UpperCamelCase__ ( self ) -> Optional[Any]: requires_backends(self , ['tf'] ) return self._setup_strategy @property def UpperCamelCase__ ( self ) -> Any: requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def UpperCamelCase__ ( self ) -> List[str]: requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase__ ( self ) -> Union[str, Any]: return self.n_gpu > 0
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[[] for _ in range(a__ )] _lowerCAmelCase =key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(a__ ) <= key: return input_string for position, character in enumerate(a__ ): _lowerCAmelCase =position % (lowest * 2) # puts it in bounds _lowerCAmelCase =min(a__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(a__ ) _lowerCAmelCase =[''.join(a__ ) for row in temp_grid] _lowerCAmelCase =''.join(a__ ) return output_string def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[] _lowerCAmelCase =key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string _lowerCAmelCase =[[] for _ in range(a__ )] # generates template for position in range(len(a__ ) ): _lowerCAmelCase =position % (lowest * 2) # puts it in bounds _lowerCAmelCase =min(a__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) _lowerCAmelCase =0 for row in temp_grid: # fills in the characters _lowerCAmelCase =input_string[counter : counter + len(a__ )] grid.append(list(a__ ) ) counter += len(a__ ) _lowerCAmelCase ='' # reads as zigzag for position in range(len(a__ ) ): _lowerCAmelCase =position % (lowest * 2) # puts it in bounds _lowerCAmelCase =min(a__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ={} for key_guess in range(1 , len(a__ ) ): # tries every key _lowerCAmelCase =decrypt(a__ , a__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =inspect.getfile(accelerate.test_utils ) _lowerCAmelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Optional[int]: print(F'''Found {torch.cuda.device_count()} devices.''' ) _lowerCAmelCase =['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: print(F'''Found {torch.cuda.device_count()} devices.''' ) _lowerCAmelCase =['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) _lowerCAmelCase =['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(__A , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 10) lowercase_ = torch.randint(0, 10, shape).to(accelerator.device) lowercase_ = '''''' lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =b.T _lowerCAmelCase =np.sum(np.square(__lowerCAmelCase ) , axis=1 ) _lowerCAmelCase =np.sum(np.square(__lowerCAmelCase ) , axis=0 ) _lowerCAmelCase =np.matmul(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase =aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =x.reshape(-1 , 3 ) _lowerCAmelCase =squared_euclidean_distance(__lowerCAmelCase , __lowerCAmelCase ) return np.argmin(__lowerCAmelCase , axis=1 ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = ['pixel_values'] def __init__( self , __A = None , __A = True , __A = None , __A = PILImageResampling.BILINEAR , __A = True , __A = True , **__A , ) -> int: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase =size if size is not None else {'height': 256, 'width': 256} _lowerCAmelCase =get_size_dict(_lowerCAmelCase ) _lowerCAmelCase =np.array(_lowerCAmelCase ) if clusters is not None else None _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =resample _lowerCAmelCase =do_normalize _lowerCAmelCase =do_color_quantize def UpperCamelCase__ ( self , __A , __A , __A = PILImageResampling.BILINEAR , __A = None , **__A , ) -> List[str]: _lowerCAmelCase =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCAmelCase , size=(size['height'], size['width']) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def UpperCamelCase__ ( self , __A , __A = None , ) -> List[str]: _lowerCAmelCase =rescale(image=_lowerCAmelCase , scale=1 / 127.5 , data_format=_lowerCAmelCase ) _lowerCAmelCase =image - 1 return image def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> Optional[int]: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(_lowerCAmelCase ) _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =do_color_quantize if do_color_quantize is not None else self.do_color_quantize _lowerCAmelCase =clusters if clusters is not None else self.clusters _lowerCAmelCase =np.array(_lowerCAmelCase ) _lowerCAmelCase =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(image=_lowerCAmelCase ) for image in images] if do_color_quantize: _lowerCAmelCase =[to_channel_dimension_format(_lowerCAmelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _lowerCAmelCase =np.array(_lowerCAmelCase ) _lowerCAmelCase =color_quantize(_lowerCAmelCase , _lowerCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _lowerCAmelCase =images.shape[0] _lowerCAmelCase =images.reshape(_lowerCAmelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _lowerCAmelCase =list(_lowerCAmelCase ) else: _lowerCAmelCase =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase ={'input_ids': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' def UpperCamelCase__ ( ): '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] lowercase_ = generate_large_matrix() lowercase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase__ ( a__ ): '''simple docstring''' assert all(row == sorted(lowerCamelCase__ , reverse=lowerCamelCase__ ) for row in grid ) assert all(list(lowerCamelCase__ ) == sorted(lowerCamelCase__ , reverse=lowerCamelCase__ ) for col in zip(*lowerCamelCase__ ) ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =len(lowerCamelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowerCAmelCase =(left + right) // 2 _lowerCAmelCase =array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowerCAmelCase =mid + 1 else: _lowerCAmelCase =mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCamelCase__ ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =len(grid[0] ) for i in range(len(lowerCamelCase__ ) ): _lowerCAmelCase =find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCamelCase__ ) * len(grid[0] )) - total def UpperCamelCase__ ( a__ ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =0 for row in grid: for i, number in enumerate(lowerCamelCase__ ): if number < 0: total += len(lowerCamelCase__ ) - i break return total def UpperCamelCase__ ( ): '''simple docstring''' from timeit import timeit print('Running benchmarks' ) _lowerCAmelCase =( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowerCAmelCase =timeit(F'''{func}(grid=grid)''' , setup=lowerCamelCase__ , number=5_0_0 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set('123456789' ) def UpperCamelCase__ ( ): '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): _lowerCAmelCase =1_0_0_0_0_2 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): _lowerCAmelCase =1_0_0_2_0_0_3 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
711
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } lowercase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } lowercase_ = "▁" # Segments (not really needed) lowercase_ = 0 lowercase_ = 1 lowercase_ = 2 lowercase_ = 3 lowercase_ = 4 class SCREAMING_SNAKE_CASE ( UpperCamelCase_): """simple docstring""" lowercase : Tuple = VOCAB_FILES_NAMES lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : str = """left""" lowercase : Optional[Any] = XLNetTokenizer def __init__( self , __A=None , __A=None , __A=False , __A=True , __A=False , __A="<s>" , __A="</s>" , __A="<unk>" , __A="<sep>" , __A="<pad>" , __A="<cls>" , __A="<mask>" , __A=["<eop>", "<eod>"] , **__A , ) -> Any: _lowerCAmelCase =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =False if not self.vocab_file else True def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
712
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
0
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan lowercase_ = 637_8137.0 lowercase_ = 635_6752.31_4245 lowercase_ = 637_8137 def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =(AXIS_A - AXIS_B) / AXIS_A _lowerCAmelCase =atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) _lowerCAmelCase =atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) _lowerCAmelCase =radians(__UpperCAmelCase ) _lowerCAmelCase =radians(__UpperCAmelCase ) # Equation _lowerCAmelCase =sin((phi_a - phi_a) / 2 ) _lowerCAmelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _lowerCAmelCase =sqrt(sin_sq_phi + (cos(__UpperCAmelCase ) * cos(__UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : Optional[Any] = LxmertTokenizer lowercase : List[Any] = LxmertTokenizerFast lowercase : List[Any] = True lowercase : List[str] = True def UpperCamelCase__ ( self ) -> Any: super().setUp() _lowerCAmelCase =[ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: _lowerCAmelCase ='UNwant\u00E9d,running' _lowerCAmelCase ='unwanted, running' return input_text, output_text def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.tokenizer_class(self.vocab_file ) _lowerCAmelCase =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase__ ( self ) -> Dict: if not self.test_rust_tokenizer: return _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =tokenizer.tokenize(_UpperCAmelCase ) _lowerCAmelCase =rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase =tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase =rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase =tokenizer.encode(_UpperCAmelCase ) _lowerCAmelCase =rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
714
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def UpperCamelCase__ ( a__ ) -> Optional[int]: '''simple docstring''' if len(__A ) < MIN_NUM_TOKENS: return None _lowerCAmelCase =MinHash(num_perm=__A ) for token in set(__A ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase__ ( a__ ) -> Dict: '''simple docstring''' return {t for t in NON_ALPHA.split(__A ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , *, __A = 0.85 , ) -> List[Any]: _lowerCAmelCase =duplication_jaccard_threshold _lowerCAmelCase =NUM_PERM _lowerCAmelCase =MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase =defaultdict(_UpperCamelCase ) def UpperCamelCase__ ( self , __A , __A ) -> None: _lowerCAmelCase =self._index.query(_UpperCamelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCamelCase ) def UpperCamelCase__ ( self ) -> List[List[Dict]]: _lowerCAmelCase =[] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase =[base] + list(_UpperCamelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase =[{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(_UpperCamelCase ) return duplicate_clusters def UpperCamelCase__ ( self , __A ) -> None: _lowerCAmelCase =self.get_duplicate_clusters() with open(_UpperCamelCase , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( a__ ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase =element _lowerCAmelCase =get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase__ ( a__ ) -> Any: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCamelCase__ ( a__ , a__ ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase =DuplicationIndex(duplication_jaccard_threshold=__A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A ) ) , max_queue_size=1_0_0 ) ): di.add(__A , __A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase__ ( a__ , a__ ) -> List[Any]: '''simple docstring''' _lowerCAmelCase =get_tokens(__A ) _lowerCAmelCase =get_tokens(__A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase_ = None def UpperCamelCase__ ( a__ , a__ ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase =[] for elementa in cluster: _lowerCAmelCase =_shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase =_shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__A , __A ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase =1 extremes.append(__A ) return extremes def UpperCamelCase__ ( a__ , a__ , a__ ) -> Tuple: '''simple docstring''' global _shared_dataset _lowerCAmelCase =dataset _lowerCAmelCase =[] _lowerCAmelCase =partial(_find_cluster_extremes_shared , jaccard_threshold=__A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A ) , ): extremes_list.append(__A ) return extremes_list def UpperCamelCase__ ( a__ , a__ = 0.85 ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase =make_duplicate_clusters(__A , __A ) _lowerCAmelCase ={x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase ={} _lowerCAmelCase =find_extremes(__A , __A , __A ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase =element _lowerCAmelCase =duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase =dataset.filter(lambda a__ , a__ : idx not in remove_indices , with_indices=__A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase =element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase =extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__A )}''' ) print(F'''Number of duplicate clusters: {len(__A )}''' ) print(F'''Files in duplicate cluster: {len(__A )}''' ) print(F'''Unique files in duplicate cluster: {len(__A )}''' ) print(F'''Filtered dataset size: {len(__A )}''' ) return ds_filter, duplicate_clusters
715
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
0
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase_ = logging.get_logger(__name__) # General docstring lowercase_ = '''PoolFormerConfig''' # Base docstring lowercase_ = '''sail/poolformer_s12''' lowercase_ = [1, 512, 7, 7] # Image classification docstring lowercase_ = '''sail/poolformer_s12''' lowercase_ = '''tabby, tabby cat''' lowercase_ = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase__ ( a__ , a__ = 0.0 , a__ = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input _lowerCAmelCase =1 - drop_prob _lowerCAmelCase =(input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _lowerCAmelCase =keep_prob + torch.rand(_lowerCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _lowerCAmelCase =input.div(_lowerCamelCase ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A = None ) -> str: super().__init__() _lowerCAmelCase =drop_prob def UpperCamelCase__ ( self , __A ) -> int: return drop_path(_A , self.drop_prob , self.training ) def UpperCamelCase__ ( self ) -> Tuple: return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=None ) -> Dict: super().__init__() _lowerCAmelCase =patch_size if isinstance(_A , collections.abc.Iterable ) else (patch_size, patch_size) _lowerCAmelCase =stride if isinstance(_A , collections.abc.Iterable ) else (stride, stride) _lowerCAmelCase =padding if isinstance(_A , collections.abc.Iterable ) else (padding, padding) _lowerCAmelCase =nn.Convad(_A , _A , kernel_size=_A , stride=_A , padding=_A ) _lowerCAmelCase =norm_layer(_A ) if norm_layer else nn.Identity() def UpperCamelCase__ ( self , __A ) -> Optional[int]: _lowerCAmelCase =self.projection(_A ) _lowerCAmelCase =self.norm(_A ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm): """simple docstring""" def __init__( self , __A , **__A ) -> str: super().__init__(1 , _A , **_A ) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A ) -> List[Any]: super().__init__() _lowerCAmelCase =nn.AvgPoolad(_A , stride=1 , padding=pool_size // 2 , count_include_pad=_A ) def UpperCamelCase__ ( self , __A ) -> str: return self.pool(_A ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Tuple: super().__init__() _lowerCAmelCase =nn.Convad(_A , _A , 1 ) _lowerCAmelCase =nn.Convad(_A , _A , 1 ) _lowerCAmelCase =PoolFormerDropPath(_A ) if isinstance(config.hidden_act , _A ): _lowerCAmelCase =ACTaFN[config.hidden_act] else: _lowerCAmelCase =config.hidden_act def UpperCamelCase__ ( self , __A ) -> Tuple: _lowerCAmelCase =self.conva(_A ) _lowerCAmelCase =self.act_fn(_A ) _lowerCAmelCase =self.drop(_A ) _lowerCAmelCase =self.conva(_A ) _lowerCAmelCase =self.drop(_A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A ) -> str: super().__init__() _lowerCAmelCase =PoolFormerPooling(_A ) _lowerCAmelCase =PoolFormerOutput(_A , _A , _A , _A ) _lowerCAmelCase =PoolFormerGroupNorm(_A ) _lowerCAmelCase =PoolFormerGroupNorm(_A ) # Useful for training neural nets _lowerCAmelCase =PoolFormerDropPath(_A ) if drop_path > 0.0 else nn.Identity() _lowerCAmelCase =config.use_layer_scale if config.use_layer_scale: _lowerCAmelCase =nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) , requires_grad=_A ) _lowerCAmelCase =nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) , requires_grad=_A ) def UpperCamelCase__ ( self , __A ) -> Optional[int]: if self.use_layer_scale: _lowerCAmelCase =self.pooling(self.before_norm(_A ) ) _lowerCAmelCase =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _lowerCAmelCase =hidden_states + self.drop_path(_A ) _lowerCAmelCase =() _lowerCAmelCase =self.output(self.after_norm(_A ) ) _lowerCAmelCase =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _lowerCAmelCase =hidden_states + self.drop_path(_A ) _lowerCAmelCase =(output,) + outputs return outputs else: _lowerCAmelCase =self.drop_path(self.pooling(self.before_norm(_A ) ) ) # First residual connection _lowerCAmelCase =pooling_output + hidden_states _lowerCAmelCase =() # Second residual connection inside the PoolFormerOutput block _lowerCAmelCase =self.drop_path(self.output(self.after_norm(_A ) ) ) _lowerCAmelCase =hidden_states + layer_output _lowerCAmelCase =(output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A ) -> Dict: super().__init__() _lowerCAmelCase =config # stochastic depth decay rule _lowerCAmelCase =[x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _lowerCAmelCase =[] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _lowerCAmelCase =nn.ModuleList(_A ) # Transformer blocks _lowerCAmelCase =[] _lowerCAmelCase =0 for i in range(config.num_encoder_blocks ): # each block consists of layers _lowerCAmelCase =[] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_A ) ) _lowerCAmelCase =nn.ModuleList(_A ) def UpperCamelCase__ ( self , __A , __A=False , __A=True ) -> Optional[int]: _lowerCAmelCase =() if output_hidden_states else None _lowerCAmelCase =pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _lowerCAmelCase =layers # Get patch embeddings from hidden_states _lowerCAmelCase =embedding_layer(_A ) # Send the embeddings through the blocks for _, blk in enumerate(_A ): _lowerCAmelCase =blk(_A ) _lowerCAmelCase =layer_outputs[0] if output_hidden_states: _lowerCAmelCase =all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_A , hidden_states=_A ) class SCREAMING_SNAKE_CASE ( a__): """simple docstring""" lowercase : Dict = PoolFormerConfig lowercase : int = 'poolformer' lowercase : Tuple = 'pixel_values' lowercase : Optional[Any] = True def UpperCamelCase__ ( self , __A ) -> str: if isinstance(_A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def UpperCamelCase__ ( self , __A , __A=False ) -> Any: if isinstance(_A , _A ): _lowerCAmelCase =value lowercase_ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , a__ , ) class SCREAMING_SNAKE_CASE ( a__): """simple docstring""" def __init__( self , __A ) -> List[Any]: super().__init__(_A ) _lowerCAmelCase =config _lowerCAmelCase =PoolFormerEncoder(_A ) # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ ( self ) -> Tuple: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self , __A = None , __A = None , __A = None , ) -> List[str]: _lowerCAmelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _lowerCAmelCase =self.encoder( _A , output_hidden_states=_A , return_dict=_A , ) _lowerCAmelCase =encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_A , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(config.hidden_size , config.hidden_size ) def UpperCamelCase__ ( self , __A ) -> Optional[int]: _lowerCAmelCase =self.dense(_A ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , a__ , ) class SCREAMING_SNAKE_CASE ( a__): """simple docstring""" def __init__( self , __A ) -> List[Any]: super().__init__(_A ) _lowerCAmelCase =config.num_labels _lowerCAmelCase =PoolFormerModel(_A ) # Final norm _lowerCAmelCase =PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _lowerCAmelCase =( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self , __A = None , __A = None , __A = None , __A = None , ) -> List[str]: _lowerCAmelCase =return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase =self.poolformer( _A , output_hidden_states=_A , return_dict=_A , ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.classifier(self.norm(_A ).mean([-2, -1] ) ) _lowerCAmelCase =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase ='regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase ='single_label_classification' else: _lowerCAmelCase ='multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase =MSELoss() if self.num_labels == 1: _lowerCAmelCase =loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase =loss_fct(_A , _A ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase =CrossEntropyLoss() _lowerCAmelCase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase =BCEWithLogitsLoss() _lowerCAmelCase =loss_fct(_A , _A ) if not return_dict: _lowerCAmelCase =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_A , logits=_A , hidden_states=outputs.hidden_states )
716
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A = True , __A = None , __A = 32 , __A = True , __A = 1 / 255 , __A = True , __A = True , __A = [0.48_145_466, 0.4_578_275, 0.40_821_073] , __A = [0.26_862_954, 0.26_130_258, 0.27_577_711] , __A = True , __A=7 , __A=30 , __A=400 , __A=3 , ) -> Optional[int]: _lowerCAmelCase =parent _lowerCAmelCase =do_resize _lowerCAmelCase =size if size is not None else {"shortest_edge": 288} _lowerCAmelCase =size_divisor _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =do_center_crop _lowerCAmelCase =image_mean _lowerCAmelCase =image_std _lowerCAmelCase =do_pad _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =min_resolution _lowerCAmelCase =max_resolution def UpperCamelCase__ ( self ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCamelCase__ ( self , __A , __A=False ) -> Union[str, Any]: if not batched: _lowerCAmelCase =self.size["shortest_edge"] _lowerCAmelCase =image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): _lowerCAmelCase =image.size else: _lowerCAmelCase =image.shape[1], image.shape[2] _lowerCAmelCase =size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: _lowerCAmelCase =size, scale * w else: _lowerCAmelCase =scale * h, size _lowerCAmelCase =int((1333 / 800) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: _lowerCAmelCase =max_size / max(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase =newh * scale _lowerCAmelCase =neww * scale _lowerCAmelCase =int(newh + 0.5 ), int(neww + 0.5 ) _lowerCAmelCase =( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _lowerCAmelCase =[] for image in image_inputs: _lowerCAmelCase =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase =max(__lowerCamelCase , key=lambda __A : item[0] )[0] _lowerCAmelCase =max(__lowerCamelCase , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( _A , unittest.TestCase): """simple docstring""" lowercase : str = BridgeTowerImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =BridgeTowerImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'image_std' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'size' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'size_divisor' ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass def UpperCamelCase__ ( self ) -> Optional[Any]: # Initialize image processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase =image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ) -> Union[str, Any]: # Initialize image processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase =image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ) -> str: # Initialize image processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase =image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
717
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["MaskFormerFeatureExtractor"] lowercase_ = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] lowercase_ = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
718
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=99 , __A=13 , __A=7 , __A=9 , __A=True , __A=True , __A=False , __A=32 , __A=5 , __A=4 , __A=37 , __A=8 , __A=0.1 , __A=0.002 , __A=1 , __A=0 , __A=0 , __A=None , __A=None , ) -> List[Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =encoder_seq_length _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =d_ff _lowerCAmelCase =relative_attention_num_buckets _lowerCAmelCase =dropout_rate _lowerCAmelCase =initializer_factor _lowerCAmelCase =eos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =None _lowerCAmelCase =decoder_layers def UpperCamelCase__ ( self ) -> Union[str, Any]: return TaConfig.from_pretrained('google/umt5-base' ) def UpperCamelCase__ ( self , __A , __A , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> int: if attention_mask is None: _lowerCAmelCase =input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase =decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase =torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: _lowerCAmelCase =torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: _lowerCAmelCase =torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase =input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase =decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase =self.get_config() _lowerCAmelCase =config.num_attention_heads _lowerCAmelCase =self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, input_dict def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase__ ( self ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , ) -> List[str]: _lowerCAmelCase =UMTaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _lowerCAmelCase =model( input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , ) _lowerCAmelCase =model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) _lowerCAmelCase =result.last_hidden_state _lowerCAmelCase =result.past_key_values _lowerCAmelCase =result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , ) -> str: _lowerCAmelCase =UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() # first forward pass _lowerCAmelCase =model(__UpperCamelCase , use_cache=__UpperCamelCase ) _lowerCAmelCase =model(__UpperCamelCase ) _lowerCAmelCase =model(__UpperCamelCase , use_cache=__UpperCamelCase ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 ) _lowerCAmelCase , _lowerCAmelCase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCamelCase )['last_hidden_state'] _lowerCAmelCase =model(__UpperCamelCase , past_key_values=__UpperCamelCase )['last_hidden_state'] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def UpperCamelCase__ ( self , __A , __A , ) -> List[str]: _lowerCAmelCase =UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval() _lowerCAmelCase =model(**__UpperCamelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() ) @require_torch class SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" lowercase : List[str] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase : Optional[Any] = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase : Any = True lowercase : Optional[int] = False lowercase : Any = False lowercase : Optional[int] = True lowercase : Optional[Any] = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase : int = [0.8, 0.9] def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() _lowerCAmelCase =UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=__UpperCamelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() _lowerCAmelCase =config_and_inputs[0] _lowerCAmelCase =UMTaForConditionalGeneration(__UpperCamelCase ).eval() model.to(__UpperCamelCase ) _lowerCAmelCase ={ 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), } for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ): _lowerCAmelCase ={name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _lowerCAmelCase =torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ) _lowerCAmelCase =model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _lowerCAmelCase =out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def UpperCamelCase__ ( self ) -> List[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) _lowerCAmelCase =AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=__UpperCamelCase , legacy=__UpperCamelCase ) _lowerCAmelCase =[ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _lowerCAmelCase =tokenizer(__UpperCamelCase , return_tensors='pt' , padding=__UpperCamelCase ).input_ids # fmt: off _lowerCAmelCase =torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase ) _lowerCAmelCase =model.generate(input_ids.to(__UpperCamelCase ) ) _lowerCAmelCase =[ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _lowerCAmelCase =tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=13 , __A=30 , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=0.6 , __A=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =mask_ratio _lowerCAmelCase =scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase =(image_size // patch_size) ** 2 _lowerCAmelCase =int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> Optional[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> int: _lowerCAmelCase =TFViTMAEModel(config=snake_case_ ) _lowerCAmelCase =model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , __A , __A , __A ) -> str: _lowerCAmelCase =TFViTMAEForPreTraining(snake_case_ ) _lowerCAmelCase =model(snake_case_ , training=snake_case_ ) # expected sequence length = num_patches _lowerCAmelCase =(self.image_size // self.patch_size) ** 2 _lowerCAmelCase =self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase =1 _lowerCAmelCase =TFViTMAEForPreTraining(snake_case_ ) _lowerCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase =model(snake_case_ , training=snake_case_ ) _lowerCAmelCase =self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =config_and_inputs _lowerCAmelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase): """simple docstring""" lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowercase : List[str] = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} lowercase : List[Any] = False lowercase : str = False lowercase : Dict = False lowercase : Dict = False def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =TFViTMAEModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _lowerCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(snake_case_ ) _lowerCAmelCase =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def UpperCamelCase__ ( self ) -> str: # make the mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase =model_class(snake_case_ ) _lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ ) _lowerCAmelCase =model(snake_case_ , noise=snake_case_ ) _lowerCAmelCase =copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) ) _lowerCAmelCase =model(**snake_case_ , noise=snake_case_ ) _lowerCAmelCase =outputs_dict[0].numpy() _lowerCAmelCase =outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCamelCase__ ( self ) -> str: # make the mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A ): _lowerCAmelCase ={} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case_ ): _lowerCAmelCase =v.numpy() else: _lowerCAmelCase =np.array(snake_case_ ) return inputs_np_dict for model_class in self.all_model_classes: _lowerCAmelCase =model_class(snake_case_ ) _lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ ) _lowerCAmelCase =prepare_numpy_arrays(snake_case_ ) _lowerCAmelCase =model(snake_case_ , noise=snake_case_ ) _lowerCAmelCase =model(**snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Any: # make masks reproducible np.random.seed(2 ) _lowerCAmelCase =int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase =tf.constant(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase =tf_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def UpperCamelCase__ ( self ) -> int: # make mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase ={ module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case_ ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(snake_case_ , snake_case_ ),) if isinstance(snake_case_ , snake_case_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case_ , '_keras_serializable' , snake_case_ ) } _lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase =tf.convert_to_tensor(snake_case_ ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: _lowerCAmelCase =main_layer_class(snake_case_ ) _lowerCAmelCase ={ name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _lowerCAmelCase =tf.keras.Model(snake_case_ , outputs=main_layer(snake_case_ ) ) _lowerCAmelCase =model(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase =os.path.join(snake_case_ , 'keras_model.h5' ) model.save(snake_case_ ) _lowerCAmelCase =tf.keras.models.load_model( snake_case_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case_ , tf.keras.Model ) _lowerCAmelCase =model(snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @slow def UpperCamelCase__ ( self ) -> Any: # make mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase =model_class(snake_case_ ) _lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ ) _lowerCAmelCase =model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": _lowerCAmelCase =outputs.last_hidden_state.numpy() _lowerCAmelCase =0 else: _lowerCAmelCase =outputs.logits.numpy() _lowerCAmelCase =0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) _lowerCAmelCase =model_class.from_pretrained(snake_case_ ) _lowerCAmelCase =model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": _lowerCAmelCase =after_outputs['last_hidden_state'].numpy() _lowerCAmelCase =0 else: _lowerCAmelCase =after_outputs['logits'].numpy() _lowerCAmelCase =0 _lowerCAmelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) def UpperCamelCase__ ( self ) -> Optional[Any]: # make mask reproducible np.random.seed(2 ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _lowerCAmelCase =model_class(snake_case_ ) _lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ ) _lowerCAmelCase =model(snake_case_ , noise=snake_case_ ) _lowerCAmelCase =model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case_ ) _lowerCAmelCase =model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _lowerCAmelCase =model_class.from_config(model.config ) _lowerCAmelCase =new_model(snake_case_ ) # Build model new_model.set_weights(model.get_weights() ) _lowerCAmelCase =new_model(snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCamelCase__ ( self ) -> List[Any]: pass @slow def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(snake_case_ ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> int: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ) -> Dict: # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowerCAmelCase =TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=snake_case_ , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase =ViTMAEConfig() _lowerCAmelCase =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase =np.random.uniform(size=(1, num_patches) ) # forward pass _lowerCAmelCase =model(**snake_case_ , noise=snake_case_ ) # verify the logits _lowerCAmelCase =tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase =tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case_ , atol=1E-4 )
720
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=4 , ) -> Union[str, Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_choices def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase =config_and_inputs _lowerCAmelCase =True _lowerCAmelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): """simple docstring""" lowercase : int = True lowercase : int = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCamelCase__ ( self ) -> Tuple: for model_class_name in self.all_model_classes: _lowerCAmelCase =model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_lowercase ) _lowerCAmelCase =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_lowercase ) _lowerCAmelCase =np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) _lowerCAmelCase =model(_lowercase )[0] _lowerCAmelCase =[1, 11, 5_0265] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. _lowerCAmelCase =np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_lowercase ) _lowerCAmelCase =np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) _lowerCAmelCase =model(_lowercase )[0] # compare the actual values for a slice. _lowerCAmelCase =np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
721
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ , a__=False ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase =len(set_a.intersection(snake_case__ ) ) if alternative_union: _lowerCAmelCase =len(snake_case__ ) + len(snake_case__ ) else: _lowerCAmelCase =len(set_a.union(snake_case__ ) ) return intersection / union if isinstance(snake_case__ , (list, tuple) ) and isinstance(snake_case__ , (list, tuple) ): _lowerCAmelCase =[element for element in set_a if element in set_b] if alternative_union: _lowerCAmelCase =len(snake_case__ ) + len(snake_case__ ) return len(snake_case__ ) / union else: _lowerCAmelCase =set_a + [element for element in set_b if element not in set_a] return len(snake_case__ ) / len(snake_case__ ) return len(snake_case__ ) / len(snake_case__ ) return None if __name__ == "__main__": lowercase_ = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowercase_ = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> List[Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__A ): _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _lowerCAmelCase =FlaxAutoModel.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__A ): _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _lowerCAmelCase =FlaxAutoModel.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: _lowerCAmelCase =AutoTokenizer.from_pretrained(__A ) _lowerCAmelCase =FlaxBertModel.from_pretrained(__A ) _lowerCAmelCase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__A ): return model(**__A ) eval(**__A ).block_until_ready() @slow def UpperCamelCase__ ( self ) -> Tuple: for model_name in ["roberta-base", "roberta-large"]: _lowerCAmelCase =AutoTokenizer.from_pretrained(__A ) _lowerCAmelCase =FlaxRobertaModel.from_pretrained(__A ) _lowerCAmelCase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__A ): return model(**__A ) eval(**__A ).block_until_ready() def UpperCamelCase__ ( self ) -> List[str]: with self.assertRaisesRegex( __A , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase__ ( self ) -> Dict: with self.assertRaisesRegex( __A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained(__A , revision='aaaaaa' ) def UpperCamelCase__ ( self ) -> List[Any]: with self.assertRaisesRegex( __A , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase__ ( self ) -> List[Any]: with self.assertRaisesRegex(__A , 'Use `from_pt=True` to load this model' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =StableDiffusionPipeline.from_pretrained(a__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _lowerCAmelCase =load_file(a__ ) _lowerCAmelCase =[] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _lowerCAmelCase =key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) _lowerCAmelCase =pipeline.text_encoder else: _lowerCAmelCase =key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) _lowerCAmelCase =pipeline.unet # find the target layer _lowerCAmelCase =layer_infos.pop(0 ) while len(a__ ) > -1: try: _lowerCAmelCase =curr_layer.__getattr__(a__ ) if len(a__ ) > 0: _lowerCAmelCase =layer_infos.pop(0 ) elif len(a__ ) == 0: break except Exception: if len(a__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _lowerCAmelCase =layer_infos.pop(0 ) _lowerCAmelCase =[] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(a__ ) else: pair_keys.append(a__ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _lowerCAmelCase =state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _lowerCAmelCase =state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a__ , a__ ).unsqueeze(2 ).unsqueeze(3 ) else: _lowerCAmelCase =state_dict[pair_keys[0]].to(torch.floataa ) _lowerCAmelCase =state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a__ , a__ ) # update visited list for item in pair_keys: visited.append(a__ ) return pipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') lowercase_ = parser.parse_args() lowercase_ = args.base_model_path lowercase_ = args.checkpoint_path lowercase_ = args.dump_path lowercase_ = args.lora_prefix_unet lowercase_ = args.lora_prefix_text_encoder lowercase_ = args.alpha lowercase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowercase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import pytest lowercase_ = """__dummy_dataset1__""" lowercase_ = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def UpperCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =dataset_loading_script_name _lowerCAmelCase =tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case_ ) _lowerCAmelCase =script_dir / F'''{script_name}.py''' with open(snake_case_ , 'w' ) as f: f.write(snake_case_ ) return str(snake_case_ )
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =BlipImageProcessor() _lowerCAmelCase =GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _lowerCAmelCase =BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) _lowerCAmelCase =InstructBlipProcessor(__A , __A , __A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , **__A ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).tokenizer def UpperCamelCase__ ( self , **__A ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor def UpperCamelCase__ ( self , **__A ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).qformer_tokenizer def UpperCamelCase__ ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase =[Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase =self.get_image_processor(do_normalize=__A , padding_value=1.0 ) _lowerCAmelCase =InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) self.assertIsInstance(processor.qformer_tokenizer , __A ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_qformer_tokenizer() _lowerCAmelCase =InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =image_processor(__A , return_tensors='np' ) _lowerCAmelCase =processor(images=__A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_qformer_tokenizer() _lowerCAmelCase =InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) _lowerCAmelCase ="lower newer" _lowerCAmelCase =processor(text=__A ) _lowerCAmelCase =tokenizer(__A , return_token_type_ids=__A ) _lowerCAmelCase =qformer_tokenizer(__A , return_token_type_ids=__A ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_qformer_tokenizer() _lowerCAmelCase =InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) _lowerCAmelCase ="lower newer" _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =processor(text=__A , images=__A ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_qformer_tokenizer() _lowerCAmelCase =InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) _lowerCAmelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase =processor.batch_decode(__A ) _lowerCAmelCase =tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_qformer_tokenizer() _lowerCAmelCase =InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) _lowerCAmelCase ="lower newer" _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =processor(text=__A , images=__A ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=100 , __A=13 , __A=30 , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=4 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=None , __A=[0, 1, 2, 3] , ) -> Optional[int]: _lowerCAmelCase =parent _lowerCAmelCase =100 _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =scope _lowerCAmelCase =out_indices _lowerCAmelCase =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase =(image_size // patch_size) ** 2 _lowerCAmelCase =num_patches + 1 def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase__ ( self ) -> Dict: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =BeitModel(config=a_ ) model.to(a_ ) model.eval() _lowerCAmelCase =model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: _lowerCAmelCase =BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _lowerCAmelCase =model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Tuple: _lowerCAmelCase =self.type_sequence_label_size _lowerCAmelCase =BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _lowerCAmelCase =model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase =1 _lowerCAmelCase =BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _lowerCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase =model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> List[str]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _lowerCAmelCase =model(a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _lowerCAmelCase =model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __a , __a , unittest.TestCase): """simple docstring""" lowercase : Optional[int] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase : Optional[int] = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase : Optional[int] = False lowercase : int = False lowercase : Dict = False def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BeitModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCamelCase__ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase__ ( self ) -> List[str]: pass def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(a_ ) _lowerCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , a_ ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase__ ( self ) -> int: if not self.model_tester.is_training: return _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _lowerCAmelCase =model_class(a_ ) model.to(a_ ) model.train() _lowerCAmelCase =self._prepare_for_class(a_ , a_ , return_labels=a_ ) _lowerCAmelCase =model(**a_ ).loss loss.backward() def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase =False _lowerCAmelCase =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _lowerCAmelCase =model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _lowerCAmelCase =self._prepare_for_class(a_ , a_ , return_labels=a_ ) _lowerCAmelCase =model(**a_ ).loss loss.backward() def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =_config_zero_init(a_ ) for model_class in self.all_model_classes: _lowerCAmelCase =model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCamelCase__ ( self ) -> str: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> Dict: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(a_ ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=a_ , return_tensors='pt' ).pixel_values.to(a_ ) # prepare bool_masked_pos _lowerCAmelCase =torch.ones((1, 196) , dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(pixel_values=a_ , bool_masked_pos=a_ ) _lowerCAmelCase =outputs.logits # verify the logits _lowerCAmelCase =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , a_ ) _lowerCAmelCase =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , a_ , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(a_ ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=a_ , return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**a_ ) _lowerCAmelCase =outputs.logits # verify the logits _lowerCAmelCase =torch.Size((1, 1000) ) self.assertEqual(logits.shape , a_ ) _lowerCAmelCase =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3] , a_ , atol=1E-4 ) ) _lowerCAmelCase =281 self.assertEqual(logits.argmax(-1 ).item() , a_ ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( a_ ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=a_ , return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**a_ ) _lowerCAmelCase =outputs.logits # verify the logits _lowerCAmelCase =torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , a_ ) _lowerCAmelCase =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3] , a_ , atol=1E-4 ) ) _lowerCAmelCase =2396 self.assertEqual(logits.argmax(-1 ).item() , a_ ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _lowerCAmelCase =model.to(a_ ) _lowerCAmelCase =BeitImageProcessor(do_resize=a_ , size=640 , do_center_crop=a_ ) _lowerCAmelCase =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowerCAmelCase =Image.open(ds[0]['file'] ) _lowerCAmelCase =image_processor(images=a_ , return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**a_ ) _lowerCAmelCase =outputs.logits # verify the logits _lowerCAmelCase =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , a_ ) _lowerCAmelCase =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: _lowerCAmelCase =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=a_ , ) else: _lowerCAmelCase =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=a_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _lowerCAmelCase =model.to(a_ ) _lowerCAmelCase =BeitImageProcessor(do_resize=a_ , size=640 , do_center_crop=a_ ) _lowerCAmelCase =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowerCAmelCase =Image.open(ds[0]['file'] ) _lowerCAmelCase =image_processor(images=a_ , return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): _lowerCAmelCase =model(**a_ ) _lowerCAmelCase =outputs.logits.detach().cpu() _lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=a_ , target_sizes=[(500, 300)] ) _lowerCAmelCase =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , a_ ) _lowerCAmelCase =image_processor.post_process_semantic_segmentation(outputs=a_ ) _lowerCAmelCase =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , a_ )
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowercase_ = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" lowercase : str = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowercase : Tuple = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) lowercase : Any = field( default=10_24 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : List[str] = field( default=__lowercase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowercase : List[Any] = field( default=__lowercase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowercase : Dict = field( default=__lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase : Dict = field( default=__lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowercase : Union[str, Any] = field( default=__lowercase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) lowercase : Union[str, Any] = field( default=__lowercase , metadata={'help': 'A csv or a json file containing the training data.'}) lowercase : Optional[Any] = field( default=__lowercase , metadata={'help': 'A csv or a json file containing the validation data.'}) lowercase : Optional[int] = field(default=__lowercase , metadata={'help': 'A csv or a json file containing the test data.'}) def UpperCamelCase__ ( self ) -> Union[str, Any]: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: _lowerCAmelCase =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowerCAmelCase =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCamelCase_ : """simple docstring""" lowercase : Optional[int] = field( default=__lowercase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowercase : Dict = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowercase : int = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) lowercase : str = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase : Any = field( default=__lowercase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowercase : Union[str, Any] = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase : int = field( default=__lowercase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase =training_args.get_process_log_level() logger.setLevel(__snake_case ) datasets.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowerCAmelCase =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCAmelCase =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowerCAmelCase ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowerCAmelCase =data_args.train_file.split('.' )[-1] _lowerCAmelCase =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowerCAmelCase =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _lowerCAmelCase =load_dataset('csv' , data_files=__snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowerCAmelCase =load_dataset('json' , data_files=__snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowerCAmelCase =raw_datasets['train'].features['label'].names _lowerCAmelCase =len(__snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowerCAmelCase =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__snake_case , ) _lowerCAmelCase =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowerCAmelCase ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowerCAmelCase =False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowerCAmelCase ={'Refused': 0, 'Entailed': 1} _lowerCAmelCase ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _lowerCAmelCase =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a__ ): # Tokenize the texts def _convert_table_text_to_pandas(a__ ): _lowerCAmelCase =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _lowerCAmelCase =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowerCAmelCase =examples['statement'] _lowerCAmelCase =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _lowerCAmelCase =tokenizer(__snake_case , __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case ) _lowerCAmelCase =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _lowerCAmelCase =raw_datasets.map( __snake_case , batched=__snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _lowerCAmelCase =raw_datasets['train'] if data_args.max_train_samples is not None: _lowerCAmelCase =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _lowerCAmelCase =raw_datasets['validation'] if data_args.max_eval_samples is not None: _lowerCAmelCase =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _lowerCAmelCase =raw_datasets['test'] if data_args.max_predict_samples is not None: _lowerCAmelCase =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__snake_case ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a__ ): _lowerCAmelCase =p.predictions[0] if isinstance(p.predictions , __snake_case ) else p.predictions _lowerCAmelCase =np.argmax(__snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowerCAmelCase =default_data_collator elif training_args.fpaa: _lowerCAmelCase =DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) else: _lowerCAmelCase =None # Initialize our Trainer _lowerCAmelCase =Trainer( model=__snake_case , args=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__snake_case , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: _lowerCAmelCase =None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase =training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase =last_checkpoint _lowerCAmelCase =trainer.train(resume_from_checkpoint=__snake_case ) _lowerCAmelCase =train_result.metrics _lowerCAmelCase =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) _lowerCAmelCase =min(__snake_case , len(__snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __snake_case ) trainer.save_metrics('train' , __snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase =trainer.evaluate(eval_dataset=__snake_case ) _lowerCAmelCase =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__snake_case ) _lowerCAmelCase =min(__snake_case , len(__snake_case ) ) trainer.log_metrics('eval' , __snake_case ) trainer.save_metrics('eval' , __snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowerCAmelCase =predict_dataset.remove_columns('label' ) _lowerCAmelCase =trainer.predict(__snake_case , metric_key_prefix='predict' ).predictions _lowerCAmelCase =np.argmax(__snake_case , axis=1 ) _lowerCAmelCase =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__snake_case ): _lowerCAmelCase =label_list[item] writer.write(F'''{index}\t{item}\n''' ) _lowerCAmelCase ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def UpperCamelCase__ ( a__ ): '''simple docstring''' main() if __name__ == "__main__": main()
707
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ , a__=False , a__=False , a__=False ): '''simple docstring''' _lowerCAmelCase =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCAmelCase ="""vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase =state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) _lowerCAmelCase =state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase =in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase =in_proj_bias[: config.hidden_size] _lowerCAmelCase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase =in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase =in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =dct.pop(UpperCAmelCase__ ) _lowerCAmelCase =val @torch.no_grad() def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=UpperCAmelCase__ ) _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False if "vqa" in checkpoint_url: _lowerCAmelCase =True _lowerCAmelCase =3_1_2_9 _lowerCAmelCase ="""huggingface/label-files""" _lowerCAmelCase ="""vqa2-id2label.json""" _lowerCAmelCase =json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase ={int(UpperCAmelCase__ ): v for k, v in idalabel.items()} _lowerCAmelCase =idalabel _lowerCAmelCase ={v: k for k, v in idalabel.items()} _lowerCAmelCase =ViltForQuestionAnswering(UpperCAmelCase__ ) elif "nlvr" in checkpoint_url: _lowerCAmelCase =True _lowerCAmelCase =2 _lowerCAmelCase ={0: """False""", 1: """True"""} _lowerCAmelCase ={v: k for k, v in config.idalabel.items()} _lowerCAmelCase =3 _lowerCAmelCase =ViltForImagesAndTextClassification(UpperCAmelCase__ ) elif "irtr" in checkpoint_url: _lowerCAmelCase =True _lowerCAmelCase =ViltForImageAndTextRetrieval(UpperCAmelCase__ ) elif "mlm_itm" in checkpoint_url: _lowerCAmelCase =True _lowerCAmelCase =ViltForMaskedLM(UpperCAmelCase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _lowerCAmelCase =torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location='cpu' )["""state_dict"""] _lowerCAmelCase =create_rename_keys(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) if mlm_model or irtr_model: _lowerCAmelCase =["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCAmelCase =model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCAmelCase__ ) # Define processor _lowerCAmelCase =ViltImageProcessor(size=3_8_4 ) _lowerCAmelCase =BertTokenizer.from_pretrained('bert-base-uncased' ) _lowerCAmelCase =ViltProcessor(UpperCAmelCase__ , UpperCAmelCase__ ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCAmelCase =Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=UpperCAmelCase__ ).raw ) _lowerCAmelCase =Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=UpperCAmelCase__ ).raw ) _lowerCAmelCase =( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) _lowerCAmelCase =processor(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors='pt' ) _lowerCAmelCase =processor(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors='pt' ) _lowerCAmelCase =model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCAmelCase =Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=UpperCAmelCase__ ).raw ) if mlm_model: _lowerCAmelCase ="""a bunch of [MASK] laying on a [MASK].""" else: _lowerCAmelCase ="""How many cats are there?""" _lowerCAmelCase =processor(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors='pt' ) _lowerCAmelCase =model(**UpperCAmelCase__ ) # Verify outputs if mlm_model: _lowerCAmelCase =torch.Size([1, 1_1, 3_0_5_2_2] ) _lowerCAmelCase =torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) # verify masked token prediction equals "cats" _lowerCAmelCase =outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCAmelCase =torch.Size([1, 3_1_2_9] ) _lowerCAmelCase =torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCAmelCase__ , atol=1E-4 ) # verify vqa prediction equals "2" _lowerCAmelCase =outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCAmelCase =torch.Size([1, 2] ) _lowerCAmelCase =torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase_ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ , a__ = 0 , a__ = 0 ): '''simple docstring''' _lowerCAmelCase =right or len(_lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowercase , _lowercase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCAmelCase__ ) ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' if index == len(UpperCAmelCase__ ): return True # Recursive Step for i in range(UpperCAmelCase__ ): if valid_coloring(graph[index] , UpperCAmelCase__ , UpperCAmelCase__ ): # Color current vertex _lowerCAmelCase =i # Validate coloring if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , index + 1 ): return True # Backtrack _lowerCAmelCase =-1 return False def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[-1] * len(UpperCAmelCase__ ) if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , 0 ): return colored_vertices return []
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCAmelCase , _lowerCAmelCase =array[indexa], array[indexa] def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' if length > 1: _lowerCAmelCase =int(length / 2 ) for i in range(_snake_case , low + middle ): comp_and_swap(_snake_case , _snake_case , i + middle , _snake_case ) bitonic_merge(_snake_case , _snake_case , _snake_case , _snake_case ) bitonic_merge(_snake_case , low + middle , _snake_case , _snake_case ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' if length > 1: _lowerCAmelCase =int(length / 2 ) bitonic_sort(_snake_case , _snake_case , _snake_case , 1 ) bitonic_sort(_snake_case , low + middle , _snake_case , 0 ) bitonic_merge(_snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": lowercase_ = input('''Enter numbers separated by a comma:\n''').strip() lowercase_ = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
711
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
712
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =torch.load(__UpperCamelCase , map_location='cpu' ) if "model" in sd.keys(): _lowerCAmelCase =torch.load(__UpperCamelCase , map_location='cpu' )['model'] # pop unnecessary weights _lowerCAmelCase =[ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__UpperCamelCase ) _lowerCAmelCase ={ 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase =sd.pop(__UpperCamelCase ) _lowerCAmelCase =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase =sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase =key.replace('.qkv_proj.' , '.q_proj.' ) _lowerCAmelCase =key.replace('.qkv_proj.' , '.k_proj.' ) _lowerCAmelCase =key.replace('.qkv_proj.' , '.v_proj.' ) _lowerCAmelCase =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =torch.split(__UpperCamelCase , depth // 3 , dim=0 ) _lowerCAmelCase =q _lowerCAmelCase =k _lowerCAmelCase =v del sd[key] return sd @torch.no_grad() def UpperCamelCase__ ( a__ , a__ , a__=None ): '''simple docstring''' _lowerCAmelCase =load_checkpoint(__UpperCamelCase ) if config is not None: _lowerCAmelCase =OPTConfig.from_pretrained(__UpperCamelCase ) else: _lowerCAmelCase =OPTConfig() _lowerCAmelCase =OPTModel(__UpperCamelCase ).half().eval() model.load_state_dict(__UpperCamelCase ) # Check results Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowercase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase_ = ''' \"\"\" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase =self.diffusers_dir shutil.copy( os.path.join(__A , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase ="""src/diffusers""" shutil.rmtree(self.diffusers_dir ) def UpperCamelCase__ ( self , __A , __A , __A , __A=None ) -> Optional[Any]: _lowerCAmelCase =comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowerCAmelCase =comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowerCAmelCase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase =black.format_str(__A , mode=__A ) _lowerCAmelCase =os.path.join(self.diffusers_dir , 'new_code.py' ) with open(__A , 'w' , newline='\n' ) as f: f.write(__A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__A ) with open(__A , 'r' ) as f: self.assertTrue(f.read() , __A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(__A , __A ) def UpperCamelCase__ ( self ) -> Tuple: self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , __A , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , __A ) , ) # Copy consistency with a really long name _lowerCAmelCase ="""TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub('Bert' , __A , __A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , __A , overwrite_result=re.sub('DDPM' , 'Test' , __A ) , )
714
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase): """simple docstring""" lowercase : Dict = XGLMTokenizer lowercase : Dict = XGLMTokenizerFast lowercase : Tuple = True lowercase : List[str] = True def UpperCamelCase__ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase =XGLMTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase ='<pad>' _lowerCAmelCase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(__lowercase ) , 1008 ) def UpperCamelCase__ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =XGLMTokenizer(__lowercase , keep_accents=__lowercase ) _lowerCAmelCase =tokenizer.tokenize('This is a test' ) self.assertListEqual(__lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def UpperCamelCase__ ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowercase , f.name ) _lowerCAmelCase =XGLMTokenizer(f.name , keep_accents=__lowercase ) _lowerCAmelCase =pickle.dumps(__lowercase ) pickle.loads(__lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase ='I was born in 92000, and this is falsé.' _lowerCAmelCase =tokenizer.tokenize(__lowercase ) _lowerCAmelCase =rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) _lowerCAmelCase =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) _lowerCAmelCase =rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase =tokenizer.encode(__lowercase ) _lowerCAmelCase =rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase ='Hello World!' _lowerCAmelCase =[2, 3_1227, 4447, 35] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off _lowerCAmelCase =[2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: # fmt: off _lowerCAmelCase ={ 'input_ids': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='facebook/xglm-564M' , padding=__lowercase , )
715
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or number < 0: raise ValueError('Input must be a non-negative integer' ) _lowerCAmelCase =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" lowercase : Dict = KandinskyVaaPriorPipeline lowercase : Dict = ["""prompt"""] lowercase : Dict = ["""prompt""", """negative_prompt"""] lowercase : Dict = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] lowercase : List[Any] = False @property def UpperCamelCase__ ( self ) -> Dict: return 32 @property def UpperCamelCase__ ( self ) -> Tuple: return 32 @property def UpperCamelCase__ ( self ) -> List[Any]: return self.time_input_dim @property def UpperCamelCase__ ( self ) -> str: return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ) -> str: return 100 @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase__ ( self ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def UpperCamelCase__ ( self ) -> Dict: torch.manual_seed(0 ) _lowerCAmelCase ={ 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _lowerCAmelCase =PriorTransformer(**__A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowerCAmelCase =nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase__ ( self ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _lowerCAmelCase =CLIPVisionModelWithProjection(__A ) return model @property def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =CLIPImageProcessor( crop_size=224 , do_center_crop=__A , do_normalize=__A , do_resize=__A , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.dummy_prior _lowerCAmelCase =self.dummy_image_encoder _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =self.dummy_tokenizer _lowerCAmelCase =self.dummy_image_processor _lowerCAmelCase =UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__A , clip_sample_range=10.0 , ) _lowerCAmelCase ={ 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def UpperCamelCase__ ( self , __A , __A=0 ) -> Dict: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase ='cpu' _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**__A ) _lowerCAmelCase =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCAmelCase =pipe(**self.get_dummy_inputs(__A ) ) _lowerCAmelCase =output.image_embeds _lowerCAmelCase =pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] _lowerCAmelCase =image[0, -10:] _lowerCAmelCase =image_from_tuple[0, -10:] assert image.shape == (1, 32) _lowerCAmelCase =np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =torch_device == 'cpu' _lowerCAmelCase =True _lowerCAmelCase =False self._test_inference_batch_single_identical( test_max_difference=__A , relax_max_difference=__A , test_mean_pixel_difference=__A , ) @skip_mps def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =torch_device == 'cpu' _lowerCAmelCase =False self._test_attention_slicing_forward_pass( test_max_difference=__A , test_mean_pixel_difference=__A , )
717
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__=True ): '''simple docstring''' model.train() _lowerCAmelCase =model(__lowerCAmelCase ) _lowerCAmelCase =F.mse_loss(__lowerCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCAmelCase ) def UpperCamelCase__ ( a__ , a__=False ): '''simple docstring''' set_seed(4_2 ) _lowerCAmelCase =RegressionModel() _lowerCAmelCase =deepcopy(__lowerCAmelCase ) _lowerCAmelCase =RegressionDataset(length=8_0 ) _lowerCAmelCase =DataLoader(__lowerCAmelCase , batch_size=1_6 ) model.to(accelerator.device ) if sched: _lowerCAmelCase =AdamW(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase =AdamW(params=ddp_model.parameters() , lr=1E-3 ) _lowerCAmelCase =LambdaLR(__lowerCAmelCase , lr_lambda=lambda a__ : epoch**0.65 ) _lowerCAmelCase =LambdaLR(__lowerCAmelCase , lr_lambda=lambda a__ : epoch**0.65 ) # Make a copy of `model` if sched: _lowerCAmelCase =accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: _lowerCAmelCase =accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =get_training_setup(__lowerCAmelCase ) # Use a single batch _lowerCAmelCase =next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =get_training_setup(__lowerCAmelCase ) # Use a single batch _lowerCAmelCase =next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def UpperCamelCase__ ( a__=False , a__=False ): '''simple docstring''' _lowerCAmelCase =Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCAmelCase =get_training_setup(__lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): _lowerCAmelCase =batch.values() # Gather the distributed inputs and targs for the base model _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) _lowerCAmelCase =ddp_input[torch.randperm(len(__lowerCAmelCase ) )] GradientState._reset_state() def UpperCamelCase__ ( a__=False , a__=False ): '''simple docstring''' _lowerCAmelCase =Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowerCAmelCase =get_training_setup(__lowerCAmelCase , __lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): _lowerCAmelCase =batch.values() # Gather the distributed inputs and targs for the base model _lowerCAmelCase =accelerator.gather((ddp_input, ddp_target) ) _lowerCAmelCase =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' _lowerCAmelCase =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Accelerator() _lowerCAmelCase =RegressionDataset(length=8_0 ) _lowerCAmelCase =DataLoader(__lowerCAmelCase , batch_size=1_6 ) _lowerCAmelCase =RegressionDataset(length=9_6 ) _lowerCAmelCase =DataLoader(__lowerCAmelCase , batch_size=1_6 ) _lowerCAmelCase =accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if iteration < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if batch_num < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Accelerator() _lowerCAmelCase =accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(__lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(__lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(__lowerCAmelCase , __lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase__ ( a__ ): '''simple docstring''' main() if __name__ == "__main__": main()
718
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if b == 0: return (1, 0) ((_lowerCAmelCase) , (_lowerCAmelCase)) =extended_euclid(lowercase__ , a % b ) _lowerCAmelCase =a // b return (y, x - k * y) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) =extended_euclid(lowercase__ , lowercase__ ) _lowerCAmelCase =na * na _lowerCAmelCase =ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: _lowerCAmelCase =(b % n + n) % n return b def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) _lowerCAmelCase =na * na _lowerCAmelCase =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
719
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
720
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =args.log_outputs _lowerCAmelCase ='_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric _lowerCAmelCase =load_metric('wer' ) _lowerCAmelCase =load_metric('cer' ) # compute metrics _lowerCAmelCase =wer.compute(references=result['target'] , predictions=result['prediction'] ) _lowerCAmelCase =cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results _lowerCAmelCase =F'''WER: {wer_result}\nCER: {cer_result}''' print(_UpperCamelCase ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(_UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _lowerCAmelCase =F'''log_{dataset_id}_predictions.txt''' _lowerCAmelCase =F'''log_{dataset_id}_targets.txt''' with open(_UpperCamelCase , 'w' ) as p, open(_UpperCamelCase , 'w' ) as t: # mapping function to write output def write_to_file(a__ , a__ ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(_UpperCamelCase , with_indices=_UpperCamelCase ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ='[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _lowerCAmelCase =re.sub(_UpperCamelCase , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _lowerCAmelCase =['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: _lowerCAmelCase =' '.join(text.split(_UpperCamelCase ) ) return text def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _lowerCAmelCase =AutoFeatureExtractor.from_pretrained(args.model_id ) _lowerCAmelCase =feature_extractor.sampling_rate # resample audio _lowerCAmelCase =dataset.cast_column('audio' , Audio(sampling_rate=_UpperCamelCase ) ) # load eval pipeline if args.device is None: _lowerCAmelCase =0 if torch.cuda.is_available() else -1 _lowerCAmelCase =pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(a__ ): _lowerCAmelCase =asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _lowerCAmelCase =prediction['text'] _lowerCAmelCase =normalize_text(batch['sentence'] ) return batch # run inference on all examples _lowerCAmelCase =dataset.map(_UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) lowercase_ = parser.parse_args() main(args)
721
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase_ = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowercase_ = { '''RUCAIBox/mvp''': 1024, } class SCREAMING_SNAKE_CASE ( __a): """simple docstring""" lowercase : List[str] = VOCAB_FILES_NAMES lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ['input_ids', 'attention_mask'] lowercase : Union[str, Any] = MvpTokenizer def __init__( self , __A=None , __A=None , __A=None , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , __A=True , **__A , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , errors=A__ , bos_token=A__ , eos_token=A__ , sep_token=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , add_prefix_space=A__ , trim_offsets=A__ , **A__ , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , A__ ) != add_prefix_space: _lowerCAmelCase =getattr(A__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase =add_prefix_space _lowerCAmelCase =pre_tok_class(**A__ ) _lowerCAmelCase =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCAmelCase ='post_processor' _lowerCAmelCase =getattr(self.backend_tokenizer , A__ , A__ ) if tokenizer_component_instance: _lowerCAmelCase =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase =tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase =tuple(state['cls'] ) _lowerCAmelCase =False if state.get('add_prefix_space' , A__ ) != add_prefix_space: _lowerCAmelCase =add_prefix_space _lowerCAmelCase =True if state.get('trim_offsets' , A__ ) != trim_offsets: _lowerCAmelCase =trim_offsets _lowerCAmelCase =True if changes_to_apply: _lowerCAmelCase =getattr(A__ , state.pop('type' ) ) _lowerCAmelCase =component_class(**A__ ) setattr(self.backend_tokenizer , A__ , A__ ) @property def UpperCamelCase__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: _lowerCAmelCase =AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else value _lowerCAmelCase =value def UpperCamelCase__ ( self , *__A , **__A ) -> BatchEncoding: _lowerCAmelCase =kwargs.get('is_split_into_words' , A__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*A__ , **A__ ) def UpperCamelCase__ ( self , *__A , **__A ) -> BatchEncoding: _lowerCAmelCase =kwargs.get('is_split_into_words' , A__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*A__ , **A__ ) def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[str]: _lowerCAmelCase =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
700
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowercase : Optional[str] = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowercase : Optional[str] = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'}) lowercase : Optional[str] = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) lowercase : bool = field(default=__lowercase , metadata={'help': 'Set this flag to use fast tokenization.'}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase : Optional[str] = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : str = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'}) lowercase : Optional[str] = field( default=__lowercase , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) lowercase : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : bool = field( default=__lowercase , metadata={'help': 'Overwrite the cached training and evaluation sets'}) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) _lowerCAmelCase =import_module('tasks' ) try: _lowerCAmelCase =getattr(_SCREAMING_SNAKE_CASE , model_args.task_type ) _lowerCAmelCase =token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _lowerCAmelCase =token_classification_task.get_labels(data_args.labels ) _lowerCAmelCase =dict(enumerate(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase =len(_SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) _lowerCAmelCase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _lowerCAmelCase =AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCAmelCase =( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCAmelCase =( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(a__ , a__ ) -> Tuple[List[int], List[int]]: _lowerCAmelCase =np.argmax(_SCREAMING_SNAKE_CASE , axis=2 ) _lowerCAmelCase , _lowerCAmelCase =preds.shape _lowerCAmelCase =[[] for _ in range(_SCREAMING_SNAKE_CASE )] _lowerCAmelCase =[[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(a__ ) -> Dict: _lowerCAmelCase , _lowerCAmelCase =align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "precision": precision_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "recall": recall_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "f1": fa_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), } # Data collator _lowerCAmelCase =DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCAmelCase =Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase ={} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase =trainer.evaluate() _lowerCAmelCase =os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(_SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: _lowerCAmelCase =TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =trainer.predict(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase =align_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase =os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _lowerCAmelCase =os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results def UpperCamelCase__ ( a__ ): '''simple docstring''' main() if __name__ == "__main__": main()
701
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' if openai_config_file == "": _lowerCAmelCase =OpenAIGPTConfig() else: _lowerCAmelCase =OpenAIGPTConfig.from_json_file(lowercase__ ) _lowerCAmelCase =OpenAIGPTModel(lowercase__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model _lowerCAmelCase =pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowerCAmelCase =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) lowercase_ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A , __A , __A=None , __A=None ) -> List[Any]: _lowerCAmelCase =start _lowerCAmelCase =end _lowerCAmelCase =val _lowerCAmelCase =(start + end) // 2 _lowerCAmelCase =left _lowerCAmelCase =right def __repr__( self ) -> Optional[Any]: return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A ) -> Dict: _lowerCAmelCase =collection _lowerCAmelCase =function if self.collection: _lowerCAmelCase =self._build_tree(0 , len(lowercase__ ) - 1 ) def UpperCamelCase__ ( self , __A , __A ) -> str: self._update_tree(self.root , lowercase__ , lowercase__ ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: return self._query_range(self.root , lowercase__ , lowercase__ ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: if start == end: return SegmentTreeNode(lowercase__ , lowercase__ , self.collection[start] ) _lowerCAmelCase =(start + end) // 2 _lowerCAmelCase =self._build_tree(lowercase__ , lowercase__ ) _lowerCAmelCase =self._build_tree(mid + 1 , lowercase__ ) return SegmentTreeNode(lowercase__ , lowercase__ , self.fn(left.val , right.val ) , lowercase__ , lowercase__ ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Any: if node.start == i and node.end == i: _lowerCAmelCase =val return if i <= node.mid: self._update_tree(node.left , lowercase__ , lowercase__ ) else: self._update_tree(node.right , lowercase__ , lowercase__ ) _lowerCAmelCase =self.fn(node.left.val , node.right.val ) def UpperCamelCase__ ( self , __A , __A , __A ) -> List[str]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowercase__ , lowercase__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowercase__ , node.mid ) , self._query_range(node.right , node.mid + 1 , lowercase__ ) , ) else: # range in right child tree return self._query_range(node.right , lowercase__ , lowercase__ ) def UpperCamelCase__ ( self ) -> str: if self.root is not None: _lowerCAmelCase =Queue() queue.put(self.root ) while not queue.empty(): _lowerCAmelCase =queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) lowercase_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class SCREAMING_SNAKE_CASE ( _UpperCAmelCase): """simple docstring""" lowercase : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True}) lowercase : ClassVar[Features] = Features({'audio': Audio()}) lowercase : ClassVar[Features] = Features({'transcription': Value('string')}) lowercase : str = "audio" lowercase : str = "transcription" def UpperCamelCase__ ( self , __A ) -> str: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) _lowerCAmelCase =copy.deepcopy(self ) _lowerCAmelCase =self.input_schema.copy() _lowerCAmelCase =features[self.audio_column] _lowerCAmelCase =input_schema return task_template @property def UpperCamelCase__ ( self ) -> str: return {self.audio_column: "audio", self.transcription_column: "transcription"}
704
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =8 # DPR tok _lowerCAmelCase =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCAmelCase =os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__snake_case , exist_ok=__snake_case ) _lowerCAmelCase =os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok _lowerCAmelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _lowerCAmelCase =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _lowerCAmelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCAmelCase ={'''unk_token''': '''<unk>'''} _lowerCAmelCase =os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__snake_case , exist_ok=__snake_case ) _lowerCAmelCase =os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase =os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def UpperCamelCase__ ( self ) -> str: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCamelCase__ ( self ) -> Dict: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def UpperCamelCase__ ( self ) -> str: shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =os.path.join(self.tmpdirname , 'rag_tokenizer' ) _lowerCAmelCase =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _lowerCAmelCase =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__snake_case ) rag_tokenizer.save_pretrained(__snake_case ) _lowerCAmelCase =RagTokenizer.from_pretrained(__snake_case , config=__snake_case ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __snake_case ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __snake_case ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =RagTokenizer.from_pretrained('facebook/rag-token-nq' ) _lowerCAmelCase =[ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _lowerCAmelCase =tokenizer(__snake_case ) self.assertIsNotNone(__snake_case ) @slow def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) _lowerCAmelCase =[ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _lowerCAmelCase =tokenizer(__snake_case ) self.assertIsNotNone(__snake_case )
705
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> Optional[int]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _lowerCAmelCase =model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase ='sgugger/tiny-distilbert-classification' _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , only_pretrain_model=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , torchscript=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , fpaa=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =AutoConfig.from_pretrained(__A ) # set architectures equal to `None` _lowerCAmelCase =None _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A , configs=[config] ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__A , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =AutoConfig.from_pretrained(__A ) _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A , configs=[config] ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ='sshleifer/tinier_bart' _lowerCAmelCase =AutoConfig.from_pretrained(__A ) _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A , configs=[config] ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase ='sshleifer/tiny-gpt2' _lowerCAmelCase =AutoConfig.from_pretrained(__A ) _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A , configs=[config] ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase ='sshleifer/tinier_bart' _lowerCAmelCase =AutoConfig.from_pretrained(__A ) _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A , configs=[config] ) _lowerCAmelCase =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase ='sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , save_to_csv=__A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__A , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(__A , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(__A , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(__A , 'train_time.csv' ) , env_info_csv_file=os.path.join(__A , 'env.csv' ) , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) benchmark.run() self.assertTrue(Path(os.path.join(__A , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__A , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__A , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__A , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__A , 'env.csv' ) ).exists() ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase ='sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__A ): self.assertTrue(hasattr(__A , 'sequential' ) ) self.assertTrue(hasattr(__A , 'cumulative' ) ) self.assertTrue(hasattr(__A , 'current' ) ) self.assertTrue(hasattr(__A , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase =PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__A , inference=__A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__A , 'log.txt' ) , log_print=__A , trace_memory_line_by_line=__A , multi_process=__A , ) _lowerCAmelCase =PyTorchBenchmark(__A ) _lowerCAmelCase =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__A , 'log.txt' ) ).exists() )
706
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCamelCase_ ( _UpperCamelCase): """simple docstring""" lowercase : Union[str, Any] = "speech_to_text" lowercase : Any = ["past_key_values"] lowercase : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __A=1_0000 , __A=12 , __A=2048 , __A=4 , __A=6 , __A=2048 , __A=4 , __A=0.0 , __A=0.0 , __A=True , __A=True , __A="relu" , __A=256 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.02 , __A=2 , __A=True , __A=1 , __A=0 , __A=2 , __A=6000 , __A=1024 , __A=2 , __A=(5, 5) , __A=1024 , __A=80 , __A=1 , **__A , ) -> Optional[int]: _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =encoder_ffn_dim _lowerCAmelCase =encoder_layers _lowerCAmelCase =encoder_attention_heads _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =dropout _lowerCAmelCase =attention_dropout _lowerCAmelCase =activation_dropout _lowerCAmelCase =activation_function _lowerCAmelCase =init_std _lowerCAmelCase =encoder_layerdrop _lowerCAmelCase =decoder_layerdrop _lowerCAmelCase =use_cache _lowerCAmelCase =encoder_layers _lowerCAmelCase =scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase =max_source_positions _lowerCAmelCase =max_target_positions _lowerCAmelCase =num_conv_layers _lowerCAmelCase =list(__a ) _lowerCAmelCase =conv_channels _lowerCAmelCase =input_feat_per_channel _lowerCAmelCase =input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
707
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
0
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =np.shape(__UpperCamelCase ) if rows != columns: _lowerCAmelCase =( '\'table\' has to be of square shaped array but got a ' F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) _lowerCAmelCase =np.zeros((rows, columns) ) _lowerCAmelCase =np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): _lowerCAmelCase =sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _lowerCAmelCase =(table[i][j] - total) / upper[j][j] _lowerCAmelCase =1 for j in range(__UpperCamelCase , __UpperCamelCase ): _lowerCAmelCase =sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) _lowerCAmelCase =table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
0
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase ='' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =[chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key _lowerCAmelCase =remove_duplicates(key.upper() ) _lowerCAmelCase =len(a__ ) # First fill cipher with key characters _lowerCAmelCase ={alphabet[i]: char for i, char in enumerate(a__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(a__ ) , 2_6 ): _lowerCAmelCase =alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCAmelCase =alphabet[i - offset] _lowerCAmelCase =char return cipher_alphabet def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return "".join(cipher_map.get(a__ , a__ ) for ch in message.upper() ) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase ={v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(a__ , a__ ) for ch in message.upper() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =input('Enter message to encode or decode: ' ).strip() _lowerCAmelCase =input('Enter keyword: ' ).strip() _lowerCAmelCase =input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _lowerCAmelCase ={'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _lowerCAmelCase =create_cipher_map(a__ ) print(func(a__ , a__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" lowercase : List[str] = KandinskyVaaImgaImgPipeline lowercase : Tuple = ['image_embeds', 'negative_image_embeds', 'image'] lowercase : Union[str, Any] = [ 'image_embeds', 'negative_image_embeds', 'image', ] lowercase : Optional[int] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : Optional[Any] = False @property def UpperCamelCase__ ( self ) -> int: return 32 @property def UpperCamelCase__ ( self ) -> Union[str, Any]: return 32 @property def UpperCamelCase__ ( self ) -> List[str]: return self.time_input_dim @property def UpperCamelCase__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ) -> str: return 100 @property def UpperCamelCase__ ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase ={ """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase =UNetaDConditionModel(**_a ) return model @property def UpperCamelCase__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__ ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.dummy_unet _lowerCAmelCase =self.dummy_movq _lowerCAmelCase ={ """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase =DDIMScheduler(**_a ) _lowerCAmelCase ={ """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase__ ( self , __A , __A=0 ) -> str: _lowerCAmelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _lowerCAmelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((256, 256) ) if str(_a ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(_a ) else: _lowerCAmelCase =torch.Generator(device=_a ).manual_seed(_a ) _lowerCAmelCase ={ """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ="""cpu""" _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**_a ) _lowerCAmelCase =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _lowerCAmelCase =pipe(**self.get_dummy_inputs(_a ) ) _lowerCAmelCase =output.images _lowerCAmelCase =pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase =np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) _lowerCAmelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase ="""A red cartoon frog, 4k""" _lowerCAmelCase =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _lowerCAmelCase =KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) _lowerCAmelCase =pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase =pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
710
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_): """simple docstring""" lowercase : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True}) lowercase : Union[str, Any] = Features({'image': Image()}) lowercase : List[Any] = Features({'labels': ClassLabel}) lowercase : Union[str, Any] = 'image' lowercase : List[Any] = 'labels' def UpperCamelCase__ ( self , __A ) -> Optional[Any]: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCamelCase__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) _lowerCAmelCase =copy.deepcopy(self ) _lowerCAmelCase =self.label_schema.copy() _lowerCAmelCase =features[self.label_column] _lowerCAmelCase =label_schema return task_template @property def UpperCamelCase__ ( self ) -> List[str]: return { self.image_column: "image", self.label_column: "labels", }
711
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if b == 0: return (1, 0) ((_lowerCAmelCase) , (_lowerCAmelCase)) =extended_euclid(lowerCamelCase_ , a % b ) _lowerCAmelCase =a // b return (y, x - k * y) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) =extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =na * na _lowerCAmelCase =ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' ((_lowerCAmelCase) , (_lowerCAmelCase)) =extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) if b < 0: _lowerCAmelCase =(b % n + n) % n return b def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =invert_modulo(lowerCamelCase_ , lowerCamelCase_ ), invert_modulo(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =na * na _lowerCAmelCase =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
712
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A = True , __A = None , __A = 32 , __A = True , __A = 1 / 255 , __A = True , __A = True , __A = [0.48_145_466, 0.4_578_275, 0.40_821_073] , __A = [0.26_862_954, 0.26_130_258, 0.27_577_711] , __A = True , __A=7 , __A=30 , __A=400 , __A=3 , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =do_resize _lowerCAmelCase =size if size is not None else {"shortest_edge": 288} _lowerCAmelCase =size_divisor _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =do_center_crop _lowerCAmelCase =image_mean _lowerCAmelCase =image_std _lowerCAmelCase =do_pad _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =min_resolution _lowerCAmelCase =max_resolution def UpperCamelCase__ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCamelCase__ ( self , __A , __A=False ) -> Optional[int]: if not batched: _lowerCAmelCase =self.size["shortest_edge"] _lowerCAmelCase =image_inputs[0] if isinstance(__A , Image.Image ): _lowerCAmelCase =image.size else: _lowerCAmelCase =image.shape[1], image.shape[2] _lowerCAmelCase =size / min(__A , __A ) if h < w: _lowerCAmelCase =size, scale * w else: _lowerCAmelCase =scale * h, size _lowerCAmelCase =int((1333 / 800) * size ) if max(__A , __A ) > max_size: _lowerCAmelCase =max_size / max(__A , __A ) _lowerCAmelCase =newh * scale _lowerCAmelCase =neww * scale _lowerCAmelCase =int(newh + 0.5 ), int(neww + 0.5 ) _lowerCAmelCase =( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _lowerCAmelCase =[] for image in image_inputs: _lowerCAmelCase =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase =max(__A , key=lambda __A : item[0] )[0] _lowerCAmelCase =max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( _A , unittest.TestCase): """simple docstring""" lowercase : Dict = BridgeTowerImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =BridgeTowerImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'image_mean' ) ) self.assertTrue(hasattr(__A , 'image_std' ) ) self.assertTrue(hasattr(__A , 'do_normalize' ) ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'size' ) ) self.assertTrue(hasattr(__A , 'size_divisor' ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass def UpperCamelCase__ ( self ) -> List[Any]: # Initialize image processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ) -> List[str]: # Initialize image processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase__ ( self ) -> List[str]: # Initialize image processor _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values _lowerCAmelCase =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
'''simple docstring''' from math import ceil def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =list(range(0 , UpperCamelCase__ ) ) _lowerCAmelCase =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _lowerCAmelCase =[] for i in device_map_blocks: if device_map_blocks.count(UpperCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(UpperCamelCase__ ) # Missing blocks _lowerCAmelCase =[i for i in blocks if i not in device_map_blocks] _lowerCAmelCase =[i for i in device_map_blocks if i not in blocks] if len(UpperCamelCase__ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(UpperCamelCase__ ) ) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =list(range(UpperCamelCase__ ) ) _lowerCAmelCase =int(ceil(n_layers / len(UpperCamelCase__ ) ) ) _lowerCAmelCase =[layers[i : i + n_blocks] for i in range(0 , UpperCamelCase__ , UpperCamelCase__ )] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) )
714
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
0
'''simple docstring''' from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> int: _lowerCAmelCase =[] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(__SCREAMING_SNAKE_CASE ) self.set_fail_transitions() def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase__ ( self , __A ) -> Union[str, Any]: _lowerCAmelCase =0 for character in keyword: _lowerCAmelCase =self.find_next_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowerCAmelCase =len(self.adlist ) - 1 else: _lowerCAmelCase =next_state self.adlist[current_state]["output"].append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =deque() for node in self.adlist[0]["next_states"]: q.append(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase =0 while q: _lowerCAmelCase =q.popleft() for child in self.adlist[r]["next_states"]: q.append(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase =self.adlist[r]['fail_state'] while ( self.find_next_state(__SCREAMING_SNAKE_CASE , self.adlist[child]['value'] ) is None and state != 0 ): _lowerCAmelCase =self.adlist[state]['fail_state'] _lowerCAmelCase =self.find_next_state( __SCREAMING_SNAKE_CASE , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: _lowerCAmelCase =0 _lowerCAmelCase =( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase ={} # returns a dict with keywords and list of its occurrences _lowerCAmelCase =0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): while ( self.find_next_state(__SCREAMING_SNAKE_CASE , string[i] ) is None and current_state != 0 ): _lowerCAmelCase =self.adlist[current_state]['fail_state'] _lowerCAmelCase =self.find_next_state(__SCREAMING_SNAKE_CASE , string[i] ) if next_state is None: _lowerCAmelCase =0 else: _lowerCAmelCase =next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowerCAmelCase =[] result[key].append(i - len(__SCREAMING_SNAKE_CASE ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( UpperCamelCase_): """simple docstring""" def __init__( self , __A=-1 ) -> Dict: _lowerCAmelCase =label_idx def UpperCamelCase__ ( self , __A , __A ) -> List[InputExample]: if isinstance(__a , __a ): _lowerCAmelCase =mode.value _lowerCAmelCase =os.path.join(__a , F'''{mode}.txt''' ) _lowerCAmelCase =1 _lowerCAmelCase =[] with open(__a , encoding='utf-8' ) as f: _lowerCAmelCase =[] _lowerCAmelCase =[] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 _lowerCAmelCase =[] _lowerCAmelCase =[] else: _lowerCAmelCase =line.split(' ' ) words.append(splits[0] ) if len(__a ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) return examples def UpperCamelCase__ ( self , __A , __A , __A ) -> Any: _lowerCAmelCase =0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowerCAmelCase =line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__a ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def UpperCamelCase__ ( self , __A ) -> List[str]: if path: with open(__a , 'r' ) as f: _lowerCAmelCase =f.read().splitlines() if "O" not in labels: _lowerCAmelCase =['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class SCREAMING_SNAKE_CASE ( UpperCamelCase_): """simple docstring""" def __init__( self ) -> str: super().__init__(label_idx=-2 ) def UpperCamelCase__ ( self , __A ) -> List[str]: if path: with open(__a , 'r' ) as f: _lowerCAmelCase =f.read().splitlines() if "O" not in labels: _lowerCAmelCase =['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class SCREAMING_SNAKE_CASE ( UpperCamelCase_): """simple docstring""" def UpperCamelCase__ ( self , __A , __A ) -> List[InputExample]: if isinstance(__a , __a ): _lowerCAmelCase =mode.value _lowerCAmelCase =os.path.join(__a , F'''{mode}.txt''' ) _lowerCAmelCase =1 _lowerCAmelCase =[] with open(__a , encoding='utf-8' ) as f: for sentence in parse_incr(__a ): _lowerCAmelCase =[] _lowerCAmelCase =[] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__a ) == len(__a ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 return examples def UpperCamelCase__ ( self , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =0 for sentence in parse_incr(__a ): _lowerCAmelCase =preds_list[example_id] _lowerCAmelCase ='' for token in sentence: out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(__a ) example_id += 1 def UpperCamelCase__ ( self , __A ) -> List[str]: if path: with open(__a , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
716
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
0