code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __UpperCAmelCase : Dict = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) __UpperCAmelCase : Optional[int] = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Dict = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __UpperCAmelCase : str = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Tuple = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) __UpperCAmelCase : Optional[Any] = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : List[Any] = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) __UpperCAmelCase : List[str] = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : List[str] = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." __UpperCAmelCase : Optional[int] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" __UpperCAmelCase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." __UpperCAmelCase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" __UpperCAmelCase : Any = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." __UpperCAmelCase : int = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" __UpperCAmelCase : List[str] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : int = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." __UpperCAmelCase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" __UpperCAmelCase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." __UpperCAmelCase : int = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." __UpperCAmelCase : List[str] = "" __UpperCAmelCase : str = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." __UpperCAmelCase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : str = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Dict ) -> Tuple: '''simple docstring''' assert ReadMe.from_string(__snake_case , __snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(__snake_case , match=re.escape(expected_error.format(path="root" ) ) ): snake_case__ :Dict = ReadMe.from_string(__snake_case , __snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : List[str] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' with pytest.raises(__snake_case , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(__snake_case , __snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : Optional[Any] ) -> Dict: '''simple docstring''' ReadMe.from_string(__snake_case , __snake_case , suppress_parsing_errors=__snake_case ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowercase_ ( __snake_case : Any , __snake_case : int ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) snake_case__ :Optional[int] = ReadMe.from_readme(__snake_case , __snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Optional[Any] ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :Dict = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) snake_case__ :Tuple = expected_error.format(path=__snake_case ) with pytest.raises(__snake_case , match=re.escape(__snake_case ) ): snake_case__ :List[str] = ReadMe.from_readme(__snake_case , __snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : Any , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) snake_case__ :Tuple = expected_error.format(path=__snake_case ) with pytest.raises(__snake_case , match=re.escape(__snake_case ) ): ReadMe.from_readme(__snake_case , __snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : Any ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :Optional[Any] = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) ReadMe.from_readme(__snake_case , __snake_case , suppress_parsing_errors=__snake_case )
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): _A = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = 50_257 ,UpperCamelCase = 1_024 ,UpperCamelCase = 768 ,UpperCamelCase = 12 ,UpperCamelCase = 12 ,UpperCamelCase = None ,UpperCamelCase = "gelu_new" ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 1E-5 ,UpperCamelCase = 0.02 ,UpperCamelCase = True ,UpperCamelCase = True ,UpperCamelCase = False ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) snake_case__ :List[str] = prefix_inner_dim snake_case__ :List[Any] = prefix_hidden_dim snake_case__ :List[str] = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ :Union[str, Any] = ( nn.Linear(self.prefix_hidden_dim ,UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ :Tuple = GPTaConfig( vocab_size=UpperCamelCase ,n_positions=UpperCamelCase ,n_embd=UpperCamelCase ,n_layer=UpperCamelCase ,n_head=UpperCamelCase ,n_inner=UpperCamelCase ,activation_function=UpperCamelCase ,resid_pdrop=UpperCamelCase ,embd_pdrop=UpperCamelCase ,attn_pdrop=UpperCamelCase ,layer_norm_epsilon=UpperCamelCase ,initializer_range=UpperCamelCase ,scale_attn_weights=UpperCamelCase ,use_cache=UpperCamelCase ,scale_attn_by_inverse_layer_idx=UpperCamelCase ,reorder_and_upcast_attn=UpperCamelCase ,) snake_case__ :Dict = GPTaLMHeadModel(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,) -> List[str]: snake_case__ :str = self.transformer.transformer.wte(UpperCamelCase ) snake_case__ :Optional[int] = self.encode_prefix(UpperCamelCase ) snake_case__ :Optional[Any] = self.decode_prefix(UpperCamelCase ) snake_case__ :List[Any] = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: snake_case__ :Optional[Any] = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) snake_case__ :Any = torch.cat((dummy_token, input_ids) ,dim=1 ) snake_case__ :Dict = self.transformer(inputs_embeds=UpperCamelCase ,labels=UpperCamelCase ,attention_mask=UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> torch.Tensor: return torch.zeros(UpperCamelCase ,self.prefix_length ,dtype=torch.intaa ,device=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: return self.encode_prefix(UpperCamelCase ) @torch.no_grad() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Optional[Any] = torch.split(UpperCamelCase ,1 ,dim=0 ) snake_case__ :Tuple = [] snake_case__ :int = [] for feature in features: snake_case__ :str = self.decode_prefix(feature.to(UpperCamelCase ) ) # back to the clip feature # Only support beam search for now snake_case__ :List[Any] = self.generate_beam( input_embeds=UpperCamelCase ,device=UpperCamelCase ,eos_token_id=UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case__ :List[str] = torch.stack(UpperCamelCase ) snake_case__ :Tuple = torch.stack(UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase = 5 ,UpperCamelCase = 67 ,UpperCamelCase = 1.0 ,UpperCamelCase = None ,) -> Any: snake_case__ :str = eos_token_id snake_case__ :Any = None snake_case__ :Optional[Any] = None snake_case__ :str = torch.ones(UpperCamelCase ,device=UpperCamelCase ,dtype=torch.int ) snake_case__ :Dict = torch.zeros(UpperCamelCase ,device=UpperCamelCase ,dtype=torch.bool ) if input_embeds is not None: snake_case__ :List[Any] = input_embeds else: snake_case__ :Union[str, Any] = self.transformer.transformer.wte(UpperCamelCase ) for i in range(UpperCamelCase ): snake_case__ :Tuple = self.transformer(inputs_embeds=UpperCamelCase ) snake_case__ :Tuple = outputs.logits snake_case__ :int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case__ :List[Any] = logits.softmax(-1 ).log() if scores is None: snake_case__ :str = logits.topk(UpperCamelCase ,-1 ) snake_case__ :List[str] = generated.expand(UpperCamelCase ,*generated.shape[1:] ) snake_case__ :List[str] = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: snake_case__ :Union[str, Any] = next_tokens else: snake_case__ :List[Any] = tokens.expand(UpperCamelCase ,*tokens.shape[1:] ) snake_case__ :Optional[int] = torch.cat((tokens, next_tokens) ,dim=1 ) else: snake_case__ :Union[str, Any] = -float(np.inf ) snake_case__ :Union[str, Any] = 0 snake_case__ :Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case__ :int = scores_sum / seq_lengths[:, None] snake_case__ :List[str] = scores_sum_average.view(-1 ).topk(UpperCamelCase ,-1 ) snake_case__ :Tuple = next_tokens // scores_sum.shape[1] snake_case__ :Any = seq_lengths[next_tokens_source] snake_case__ :Optional[int] = next_tokens % scores_sum.shape[1] snake_case__ :Union[str, Any] = next_tokens.unsqueeze(1 ) snake_case__ :Optional[Any] = tokens[next_tokens_source] snake_case__ :List[str] = torch.cat((tokens, next_tokens) ,dim=1 ) snake_case__ :str = generated[next_tokens_source] snake_case__ :Tuple = scores_sum_average * seq_lengths snake_case__ :List[str] = is_stopped[next_tokens_source] snake_case__ :Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) snake_case__ :List[Any] = torch.cat((generated, next_token_embed) ,dim=1 ) snake_case__ :Tuple = is_stopped + next_tokens.eq(UpperCamelCase ).squeeze() if is_stopped.all(): break snake_case__ :List[Any] = scores / seq_lengths snake_case__ :Optional[int] = scores.argsort(descending=UpperCamelCase ) # tokens tensors are already padded to max_seq_length snake_case__ :Optional[int] = [tokens[i] for i in order] snake_case__ :List[Any] = torch.stack(UpperCamelCase ,dim=0 ) snake_case__ :Dict = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowercase_ ( __snake_case : Tuple ) -> List[str]: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> List[Any]: snake_case__ :Any = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" ,type=UpperCamelCase ,default=UpperCamelCase ,help="Path to location to store the models" ) download_parser.add_argument( "--force" ,action="store_true" ,help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" ,action="store_true" ,help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" ,) download_parser.add_argument("model" ,type=UpperCamelCase ,help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :List[Any] = model snake_case__ :int = cache snake_case__ :Union[str, Any] = force snake_case__ :Dict = trust_remote_code def lowerCAmelCase_ ( self ) -> Tuple: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __UpperCAmelCase : List[Any] = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): _A = None _A = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): _A = datasets.Audio() _A = 'audio' _A = AudioFolderConfig _A = 42 # definition at the bottom of the script _A = AudioClassification(audio_column='audio' , label_column='label' ) __UpperCAmelCase : Optional[int] = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __UpperCAmelCase : List[str] = AUDIO_EXTENSIONS
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __snake_case : str , __snake_case : str , __snake_case : str ): '''simple docstring''' def get_masked_lm_array(__snake_case : str ): snake_case__ :Tuple = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' snake_case__ :Tuple = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: snake_case__ :List[str] = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_array(__snake_case : str ): snake_case__ :Optional[Any] = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' snake_case__ :Union[str, Any] = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: snake_case__ :Optional[int] = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_layer_array(__snake_case : int , __snake_case : str ): snake_case__ :Dict = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' snake_case__ :Optional[int] = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: snake_case__ :Any = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_attention_layer_array(__snake_case : int , __snake_case : str , __snake_case : Dict ): snake_case__ :List[Any] = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' snake_case__ :Optional[Any] = tf.train.load_variable(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = array.reshape(__snake_case ) if "kernel" in name: snake_case__ :Optional[Any] = array.transpose() return torch.from_numpy(__snake_case ) print(F'Loading model based on config from {config_path}...' ) snake_case__ :Optional[Any] = BertConfig.from_json_file(__snake_case ) snake_case__ :Any = BertForMaskedLM(__snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): snake_case__ :BertLayer = model.bert.encoder.layer[layer_index] # Self-attention snake_case__ :BertSelfAttention = layer.attention.self snake_case__ :Union[str, Any] = get_encoder_attention_layer_array( __snake_case , "_query_dense/kernel" , self_attn.query.weight.data.shape ) snake_case__ :Any = get_encoder_attention_layer_array( __snake_case , "_query_dense/bias" , self_attn.query.bias.data.shape ) snake_case__ :Optional[Any] = get_encoder_attention_layer_array( __snake_case , "_key_dense/kernel" , self_attn.key.weight.data.shape ) snake_case__ :Tuple = get_encoder_attention_layer_array( __snake_case , "_key_dense/bias" , self_attn.key.bias.data.shape ) snake_case__ :Any = get_encoder_attention_layer_array( __snake_case , "_value_dense/kernel" , self_attn.value.weight.data.shape ) snake_case__ :Optional[Any] = get_encoder_attention_layer_array( __snake_case , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output snake_case__ :BertSelfOutput = layer.attention.output snake_case__ :Optional[Any] = get_encoder_attention_layer_array( __snake_case , "_output_dense/kernel" , self_output.dense.weight.data.shape ) snake_case__ :Tuple = get_encoder_attention_layer_array( __snake_case , "_output_dense/bias" , self_output.dense.bias.data.shape ) snake_case__ :Any = get_encoder_layer_array(__snake_case , "_attention_layer_norm/gamma" ) snake_case__ :Dict = get_encoder_layer_array(__snake_case , "_attention_layer_norm/beta" ) # Intermediate snake_case__ :BertIntermediate = layer.intermediate snake_case__ :Optional[int] = get_encoder_layer_array(__snake_case , "_intermediate_dense/kernel" ) snake_case__ :Union[str, Any] = get_encoder_layer_array(__snake_case , "_intermediate_dense/bias" ) # Output snake_case__ :BertOutput = layer.output snake_case__ :Any = get_encoder_layer_array(__snake_case , "_output_dense/kernel" ) snake_case__ :Any = get_encoder_layer_array(__snake_case , "_output_dense/bias" ) snake_case__ :Any = get_encoder_layer_array(__snake_case , "_output_layer_norm/gamma" ) snake_case__ :Any = get_encoder_layer_array(__snake_case , "_output_layer_norm/beta" ) # Embeddings snake_case__ :Dict = get_encoder_array("_position_embedding_layer/embeddings" ) snake_case__ :Any = get_encoder_array("_type_embedding_layer/embeddings" ) snake_case__ :Dict = get_encoder_array("_embedding_norm_layer/gamma" ) snake_case__ :List[str] = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head snake_case__ :Any = model.cls.predictions.transform snake_case__ :List[str] = get_masked_lm_array("dense/kernel" ) snake_case__ :Optional[int] = get_masked_lm_array("dense/bias" ) snake_case__ :List[Any] = get_masked_lm_array("layer_norm/gamma" ) snake_case__ :Optional[Any] = get_masked_lm_array("layer_norm/beta" ) snake_case__ :Optional[Any] = get_masked_lm_array("embedding_table" ) # Pooling snake_case__ :Union[str, Any] = BertPooler(config=__snake_case ) snake_case__ :BertPooler = get_encoder_array("_pooler_layer/kernel" ) snake_case__ :BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__snake_case ) # Integration test - should load without any errors ;) snake_case__ :str = BertForMaskedLM.from_pretrained(__snake_case ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __UpperCAmelCase : List[str] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase : List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowercase_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Union[str, Any] ) -> str: '''simple docstring''' for attribute in key.split("." ): snake_case__ :Union[str, Any] = getattr(__snake_case , __snake_case ) if weight_type is not None: snake_case__ :Optional[Any] = getattr(__snake_case , __snake_case ).shape else: snake_case__ :str = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case__ :Optional[int] = value elif weight_type == "weight_g": snake_case__ :Union[str, Any] = value elif weight_type == "weight_v": snake_case__ :Any = value elif weight_type == "bias": snake_case__ :int = value else: snake_case__ :Optional[int] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( __snake_case : Any , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Any = [] snake_case__ :Any = fairseq_model.state_dict() snake_case__ :Tuple = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ :str = None for name, value in fairseq_dict.items(): snake_case__ :str = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) snake_case__ :int = True elif name.split("." )[0] == "proj": snake_case__ :Tuple = fairseq_model.proj snake_case__ :Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case__ :Optional[int] = True if "*" in mapped_key: snake_case__ :Tuple = name.split(__snake_case )[0].split("." )[-2] snake_case__ :Tuple = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: snake_case__ :Dict = "weight_g" elif "weight_v" in name: snake_case__ :Union[str, Any] = "weight_v" elif "bias" in name: snake_case__ :Optional[int] = "bias" elif "weight" in name: snake_case__ :List[Any] = "weight" else: snake_case__ :Any = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Dict ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = full_name.split("conv_layers." )[-1] snake_case__ :Optional[int] = name.split("." ) snake_case__ :Tuple = int(items[0] ) snake_case__ :List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case__ :Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case__ :List[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case__ :Any = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case__ :Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def lowercase_ ( __snake_case : int ) -> Dict: '''simple docstring''' snake_case__ :Optional[int] = emb.weight.shape snake_case__ :Union[str, Any] = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) snake_case__ :str = emb.weight.data return lin_layer def lowercase_ ( __snake_case : Any ) -> Optional[Any]: '''simple docstring''' with open(__snake_case , "r" , encoding="utf-8" ) as f: snake_case__ :Union[str, Any] = f.readlines() snake_case__ :Dict = [line.split(" " )[0] for line in lines] snake_case__ :Union[str, Any] = len(__snake_case ) snake_case__ :int = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(__snake_case , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowercase_ ( __snake_case : Dict , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : int , __snake_case : List[str] , ) -> str: '''simple docstring''' snake_case__ :List[str] = WavaVecaConfig.from_pretrained(__snake_case ) snake_case__ :Optional[int] = SpeechaTextaConfig.from_pretrained( __snake_case , vocab_size=__snake_case , decoder_layers=__snake_case , do_stable_layer_norm=__snake_case ) snake_case__ :Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) snake_case__ :Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ :Optional[int] = model[0].eval() # set weights for wav2vec2 encoder snake_case__ :str = WavaVecaModel(__snake_case ) snake_case__ :Optional[int] = recursively_load_weights_wavaveca(model.encoder , __snake_case ) snake_case__ :Union[str, Any] = SpeechaTextaForCausalLM(__snake_case ) snake_case__ :Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) # set output linear layer unexpected_keys.remove("embed_out" ) snake_case__ :int = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case__ :List[Any] = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) snake_case__ :List[Any] = False # add projection layer snake_case__ :int = nn.Parameter(projection_layer.weight ) snake_case__ :Optional[int] = nn.Parameter(projection_layer.bias ) snake_case__ :Union[str, Any] = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case , "vocab.json" ) , "w" ) as fp: json.dump(__snake_case , __snake_case ) snake_case__ :Tuple = SpeechaTextaTokenizer(os.path.join(__snake_case , "vocab.json" ) ) tokenizer.save_pretrained(__snake_case ) snake_case__ :Dict = hf_wavavec.config.to_dict() snake_case__ :int = tokenizer.pad_token_id snake_case__ :Union[str, Any] = tokenizer.bos_token_id snake_case__ :Tuple = tokenizer.eos_token_id snake_case__ :Optional[Any] = "speech_to_text_2" snake_case__ :Optional[int] = "wav2vec2" snake_case__ :Union[str, Any] = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( _A ): _A = (DDPMScheduler,) def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> List[Any]: snake_case__ :Any = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCamelCase ) return config def lowerCAmelCase_ ( self ) -> Dict: for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase ,beta_end=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: self.check_over_configs(thresholding=UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase ,prediction_type=UpperCamelCase ,sample_max_value=UpperCamelCase ,) def lowerCAmelCase_ ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[int] = self.scheduler_classes[0] snake_case__ :Tuple = self.get_scheduler_config() snake_case__ :Union[str, Any] = scheduler_class(**UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = self.scheduler_classes[0] snake_case__ :Optional[Any] = self.get_scheduler_config() snake_case__ :str = scheduler_class(**UpperCamelCase ) snake_case__ :Any = len(UpperCamelCase ) snake_case__ :Union[str, Any] = self.dummy_model() snake_case__ :Optional[Any] = self.dummy_sample_deter snake_case__ :int = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase ) ): # 1. predict noise residual snake_case__ :Optional[int] = model(UpperCamelCase ,UpperCamelCase ) # 2. predict previous mean of sample x_t-1 snake_case__ :Union[str, Any] = scheduler.step(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,generator=UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ :Union[str, Any] = pred_prev_sample snake_case__ :int = torch.sum(torch.abs(UpperCamelCase ) ) snake_case__ :List[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[Any] = self.scheduler_classes[0] snake_case__ :Tuple = self.get_scheduler_config(prediction_type="v_prediction" ) snake_case__ :int = scheduler_class(**UpperCamelCase ) snake_case__ :List[Any] = len(UpperCamelCase ) snake_case__ :int = self.dummy_model() snake_case__ :Any = self.dummy_sample_deter snake_case__ :List[str] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase ) ): # 1. predict noise residual snake_case__ :Optional[Any] = model(UpperCamelCase ,UpperCamelCase ) # 2. predict previous mean of sample x_t-1 snake_case__ :str = scheduler.step(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,generator=UpperCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ :List[Any] = pred_prev_sample snake_case__ :str = torch.sum(torch.abs(UpperCamelCase ) ) snake_case__ :int = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def lowerCAmelCase_ ( self ) -> Any: snake_case__ :str = self.scheduler_classes[0] snake_case__ :Dict = self.get_scheduler_config() snake_case__ :Any = scheduler_class(**UpperCamelCase ) snake_case__ :Tuple = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase ) snake_case__ :List[Any] = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase ): if i == len(UpperCamelCase ) - 1: snake_case__ :Any = -1 else: snake_case__ :Optional[Any] = timesteps[i + 1] snake_case__ :str = scheduler.previous_timestep(UpperCamelCase ) snake_case__ :Any = prev_t.item() self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Dict = self.scheduler_classes[0] snake_case__ :List[str] = self.get_scheduler_config() snake_case__ :int = scheduler_class(**UpperCamelCase ) snake_case__ :Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(UpperCamelCase ,msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[Any] = self.scheduler_classes[0] snake_case__ :str = self.get_scheduler_config() snake_case__ :List[Any] = scheduler_class(**UpperCamelCase ) snake_case__ :Tuple = [100, 87, 50, 1, 0] snake_case__ :Optional[Any] = len(UpperCamelCase ) with self.assertRaises(UpperCamelCase ,msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase ,timesteps=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = self.scheduler_classes[0] snake_case__ :Any = self.get_scheduler_config() snake_case__ :List[str] = scheduler_class(**UpperCamelCase ) snake_case__ :List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase ,msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" ,): scheduler.set_timesteps(timesteps=UpperCamelCase )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase : str = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class _snake_case ( _A ): _A = 'facebook/nllb-200-distilled-600M' _A = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) _A = 'translator' _A = AutoTokenizer _A = AutoModelForSeqaSeqLM _A = LANGUAGE_CODES _A = ['text', 'text', 'text'] _A = ['text'] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) snake_case__ :Optional[Any] = self.lang_to_code[src_lang] snake_case__ :Union[str, Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase ,return_tensors="pt" ,src_lang=UpperCamelCase ,tgt_lang=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: return self.model.generate(**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=UpperCamelCase )
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCAmelCase : Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowercase_ ( __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Optional[int] = {} with open(__snake_case , "r" ) as file: for line_number, line in enumerate(__snake_case ): snake_case__ :Any = line.strip() if line: snake_case__ :Optional[int] = line.split() snake_case__ :int = line_number snake_case__ :Tuple = words[0] snake_case__ :str = value return result def lowercase_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : List[Any] ) -> int: '''simple docstring''' for attribute in key.split("." ): snake_case__ :Union[str, Any] = getattr(__snake_case , __snake_case ) snake_case__ :int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__snake_case ): snake_case__ :Union[str, Any] = PARAM_MAPPING[full_name.split("." )[-1]] snake_case__ :List[str] = "param" if weight_type is not None and weight_type != "param": snake_case__ :Union[str, Any] = getattr(__snake_case , __snake_case ).shape elif weight_type is not None and weight_type == "param": snake_case__ :Optional[Any] = hf_pointer for attribute in hf_param_name.split("." ): snake_case__ :Any = getattr(__snake_case , __snake_case ) snake_case__ :Tuple = shape_pointer.shape # let's reduce dimension snake_case__ :Tuple = value[0] else: snake_case__ :Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case__ :Tuple = value elif weight_type == "weight_g": snake_case__ :Any = value elif weight_type == "weight_v": snake_case__ :Tuple = value elif weight_type == "bias": snake_case__ :Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): snake_case__ :Dict = getattr(__snake_case , __snake_case ) snake_case__ :Tuple = value else: snake_case__ :List[str] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Optional[int] ) -> str: '''simple docstring''' snake_case__ :str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__snake_case ): snake_case__ :Optional[Any] = PARAM_MAPPING[full_name.split("." )[-1]] snake_case__ :Union[str, Any] = "param" if weight_type is not None and weight_type != "param": snake_case__ :List[str] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case__ :Optional[int] = ".".join([key, hf_param_name] ) else: snake_case__ :List[str] = key snake_case__ :Tuple = value if "lm_head" in full_key else value[0] __UpperCAmelCase : List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowercase_ ( __snake_case : str , __snake_case : str , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' snake_case__ :Tuple = False for key, mapped_key in MAPPING.items(): snake_case__ :Optional[int] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case__ :Optional[int] = True if "*" in mapped_key: snake_case__ :Dict = name.split(__snake_case )[0].split("." )[-2] snake_case__ :List[str] = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: snake_case__ :List[Any] = "weight_g" elif "weight_v" in name: snake_case__ :Optional[Any] = "weight_v" elif "bias" in name: snake_case__ :Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ :Optional[int] = "weight" else: snake_case__ :int = None if hf_dict is not None: rename_dict(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) else: set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) return is_used return is_used def lowercase_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Any ) -> int: '''simple docstring''' snake_case__ :Any = [] snake_case__ :Optional[Any] = fairseq_model.state_dict() snake_case__ :List[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case__ :Any = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) snake_case__ :int = True else: snake_case__ :str = load_wavaveca_layer(__snake_case , __snake_case , __snake_case ) if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __snake_case : int , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Dict ) -> str: '''simple docstring''' snake_case__ :Optional[Any] = full_name.split("conv_layers." )[-1] snake_case__ :Union[str, Any] = name.split("." ) snake_case__ :List[str] = int(items[0] ) snake_case__ :Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case__ :Optional[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case__ :Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case__ :Tuple = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case__ :Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase_ ( __snake_case : Dict , __snake_case : int , __snake_case : str=None , __snake_case : List[Any]=None , __snake_case : Dict=True , __snake_case : Tuple=False ) -> Optional[Any]: '''simple docstring''' if config_path is not None: snake_case__ :List[str] = WavaVecaConfig.from_pretrained(__snake_case ) else: snake_case__ :int = WavaVecaConfig() if is_seq_class: snake_case__ :str = read_txt_into_dict(__snake_case ) snake_case__ :Optional[Any] = idalabel snake_case__ :Optional[int] = WavaVecaForSequenceClassification(__snake_case ) snake_case__ :List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) feature_extractor.save_pretrained(__snake_case ) elif is_finetuned: if dict_path: snake_case__ :Tuple = Dictionary.load(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ :str = target_dict.pad_index snake_case__ :Tuple = target_dict.bos_index snake_case__ :Union[str, Any] = target_dict.eos_index snake_case__ :Union[str, Any] = len(target_dict.symbols ) snake_case__ :List[str] = os.path.join(__snake_case , "vocab.json" ) if not os.path.isdir(__snake_case ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) snake_case__ :Any = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ :Optional[Any] = 0 snake_case__ :str = 1 with open(__snake_case , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__snake_case , ) snake_case__ :int = True if config.feat_extract_norm == "layer" else False snake_case__ :Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) snake_case__ :List[Any] = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) snake_case__ :Tuple = WavaVecaForCTC(__snake_case ) else: snake_case__ :List[str] = WavaVecaForPreTraining(__snake_case ) if is_finetuned or is_seq_class: snake_case__ :Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: snake_case__ :Optional[Any] = argparse.Namespace(task="audio_pretraining" ) snake_case__ :Optional[Any] = fairseq.tasks.setup_task(__snake_case ) snake_case__ :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__snake_case ) snake_case__ :Any = model[0].eval() recursively_load_weights(__snake_case , __snake_case , not is_finetuned ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCAmelCase : Optional[int] = parser.parse_args() __UpperCAmelCase : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Optional[Any] = order # a_{0} ... a_{k} snake_case__ :Any = [1.0] + [0.0] * order # b_{0} ... b_{k} snake_case__ :List[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] snake_case__ :int = [0.0] * self.order # y[n-1] ... y[n-k] snake_case__ :Any = [0.0] * self.order def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> None: if len(UpperCamelCase ) < self.order: snake_case__ :Tuple = [1.0, *a_coeffs] if len(UpperCamelCase ) != self.order + 1: snake_case__ :Any = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(UpperCamelCase )}' ) raise ValueError(UpperCamelCase ) if len(UpperCamelCase ) != self.order + 1: snake_case__ :Union[str, Any] = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(UpperCamelCase )}' ) raise ValueError(UpperCamelCase ) snake_case__ :List[str] = a_coeffs snake_case__ :List[str] = b_coeffs def lowerCAmelCase_ ( self ,UpperCamelCase ) -> float: snake_case__ :Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 ,self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) snake_case__ :str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] snake_case__ :str = self.input_history[:-1] snake_case__ :List[str] = self.output_history[:-1] snake_case__ :Any = sample snake_case__ :str = result return result
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[Any] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) snake_case__ :List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" snake_case__ :Optional[int] = model(UpperCamelCase )["last_hidden_state"] snake_case__ :Optional[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape ,UpperCamelCase ) # compare the actual values for a slice. snake_case__ :Optional[int] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : int = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
def lowercase_ ( __snake_case : Tuple ) -> Any: '''simple docstring''' snake_case__ :Dict = 1 snake_case__ :Any = 2 while i * i <= n: snake_case__ :List[str] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase_ ( ) -> int: '''simple docstring''' snake_case__ :List[str] = 1 snake_case__ :Optional[int] = 1 while True: i += 1 t_num += i if count_divisors(__snake_case ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _snake_case ( _A ): @staticmethod @abstractmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Optional[int]: raise NotImplementedError() @abstractmethod def lowerCAmelCase_ ( self ) -> Union[str, Any]: raise NotImplementedError()
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
from __future__ import annotations from math import pi def lowercase_ ( __snake_case : float , __snake_case : float , __snake_case : float ) -> dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {} class _snake_case ( _A ): _A = 'llama' _A = ['past_key_values'] def __init__( self ,UpperCamelCase=32_000 ,UpperCamelCase=4_096 ,UpperCamelCase=11_008 ,UpperCamelCase=32 ,UpperCamelCase=32 ,UpperCamelCase=None ,UpperCamelCase="silu" ,UpperCamelCase=2_048 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-6 ,UpperCamelCase=True ,UpperCamelCase=0 ,UpperCamelCase=1 ,UpperCamelCase=2 ,UpperCamelCase=1 ,UpperCamelCase=False ,UpperCamelCase=None ,**UpperCamelCase ,) -> Tuple: snake_case__ :int = vocab_size snake_case__ :Any = max_position_embeddings snake_case__ :int = hidden_size snake_case__ :List[Any] = intermediate_size snake_case__ :int = num_hidden_layers snake_case__ :Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case__ :Dict = num_attention_heads snake_case__ :List[str] = num_key_value_heads snake_case__ :Optional[int] = hidden_act snake_case__ :Any = initializer_range snake_case__ :Dict = rms_norm_eps snake_case__ :List[str] = pretraining_tp snake_case__ :Any = use_cache snake_case__ :Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase ,bos_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,tie_word_embeddings=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'got {self.rope_scaling}' ) snake_case__ :Optional[int] = self.rope_scaling.get("type" ,UpperCamelCase ) snake_case__ :Optional[Any] = self.rope_scaling.get("factor" ,UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase ,UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase : int = "" __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : str = "" __UpperCAmelCase : Optional[int] = 1 # (0 is vertical, 1 is horizontal) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :Dict = get_dataset(__snake_case , __snake_case ) print("Processing..." ) snake_case__ :Tuple = update_image_and_anno(__snake_case , __snake_case , __snake_case ) for index, image in enumerate(__snake_case ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case__ :str = random_chars(32 ) snake_case__ :Tuple = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] snake_case__ :List[str] = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , __snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Success {index+1}/{len(__snake_case )} with {file_name}' ) snake_case__ :Optional[int] = [] for anno in new_annos[index]: snake_case__ :Dict = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(__snake_case ) with open(F'/{file_root}.txt' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase_ ( __snake_case : str , __snake_case : str ) -> tuple[list, list]: '''simple docstring''' snake_case__ :Optional[int] = [] snake_case__ :Dict = [] for label_file in glob.glob(os.path.join(__snake_case , "*.txt" ) ): snake_case__ :List[str] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__snake_case ) as in_file: snake_case__ :str = in_file.readlines() snake_case__ :Dict = os.path.join(__snake_case , F'{label_name}.jpg' ) snake_case__ :Optional[Any] = [] for obj_list in obj_lists: snake_case__ :Union[str, Any] = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__snake_case ) labels.append(__snake_case ) return img_paths, labels def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : int = 1 ) -> tuple[list, list, list]: '''simple docstring''' snake_case__ :int = [] snake_case__ :List[Any] = [] snake_case__ :Optional[int] = [] for idx in range(len(__snake_case ) ): snake_case__ :Any = [] snake_case__ :Any = img_list[idx] path_list.append(__snake_case ) snake_case__ :Dict = anno_list[idx] snake_case__ :Tuple = cva.imread(__snake_case ) if flip_type == 1: snake_case__ :Dict = cva.flip(__snake_case , __snake_case ) for bbox in img_annos: snake_case__ :int = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: snake_case__ :Union[str, Any] = cva.flip(__snake_case , __snake_case ) for bbox in img_annos: snake_case__ :str = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__snake_case ) new_imgs_list.append(__snake_case ) return new_imgs_list, new_annos_lists, path_list def lowercase_ ( __snake_case : int = 32 ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" snake_case__ :Dict = ascii_lowercase + digits return "".join(random.choice(__snake_case ) for _ in range(__snake_case ) ) if __name__ == "__main__": main() print("DONE ✅")
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase : List[Any] = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = 'ClapFeatureExtractor' lowercase : List[Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , __A , __A ) -> Union[str, Any]: super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> List[Any]: _lowerCAmelCase =kwargs.pop('sampling_rate' , __A ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if audios is not None: _lowerCAmelCase =self.feature_extractor( __A , sampling_rate=__A , return_tensors=__A , **__A ) if text is not None and audios is not None: _lowerCAmelCase =audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> int: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' import random def UpperCamelCase__ ( a__ , a__ , a__ = False ): '''simple docstring''' _lowerCAmelCase ={i: [] for i in range(a__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a__ ): for j in range(i + 1 , a__ ): if random.random() < probability: graph[i].append(a__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a__ ) return graph def UpperCamelCase__ ( a__ ): '''simple docstring''' return { i: [j for j in range(a__ ) if i != j] for i in range(a__ ) } if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import os import numpy import onnx def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =a.name _lowerCAmelCase =b.name _lowerCAmelCase ='' _lowerCAmelCase ='' _lowerCAmelCase =a == b _lowerCAmelCase =name_a _lowerCAmelCase =name_b return res def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =list(model.graph.initializer ) _lowerCAmelCase =list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowerCAmelCase =inits[i].name _lowerCAmelCase =inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.dirname(a__ ) _lowerCAmelCase =os.path.basename(a__ ) _lowerCAmelCase =onnx.load(os.path.join(a__ , a__ ) ) _lowerCAmelCase =list(model.graph.initializer ) _lowerCAmelCase =set() _lowerCAmelCase ={} _lowerCAmelCase =[] _lowerCAmelCase =0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) _lowerCAmelCase =inits[j].data_type _lowerCAmelCase =numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , a__ ) total_reduced_size += mem_size _lowerCAmelCase =inits[i].name _lowerCAmelCase =inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: _lowerCAmelCase =[name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) _lowerCAmelCase =sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) _lowerCAmelCase ='optimized_' + model_file_name _lowerCAmelCase =os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' lowercase_ = {} def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCAmelCase =(days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCAmelCase =_calculate(days - 1 , a__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCAmelCase =_calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCAmelCase =_calculate(days - 1 , a__ , 0 ) _lowerCAmelCase =state_late + state_absent + state_ontime _lowerCAmelCase =prizestrings return prizestrings def UpperCamelCase__ ( a__ = 3_0 ): '''simple docstring''' return _calculate(a__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =F'''{sampling_rate}''' _lowerCAmelCase ='1' _lowerCAmelCase ='f32le' _lowerCAmelCase =[ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _lowerCAmelCase =ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error _lowerCAmelCase =output_stream[0] _lowerCAmelCase =np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def UpperCamelCase__ ( a__ , a__ , a__ = "f32le" , ): '''simple docstring''' _lowerCAmelCase =F'''{sampling_rate}''' _lowerCAmelCase ='1' if format_for_conversion == "s16le": _lowerCAmelCase =2 elif format_for_conversion == "f32le": _lowerCAmelCase =4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) _lowerCAmelCase =platform.system() if system == "Linux": _lowerCAmelCase ='alsa' _lowerCAmelCase ='default' elif system == "Darwin": _lowerCAmelCase ='avfoundation' _lowerCAmelCase =':0' elif system == "Windows": _lowerCAmelCase ='dshow' _lowerCAmelCase ='default' _lowerCAmelCase =[ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] _lowerCAmelCase =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _lowerCAmelCase =_ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCamelCase__ ( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: _lowerCAmelCase =stream_chunk_s else: _lowerCAmelCase =chunk_length_s _lowerCAmelCase =ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": _lowerCAmelCase =np.intaa _lowerCAmelCase =2 elif format_for_conversion == "f32le": _lowerCAmelCase =np.floataa _lowerCAmelCase =4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: _lowerCAmelCase =chunk_length_s / 6 _lowerCAmelCase =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): _lowerCAmelCase =[stride_length_s, stride_length_s] _lowerCAmelCase =int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _lowerCAmelCase =int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _lowerCAmelCase =datetime.datetime.now() _lowerCAmelCase =datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale _lowerCAmelCase =np.frombuffer(item['raw'] , dtype=a__ ) _lowerCAmelCase =( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) _lowerCAmelCase =sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def UpperCamelCase__ ( a__ , a__ , a__ , a__ = False ): '''simple docstring''' _lowerCAmelCase =B'' _lowerCAmelCase , _lowerCAmelCase =stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) _lowerCAmelCase =0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: _lowerCAmelCase =(_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator _lowerCAmelCase =(_stride_left, stride_right) _lowerCAmelCase ={'raw': acc[:chunk_len], 'stride': stride} if stream: _lowerCAmelCase =False yield item _lowerCAmelCase =stride_left _lowerCAmelCase =acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: _lowerCAmelCase ={'raw': acc, 'stride': (_stride_left, 0)} if stream: _lowerCAmelCase =False yield item def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =2**2_4 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: _lowerCAmelCase =ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" lowercase : Tuple = MODEL_FOR_MASKED_LM_MAPPING lowercase : Any = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCamelCase__ ( self ) -> int: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) _lowerCAmelCase =unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1E-05, 'token': 3_8015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1E-05, 'token': 2_5506, 'token_str': ' accuser'}, ] , ) _lowerCAmelCase =unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1E-05, 'token': 3_8015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1E-05, 'token': 2_5506, 'token_str': ' accuser', }, ] , ) _lowerCAmelCase =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 1_3606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9E-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) _lowerCAmelCase =unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS'}, ] , ) _lowerCAmelCase =unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS'}, ] , ) _lowerCAmelCase =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2E-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 1_3606, 'token_str': ' Clara'}, ] , ) _lowerCAmelCase =unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ [ { 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() _lowerCAmelCase =pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__A , __A ) @slow @require_torch def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(__A ) @slow @require_tf def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(__A ) def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase =unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(__A ) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1573, 'token_str': ' Chris'}, ] , ) _lowerCAmelCase =unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(__A ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 1_2790, 'token_str': ' Lyon', }, ] , ) _lowerCAmelCase =unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(__A ) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 1_3606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) _lowerCAmelCase =None _lowerCAmelCase =None self.run_pipeline_test(__A , [] ) @require_tf def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) _lowerCAmelCase =None _lowerCAmelCase =None self.run_pipeline_test(__A , [] ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A ) _lowerCAmelCase =[ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def UpperCamelCase__ ( self , __A , __A ) -> Tuple: _lowerCAmelCase =fill_masker.tokenizer _lowerCAmelCase =fill_masker.model _lowerCAmelCase =fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ] , ) _lowerCAmelCase =fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ] , ) _lowerCAmelCase =fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( __A , [ [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ], [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ], ] , ) with self.assertRaises(__A ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__A ): fill_masker('This is' ) self.run_test_top_k(__A , __A ) self.run_test_targets(__A , __A ) self.run_test_top_k_targets(__A , __A ) self.fill_mask_with_duplicate_targets_and_top_k(__A , __A ) self.fill_mask_with_multiple_masks(__A , __A ) def UpperCamelCase__ ( self , __A , __A ) -> str: _lowerCAmelCase =tokenizer.get_vocab() _lowerCAmelCase =sorted(vocab.keys() )[:2] # Pipeline argument _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A , targets=__A ) _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ] , ) _lowerCAmelCase ={vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , __A ) _lowerCAmelCase =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(__A ) ) # Call argument _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A ) _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=__A ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ] , ) _lowerCAmelCase ={vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , __A ) _lowerCAmelCase =[tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(__A ) ) # Score equivalence _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=__A ) _lowerCAmelCase =[top_mask['token_str'] for top_mask in outputs] _lowerCAmelCase =[top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__A ) == set(__A ): _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=__A ) _lowerCAmelCase =[top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__A ) , nested_simplify(__A ) ) # Raises with invalid with self.assertRaises(__A ): _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__A ): _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''] ) with self.assertRaises(__A ): _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='' ) def UpperCamelCase__ ( self , __A , __A ) -> str: _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A , top_k=2 ) _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ] , ) _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A ) _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ] , ) self.assertEqual(nested_simplify(__A ) , nested_simplify(__A ) ) def UpperCamelCase__ ( self , __A , __A ) -> Tuple: _lowerCAmelCase =tokenizer.get_vocab() _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A ) # top_k=2, ntargets=3 _lowerCAmelCase =sorted(vocab.keys() )[:3] _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=__A ) # If we use the most probably targets, and filter differently, we should still # have the same results _lowerCAmelCase =[el['token_str'] for el in sorted(__A , key=lambda __A : x["score"] , reverse=__A )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__A ).issubset(__A ): _lowerCAmelCase =fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=__A ) # They should yield exactly the same result self.assertEqual(nested_simplify(__A ) , nested_simplify(__A ) ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A ) _lowerCAmelCase =tokenizer.get_vocab() # String duplicates + id duplicates _lowerCAmelCase =sorted(vocab.keys() )[:3] _lowerCAmelCase =[targets[0], targets[1], targets[0], targets[2], targets[1]] _lowerCAmelCase =fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=__A , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__A ) , 3 ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =FillMaskPipeline(model=__A , tokenizer=__A ) _lowerCAmelCase =fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( __A , [ [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ], [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ], [ {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, {'sequence': ANY(__A ), 'score': ANY(__A ), 'token': ANY(__A ), 'token_str': ANY(__A )}, ], ] , )
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : str = ['pixel_values'] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = True , __A = 1 / 255 , __A = None , __A = True , __A = None , __A = None , **__A , ) -> None: super().__init__(**__A ) _lowerCAmelCase =size if size is not None else {'height': 224, 'width': 224} _lowerCAmelCase =get_size_dict(__A ) _lowerCAmelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase =get_size_dict(__A , default_to_square=__A , param_name='crop_size' ) _lowerCAmelCase =do_resize _lowerCAmelCase =do_rescale _lowerCAmelCase =do_normalize _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =size _lowerCAmelCase =resample _lowerCAmelCase =rescale_factor _lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase =image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self , __A , __A , __A = PILImageResampling.BILINEAR , __A = None , **__A , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__A ) if "shortest_edge" in size: _lowerCAmelCase =get_resize_output_image_size(__A , size=size['shortest_edge'] , default_to_square=__A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _lowerCAmelCase =(size['height'], size['width']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__A , size=(size['height'], size['width']) , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A ) -> np.ndarray: return rescale(__A , scale=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> BatchFeature: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase =crop_size if crop_size is not None else self.crop_size _lowerCAmelCase =get_size_dict(__A , param_name='crop_size' , default_to_square=__A ) _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(__A ) if not is_batched(__A ): _lowerCAmelCase =[images] if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(__A ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: _lowerCAmelCase =[self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(image=__A , mean=__A , std=__A ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(__A , __A ) for image in images] _lowerCAmelCase ={'pixel_values': images} return BatchFeature(data=__A , tensor_type=__A )
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig lowercase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __A = 25_0002 , __A = 768 , __A = 12 , __A = 12 , __A = 3072 , __A = "gelu" , __A = 0.1 , __A = 0.1 , __A = 514 , __A = 0.02 , __A = 1 , __A = 1E-05 , __A=None , __A=False , __A=0.0 , **__A , ) -> Optional[Any]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =classifier_dropout _lowerCAmelCase =is_decoder _lowerCAmelCase =act_dropout
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 0 lowercase : bool = False lowercase : float = 3.0 class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=__A ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def UpperCamelCase__ ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. _lowerCAmelCase =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase =Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , __A ) @require_multi_gpu def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__A , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(100, 200) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = '''''' lowercase_ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase__ ( a__ ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _lowerCAmelCase =k.replace(a__ , a__ ) return k def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =DEFAULTS.copy() cfg_kwargs.update(a__ ) _lowerCAmelCase =PegasusConfig(**a__ ) _lowerCAmelCase =PegasusForConditionalGeneration(a__ ) _lowerCAmelCase =torch_model.model.state_dict() _lowerCAmelCase ={} for k, v in tf_weights.items(): _lowerCAmelCase =rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: _lowerCAmelCase =v.T _lowerCAmelCase =torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected _lowerCAmelCase =torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) _lowerCAmelCase =mapping['shared.weight'] _lowerCAmelCase =mapping['shared.weight'] _lowerCAmelCase ={k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**a__ ) _lowerCAmelCase , _lowerCAmelCase =torch_model.model.load_state_dict(a__ , strict=a__ ) _lowerCAmelCase =[ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase__ ( a__="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _lowerCAmelCase =tf.train.list_variables(a__ ) _lowerCAmelCase ={} _lowerCAmelCase =['Adafactor', 'global_step'] for name, shape in tqdm(a__ , desc='converting tf checkpoint to dict' ): _lowerCAmelCase =any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCAmelCase =tf.train.load_variable(a__ , a__ ) _lowerCAmelCase =array return tf_weights def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =Path(a__ ).parent.name _lowerCAmelCase =task_specific_params[F'''summarization_{dataset}''']['max_position_embeddings'] _lowerCAmelCase =PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model _lowerCAmelCase =get_tf_weights_as_numpy(a__ ) _lowerCAmelCase =task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": _lowerCAmelCase =task_specific_params _lowerCAmelCase =convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) _lowerCAmelCase =torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(a__ , Path(a__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase_ = parser.parse_args() if args.save_dir is None: lowercase_ = Path(args.tf_ckpt_path).parent.name lowercase_ = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' import baseaa def UpperCamelCase__ ( a__ ): '''simple docstring''' return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return baseaa.baadecode(a__ ).decode('utf-8' ) if __name__ == "__main__": lowercase_ = '''Hello World!''' lowercase_ = baseaa_encode(test) print(encoded) lowercase_ = baseaa_decode(encoded) print(decoded)
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def UpperCamelCase__ ( a__ , a__ , a__ , a__="attention" ): '''simple docstring''' _lowerCAmelCase =_lowerCAmelCase =np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) _lowerCAmelCase =k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _lowerCAmelCase =np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) _lowerCAmelCase =o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _lowerCAmelCase =np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) _lowerCAmelCase =q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _lowerCAmelCase =np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) _lowerCAmelCase =v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCamelCase__ ( a__ , a__ , a__ , a__=False ): '''simple docstring''' if split_mlp_wi: _lowerCAmelCase =params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] _lowerCAmelCase =params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] _lowerCAmelCase =(wi_a, wi_a) else: _lowerCAmelCase =params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] _lowerCAmelCase =params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def UpperCamelCase__ ( a__ , *, a__ , a__ , a__ = False ): '''simple docstring''' _lowerCAmelCase =traverse_util.flatten_dict(variables['target'] ) _lowerCAmelCase ={'/'.join(a__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowerCAmelCase ='encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , a__ ) _lowerCAmelCase =collections.OrderedDict() # Shared embeddings. _lowerCAmelCase =old['token_embedder/embedding'] # Encoder. for i in range(a__ ): # Block i, layer 0 (Self Attention). _lowerCAmelCase =tax_layer_norm_lookup(a__ , a__ , 'encoder' , 'pre_attention_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =tax_attention_lookup(a__ , a__ , 'encoder' , 'attention' ) _lowerCAmelCase =layer_norm _lowerCAmelCase =k.T _lowerCAmelCase =o.T _lowerCAmelCase =q.T _lowerCAmelCase =v.T # Block i, layer 1 (MLP). _lowerCAmelCase =tax_layer_norm_lookup(a__ , a__ , 'encoder' , 'pre_mlp_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase =tax_mlp_lookup(a__ , a__ , 'encoder' , a__ ) _lowerCAmelCase =layer_norm if split_mlp_wi: _lowerCAmelCase =wi[0].T _lowerCAmelCase =wi[1].T else: _lowerCAmelCase =wi.T _lowerCAmelCase =wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase =tax_relpos_bias_lookup( a__ , a__ , 'encoder' ).T _lowerCAmelCase =old['encoder/encoder_norm/scale'] if not scalable_attention: _lowerCAmelCase =tax_relpos_bias_lookup( a__ , 0 , 'encoder' ).T _lowerCAmelCase =tax_relpos_bias_lookup( a__ , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(a__ ): # Block i, layer 0 (Self Attention). _lowerCAmelCase =tax_layer_norm_lookup(a__ , a__ , 'decoder' , 'pre_self_attention_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =tax_attention_lookup(a__ , a__ , 'decoder' , 'self_attention' ) _lowerCAmelCase =layer_norm _lowerCAmelCase =k.T _lowerCAmelCase =o.T _lowerCAmelCase =q.T _lowerCAmelCase =v.T # Block i, layer 1 (Cross Attention). _lowerCAmelCase =tax_layer_norm_lookup(a__ , a__ , 'decoder' , 'pre_cross_attention_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =tax_attention_lookup(a__ , a__ , 'decoder' , 'encoder_decoder_attention' ) _lowerCAmelCase =layer_norm _lowerCAmelCase =k.T _lowerCAmelCase =o.T _lowerCAmelCase =q.T _lowerCAmelCase =v.T # Block i, layer 2 (MLP). _lowerCAmelCase =tax_layer_norm_lookup(a__ , a__ , 'decoder' , 'pre_mlp_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase =tax_mlp_lookup(a__ , a__ , 'decoder' , a__ ) _lowerCAmelCase =layer_norm if split_mlp_wi: _lowerCAmelCase =wi[0].T _lowerCAmelCase =wi[1].T else: _lowerCAmelCase =wi.T _lowerCAmelCase =wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase =tax_relpos_bias_lookup(a__ , a__ , 'decoder' ).T _lowerCAmelCase =old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowerCAmelCase =old['decoder/logits_dense/kernel'].T return new def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase =state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase =state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _lowerCAmelCase =state_dict['shared.weight'] return state_dict def UpperCamelCase__ ( a__ , a__ , a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =checkpoints.load_tax_checkpoint(a__ ) _lowerCAmelCase =convert_tax_to_pytorch( a__ , num_layers=config.num_layers , is_encoder_only=a__ , scalable_attention=a__ ) _lowerCAmelCase =make_state_dict(a__ , a__ ) model.load_state_dict(a__ , strict=a__ ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ = False , a__ = False , ): '''simple docstring''' _lowerCAmelCase =MTaConfig.from_json_file(a__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowerCAmelCase =UMTaEncoderModel(a__ ) else: _lowerCAmelCase =UMTaForConditionalGeneration(a__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(a__ , a__ , a__ , a__ , a__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(a__ ) # Verify that we can load the checkpoint. model.from_pretrained(a__ ) print('Done' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A=7 , __A=3 , __A=18 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=None , ) -> Tuple: _lowerCAmelCase =size if size is not None else {'shortest_edge': 20} _lowerCAmelCase =crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =min_resolution _lowerCAmelCase =max_resolution _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size def UpperCamelCase__ ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =MobileNetVaImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'size' ) ) self.assertTrue(hasattr(__A , 'do_center_crop' ) ) self.assertTrue(hasattr(__A , 'crop_size' ) ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ) -> Optional[int]: pass def UpperCamelCase__ ( self ) -> int: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ) -> Union[str, Any]: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ) -> List[Any]: # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase =image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A , __A , __A , ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =value_function _lowerCAmelCase =unet _lowerCAmelCase =scheduler _lowerCAmelCase =env _lowerCAmelCase =env.get_dataset() _lowerCAmelCase ={} for key in self.data.keys(): try: _lowerCAmelCase =self.data[key].mean() except: # noqa: E722 pass _lowerCAmelCase ={} for key in self.data.keys(): try: _lowerCAmelCase =self.data[key].std() except: # noqa: E722 pass _lowerCAmelCase =env.observation_space.shape[0] _lowerCAmelCase =env.action_space.shape[0] def UpperCamelCase__ ( self , __A , __A ) -> str: return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ ( self , __A , __A ) -> List[Any]: return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ ( self , __A ) -> List[Any]: if type(__A ) is dict: return {k: self.to_torch(__A ) for k, v in x_in.items()} elif torch.is_tensor(__A ): return x_in.to(self.unet.device ) return torch.tensor(__A , device=self.unet.device ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[int]: for key, val in cond.items(): _lowerCAmelCase =val.clone() return x_in def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Tuple: _lowerCAmelCase =x.shape[0] _lowerCAmelCase =None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _lowerCAmelCase =torch.full((batch_size,) , __A , device=self.unet.device , dtype=torch.long ) for _ in range(__A ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _lowerCAmelCase =self.value_function(x.permute(0 , 2 , 1 ) , __A ).sample _lowerCAmelCase =torch.autograd.grad([y.sum()] , [x] )[0] _lowerCAmelCase =self.scheduler._get_variance(__A ) _lowerCAmelCase =torch.exp(0.5 * posterior_variance ) _lowerCAmelCase =model_std * grad _lowerCAmelCase =0 _lowerCAmelCase =x.detach() _lowerCAmelCase =x + scale * grad _lowerCAmelCase =self.reset_xa(__A , __A , self.action_dim ) _lowerCAmelCase =self.unet(x.permute(0 , 2 , 1 ) , __A ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _lowerCAmelCase =self.scheduler.step(__A , __A , __A , predict_epsilon=__A )['prev_sample'] # apply conditions to the trajectory (set the initial state) _lowerCAmelCase =self.reset_xa(__A , __A , self.action_dim ) _lowerCAmelCase =self.to_torch(__A ) return x, y def __call__( self , __A , __A=64 , __A=32 , __A=2 , __A=0.1 ) -> str: # normalize the observations and create batch dimension _lowerCAmelCase =self.normalize(__A , 'observations' ) _lowerCAmelCase =obs[None].repeat(__A , axis=0 ) _lowerCAmelCase ={0: self.to_torch(__A )} _lowerCAmelCase =(batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _lowerCAmelCase =randn_tensor(__A , device=self.unet.device ) _lowerCAmelCase =self.reset_xa(__A , __A , self.action_dim ) _lowerCAmelCase =self.to_torch(__A ) # run the diffusion process _lowerCAmelCase , _lowerCAmelCase =self.run_diffusion(__A , __A , __A , __A ) # sort output trajectories by value _lowerCAmelCase =y.argsort(0 , descending=__A ).squeeze() _lowerCAmelCase =x[sorted_idx] _lowerCAmelCase =sorted_values[:, :, : self.action_dim] _lowerCAmelCase =actions.detach().cpu().numpy() _lowerCAmelCase =self.de_normalize(__A , key='actions' ) # select the action with the highest value if y is not None: _lowerCAmelCase =0 else: # if we didn't run value guiding, select a random action _lowerCAmelCase =np.random.randint(0 , __A ) _lowerCAmelCase =denorm_actions[selected_index, 0] return denorm_actions
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class SCREAMING_SNAKE_CASE ( unittest.TestCase , __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =load_tool('text-classification' ) self.tool.setup() _lowerCAmelCase =load_tool('text-classification' , remote=__A ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(__A , 'positive' ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(__A , 'positive' ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(__A , 'positive' ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(__A , 'positive' )
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> int: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__A ): _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _lowerCAmelCase =FlaxAutoModel.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__A ): _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _lowerCAmelCase =FlaxAutoModel.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def UpperCamelCase__ ( self ) -> List[str]: for model_name in ["bert-base-cased", "bert-large-uncased"]: _lowerCAmelCase =AutoTokenizer.from_pretrained(__A ) _lowerCAmelCase =FlaxBertModel.from_pretrained(__A ) _lowerCAmelCase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__A ): return model(**__A ) eval(**__A ).block_until_ready() @slow def UpperCamelCase__ ( self ) -> Any: for model_name in ["roberta-base", "roberta-large"]: _lowerCAmelCase =AutoTokenizer.from_pretrained(__A ) _lowerCAmelCase =FlaxRobertaModel.from_pretrained(__A ) _lowerCAmelCase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__A ): return model(**__A ) eval(**__A ).block_until_ready() def UpperCamelCase__ ( self ) -> Tuple: with self.assertRaisesRegex( __A , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase__ ( self ) -> List[Any]: with self.assertRaisesRegex( __A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained(__A , revision='aaaaaa' ) def UpperCamelCase__ ( self ) -> List[str]: with self.assertRaisesRegex( __A , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: with self.assertRaisesRegex(__A , 'Use `from_pt=True` to load this model' ): _lowerCAmelCase =FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' from collections import defaultdict def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =True for v in tree[start]: if v not in visited: ret += dfs(a__ ) if ret % 2 == 0: cuts.append(a__ ) return ret def UpperCamelCase__ ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": lowercase_ , lowercase_ = 10, 9 lowercase_ = defaultdict(list) lowercase_ = {} lowercase_ = [] lowercase_ = 0 lowercase_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart lowercase_ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } lowercase_ = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase =bs[:] _lowerCAmelCase =0 for b in range(2**8 ): if b not in bs: bs.append(a__ ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase =[chr(a__ ) for n in cs] return dict(zip(a__ , a__ ) ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() _lowerCAmelCase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase =char return pairs class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , __A , __A , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , **__A , ) -> Optional[int]: _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding='utf-8' ) as vocab_handle: _lowerCAmelCase =json.load(__A ) _lowerCAmelCase ={v: k for k, v in self.encoder.items()} _lowerCAmelCase =errors # how to handle errors in decoding _lowerCAmelCase =bytes_to_unicode() _lowerCAmelCase ={v: k for k, v in self.byte_encoder.items()} with open(__A , encoding='utf-8' ) as merges_handle: _lowerCAmelCase =merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase =[tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase =dict(zip(__A , range(len(__A ) ) ) ) _lowerCAmelCase ={} _lowerCAmelCase =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase =re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase__ ( self ) -> str: return len(self.encoder ) def UpperCamelCase__ ( self ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , __A ) -> List[Any]: if token in self.cache: return self.cache[token] _lowerCAmelCase =tuple(__A ) _lowerCAmelCase =get_pairs(__A ) if not pairs: return token while True: _lowerCAmelCase =min(__A , key=lambda __A : self.bpe_ranks.get(__A , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase =bigram _lowerCAmelCase =[] _lowerCAmelCase =0 while i < len(__A ): try: _lowerCAmelCase =word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase =j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase =tuple(__A ) _lowerCAmelCase =new_word if len(__A ) == 1: break else: _lowerCAmelCase =get_pairs(__A ) _lowerCAmelCase =' '.join(__A ) _lowerCAmelCase =word return word def UpperCamelCase__ ( self , __A ) -> Optional[Any]: _lowerCAmelCase =[] for token in re.findall(self.pat , __A ): _lowerCAmelCase =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ ( self , __A ) -> Optional[Any]: return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self , __A ) -> str: return self.decoder.get(__A ) def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =''.join(__A ) _lowerCAmelCase =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase =os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + '\n' ) _lowerCAmelCase =0 with open(__A , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase =token_index writer.write(' '.join(__A ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , __A , __A=False , **__A ) -> str: _lowerCAmelCase =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): _lowerCAmelCase =' ' + text return (text, kwargs)
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = ['pixel_values'] def __init__( self , __A = True , __A = None , __A = 0.9 , __A = PILImageResampling.BICUBIC , __A = True , __A = None , __A = 1 / 255 , __A = True , __A = True , __A = None , __A = None , **__A , ) -> None: super().__init__(**__A ) _lowerCAmelCase =size if size is not None else {'shortest_edge': 224} _lowerCAmelCase =get_size_dict(__A , default_to_square=__A ) _lowerCAmelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase =get_size_dict(__A , param_name='crop_size' ) _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =crop_pct _lowerCAmelCase =resample _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase =image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self , __A , __A , __A = None , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: _lowerCAmelCase =int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: _lowerCAmelCase =int(size['height'] / crop_pct ) else: _lowerCAmelCase =(int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__A ) ) _lowerCAmelCase =get_resize_output_image_size(__A , size=__A , default_to_square=__A ) else: if "shortest_edge" in size: _lowerCAmelCase =get_resize_output_image_size(__A , size=size['shortest_edge'] , default_to_square=__A ) elif "height" in size and "width" in size: _lowerCAmelCase =(size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__A ) ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: _lowerCAmelCase =get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__A , size=(size['height'], size['width']) , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A = None , **__A , ) -> int: return rescale(__A , scale=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> PIL.Image.Image: _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =crop_pct if crop_pct is not None else self.crop_pct _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(__A , default_to_square=__A ) _lowerCAmelCase =crop_size if crop_size is not None else self.crop_size _lowerCAmelCase =get_size_dict(__A , param_name='crop_size' ) _lowerCAmelCase =make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(__A ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(image=__A , size=__A , crop_pct=__A , resample=__A ) for image in images] if do_center_crop: _lowerCAmelCase =[self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(image=__A , mean=__A , std=__A ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(__A , __A ) for image in images] _lowerCAmelCase ={'pixel_values': images} return BatchFeature(data=__A , tensor_type=__A )
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=3 , __A=32 , __A=3 , __A=10 , __A=[10, 20, 30, 40] , __A=[1, 1, 2, 1] , __A=True , __A=True , __A="relu" , __A=3 , __A=None , ) -> Union[str, Any]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =image_size _lowerCAmelCase =num_channels _lowerCAmelCase =embeddings_size _lowerCAmelCase =hidden_sizes _lowerCAmelCase =depths _lowerCAmelCase =is_training _lowerCAmelCase =use_labels _lowerCAmelCase =hidden_act _lowerCAmelCase =num_labels _lowerCAmelCase =scope _lowerCAmelCase =len(__A ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase =self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> int: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Tuple: _lowerCAmelCase =TFResNetModel(config=__A ) _lowerCAmelCase =model(__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Union[str, Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFResNetForImageClassification(__A ) _lowerCAmelCase =model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase : List[Any] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) lowercase : List[str] = False lowercase : Optional[Any] = False lowercase : List[str] = False lowercase : Union[str, Any] = False lowercase : List[str] = False def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =TFResNetModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , has_text_modality=__A ) def UpperCamelCase__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ) -> Optional[Any]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase__ ( self ) -> str: pass def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(__A ) _lowerCAmelCase =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase =[*signature.parameters.keys()] _lowerCAmelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , __A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: def check_hidden_states_output(__A , __A , __A ): _lowerCAmelCase =model_class(__A ) _lowerCAmelCase =model(**self._prepare_for_class(__A , __A ) ) _lowerCAmelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase =self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase =['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase =layer_type _lowerCAmelCase =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase =True check_hidden_states_output(__A , __A , __A ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def UpperCamelCase__ ( self ) -> str: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFResNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> Dict: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase =self.default_image_processor _lowerCAmelCase =prepare_img() _lowerCAmelCase =image_processor(images=__A , return_tensors='tf' ) # forward pass _lowerCAmelCase =model(**__A ) # verify the logits _lowerCAmelCase =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __A ) _lowerCAmelCase =tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __A , atol=1E-4 ) )
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } lowercase_ = { '''gpt-neox-20b''': 2048, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = VOCAB_FILES_NAMES lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple = ['input_ids', 'attention_mask'] def __init__( self , __A=None , __A=None , __A=None , __A="<|endoftext|>" , __A="<|endoftext|>" , __A="<|endoftext|>" , __A=False , **__A , ) -> List[Any]: super().__init__( __A , __A , tokenizer_file=__A , unk_token=__A , bos_token=__A , eos_token=__A , add_prefix_space=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __A ) != add_prefix_space: _lowerCAmelCase =getattr(__A , pre_tok_state.pop('type' ) ) _lowerCAmelCase =add_prefix_space _lowerCAmelCase =pre_tok_class(**__A ) _lowerCAmelCase =add_prefix_space def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def UpperCamelCase__ ( self , __A ) -> List[int]: _lowerCAmelCase =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: _lowerCAmelCase =input_ids[-self.model_max_length :] return input_ids
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' def update_area_of_max_square(a__ , a__ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _lowerCAmelCase =update_area_of_max_square(a__ , col + 1 ) _lowerCAmelCase =update_area_of_max_square(row + 1 , col + 1 ) _lowerCAmelCase =update_area_of_max_square(row + 1 , a__ ) if mat[row][col]: _lowerCAmelCase =1 + min([right, diagonal, down] ) _lowerCAmelCase =max(largest_square_area[0] , a__ ) return sub_problem_sol else: return 0 _lowerCAmelCase =[0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' def update_area_of_max_square_using_dp_array( a__ , a__ , a__ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _lowerCAmelCase =update_area_of_max_square_using_dp_array(a__ , col + 1 , a__ ) _lowerCAmelCase =update_area_of_max_square_using_dp_array(row + 1 , col + 1 , a__ ) _lowerCAmelCase =update_area_of_max_square_using_dp_array(row + 1 , a__ , a__ ) if mat[row][col]: _lowerCAmelCase =1 + min([right, diagonal, down] ) _lowerCAmelCase =max(largest_square_area[0] , a__ ) _lowerCAmelCase =sub_problem_sol return sub_problem_sol else: return 0 _lowerCAmelCase =[0] _lowerCAmelCase =[[-1] * cols for _ in range(a__ )] update_area_of_max_square_using_dp_array(0 , 0 , a__ ) return largest_square_area[0] def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[[0] * (cols + 1) for _ in range(rows + 1 )] _lowerCAmelCase =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase =dp_array[row][col + 1] _lowerCAmelCase =dp_array[row + 1][col + 1] _lowerCAmelCase =dp_array[row + 1][col] if mat[row][col] == 1: _lowerCAmelCase =1 + min(a__ , a__ , a__ ) _lowerCAmelCase =max(dp_array[row][col] , a__ ) else: _lowerCAmelCase =0 return largest_square_area def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =[0] * (cols + 1) _lowerCAmelCase =[0] * (cols + 1) _lowerCAmelCase =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase =current_row[col + 1] _lowerCAmelCase =next_row[col + 1] _lowerCAmelCase =next_row[col] if mat[row][col] == 1: _lowerCAmelCase =1 + min(a__ , a__ , a__ ) _lowerCAmelCase =max(current_row[col] , a__ ) else: _lowerCAmelCase =0 _lowerCAmelCase =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' def UpperCamelCase__ ( ): '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =2 while i * i <= n: _lowerCAmelCase =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase__ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(a__ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[int] = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[Any] = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Dict = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> Tuple: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[str] = ['torch'] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Dict = ['torch'] def __init__( self , *__A , **__A ) -> Union[str, Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Tuple = ['torch'] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[int] = ['torch'] def __init__( self , *__A , **__A ) -> Union[str, Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[int] = ['torch'] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['torch'] ) def UpperCamelCase__ ( *a__ , **a__ ): '''simple docstring''' requires_backends(a__ , ['torch'] ) def UpperCamelCase__ ( *a__ , **a__ ): '''simple docstring''' requires_backends(a__ , ['torch'] ) def UpperCamelCase__ ( *a__ , **a__ ): '''simple docstring''' requires_backends(a__ , ['torch'] ) def UpperCamelCase__ ( *a__ , **a__ ): '''simple docstring''' requires_backends(a__ , ['torch'] ) def UpperCamelCase__ ( *a__ , **a__ ): '''simple docstring''' requires_backends(a__ , ['torch'] ) def UpperCamelCase__ ( *a__ , **a__ ): '''simple docstring''' requires_backends(a__ , ['torch'] ) def UpperCamelCase__ ( *a__ , **a__ ): '''simple docstring''' requires_backends(a__ , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> Any: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Tuple = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[Any] = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[int] = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Any = ['torch'] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[Any] = ['torch'] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Union[str, Any] = ['torch'] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Any = ['torch'] def __init__( self , *__A , **__A ) -> Union[str, Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Dict = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[Any] = ['torch'] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : int = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[str] = ['torch'] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Union[str, Any] = ['torch'] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[Any] = ['torch'] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[Any] = ['torch'] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Union[str, Any] = ['torch'] def __init__( self , *__A , **__A ) -> Union[str, Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Union[str, Any] = ['torch'] def __init__( self , *__A , **__A ) -> List[str]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> Tuple: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : str = ['torch'] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[Any] = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Dict = ['torch'] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Any = ['torch'] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Dict: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Tuple = ['torch'] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[str] = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[Any] = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[str] = ['torch'] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : int = ['torch'] def __init__( self , *__A , **__A ) -> Union[str, Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Union[str, Any]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : int = ['torch'] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[str] = ['torch'] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Any = ['torch'] def __init__( self , *__A , **__A ) -> int: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[int]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Union[str, Any] = ['torch'] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[str] = ['torch'] def __init__( self , *__A , **__A ) -> Optional[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> int: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : int = ['torch'] def __init__( self , *__A , **__A ) -> List[Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : List[str] = ['torch'] def __init__( self , *__A , **__A ) -> str: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[str]: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Dict = ['torch'] def __init__( self , *__A , **__A ) -> Optional[int]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Optional[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> str: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Optional[Any] = ['torch'] def __init__( self , *__A , **__A ) -> Union[str, Any]: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) class SCREAMING_SNAKE_CASE ( metaclass=__lowercase): """simple docstring""" lowercase : Dict = ['torch'] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Any: requires_backends(cls , ['torch'] ) @classmethod def UpperCamelCase__ ( cls , *__A , **__A ) -> Tuple: requires_backends(cls , ['torch'] )
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(a__ ) * abs(a__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=16 , __A=36 , __A=6 , __A=6 , __A=6 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> List[str]: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_input_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =embedding_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_hidden_groups _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_labels _lowerCAmelCase =num_choices _lowerCAmelCase =scope def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> List[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Any: _lowerCAmelCase =AlbertModel(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A ) _lowerCAmelCase =model(__A , token_type_ids=__A ) _lowerCAmelCase =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Tuple: _lowerCAmelCase =AlbertForPreTraining(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , sentence_order_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Any: _lowerCAmelCase =AlbertForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: _lowerCAmelCase =AlbertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: _lowerCAmelCase =self.num_labels _lowerCAmelCase =AlbertForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.num_labels _lowerCAmelCase =AlbertForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __A , __A , __A , __A , __A , __A , __A ) -> str: _lowerCAmelCase =self.num_choices _lowerCAmelCase =AlbertForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase =model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase : Union[str, Any] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase : int = True def UpperCamelCase__ ( self , __A , __A , __A=False ) -> int: _lowerCAmelCase =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): _lowerCAmelCase =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) _lowerCAmelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =AlbertModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase =type self.model_tester.create_and_check_model(*__A ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =AlbertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =AlbertModel.from_pretrained('albert-base-v2' ) _lowerCAmelCase =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase =model(__A , attention_mask=__A )[0] _lowerCAmelCase =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) _lowerCAmelCase =torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1E-4 ) )
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def UpperCamelCase__ ( *__A , **__A ) -> Union[str, Any]: pass @is_pipeline_test @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @require_torch def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__A ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], ] , ) @require_tf def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(__A ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], [ {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, {'score': 0.333, 'label': ANY(__A )}, ], ] , ) @slow @require_torch def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(__A ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase =image_classifier(__A , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(__A ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) _lowerCAmelCase =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(__A ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase__ ( a__ ): '''simple docstring''' @wraps(a__ ) def _inner_fn(*a__ , **a__ ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , a__ , ) return fn(*a__ , **a__ ) return _inner_fn
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowercase_ = parser.parse_args() lowercase_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' if not isinstance(a__ , a__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(a__ ) == 0: raise ValueError('Input list must be a non empty list' ) if len(a__ ) == 1: return True _lowerCAmelCase =series[1] - series[0] for index in range(len(a__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def UpperCamelCase__ ( a__ ): '''simple docstring''' if not isinstance(a__ , a__ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(a__ ) == 0: raise ValueError('Input list must be a non empty list' ) _lowerCAmelCase =0 for val in series: answer += val return answer / len(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowercase_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowercase_ = spec.loader.load_module() lowercase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase_ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowercase_ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =[] for config_class in list(CONFIG_MAPPING.values() ): _lowerCAmelCase =False # source code of `config_class` _lowerCAmelCase =inspect.getsource(a__ ) _lowerCAmelCase =_re_checkpoint.findall(a__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _lowerCAmelCase , _lowerCAmelCase =checkpoint # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase =F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _lowerCAmelCase =True break _lowerCAmelCase =config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(a__ ) if len(a__ ) > 0: _lowerCAmelCase ='\n'.join(sorted(a__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowercase_ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' lowercase_ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' lowercase_ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return float((preds == labels).mean() ) def UpperCamelCase__ ( a__ , a__ , a__="binary" ): '''simple docstring''' _lowerCAmelCase =simple_accuracy(a__ , a__ ) _lowerCAmelCase =float(fa_score(y_true=a__ , y_pred=a__ , average=a__ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase ={} for id_pred, label in zip(a__ , a__ ): _lowerCAmelCase =F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _lowerCAmelCase =id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _lowerCAmelCase =[(pred, label)] _lowerCAmelCase , _lowerCAmelCase =[], [] for question, preds_labels in question_map.items(): _lowerCAmelCase , _lowerCAmelCase =zip(*a__ ) _lowerCAmelCase =fa_score(y_true=a__ , y_pred=a__ , average='macro' ) fas.append(a__ ) _lowerCAmelCase =int(sum(pred == label for pred, label in preds_labels ) == len(a__ ) ) ems.append(a__ ) _lowerCAmelCase =float(sum(a__ ) / len(a__ ) ) _lowerCAmelCase =sum(a__ ) / len(a__ ) _lowerCAmelCase =float(fa_score(y_true=a__ , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self ) -> Tuple: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def UpperCamelCase__ ( self ) -> Dict: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def UpperCamelCase__ ( self , __A , __A ) -> Tuple: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__A , __A )} elif self.config_name == "cb": return acc_and_fa(__A , __A , fa_avg='macro' ) elif self.config_name == "record": _lowerCAmelCase =[ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] _lowerCAmelCase ={pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(__A , __A )[0] elif self.config_name == "multirc": return evaluate_multirc(__A , __A ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__A , __A )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCamelCase__ ( a__ , a__ , a__ = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path _lowerCAmelCase =quote(a__ ) return hfh.hf_hub_url(a__ , a__ , repo_type='dataset' , revision=a__ )
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =filter(lambda a__ : p.requires_grad , model.parameters() ) _lowerCAmelCase =sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase_ = logging.getLogger(__name__) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if metric == "rouge2": _lowerCAmelCase ='{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCAmelCase ='{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCAmelCase ='{val_avg_em:.4f}-{step_count}' elif metric == "loss": _lowerCAmelCase ='{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) _lowerCAmelCase =ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=a__ , verbose=a__ , ) class SCREAMING_SNAKE_CASE ( pl.Callback): """simple docstring""" def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase ={F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__A ) @rank_zero_only def UpperCamelCase__ ( self , __A , __A , __A , __A=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _lowerCAmelCase =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCAmelCase =Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCAmelCase =od / 'test_results.txt' _lowerCAmelCase =od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCAmelCase =od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _lowerCAmelCase =od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__A ) generations_file.parent.mkdir(exist_ok=__A ) with open(__A , 'a+' ) as writer: for key in sorted(__A ): if key in ["log", "progress_bar", "preds"]: continue _lowerCAmelCase =metrics[key] if isinstance(__A , torch.Tensor ): _lowerCAmelCase =val.item() _lowerCAmelCase =F'''{key}: {val:.6f}\n''' writer.write(__A ) if not save_generations: return if "preds" in metrics: _lowerCAmelCase ='\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(__A ) @rank_zero_only def UpperCamelCase__ ( self , __A , __A ) -> Dict: try: _lowerCAmelCase =pl_module.model.model.num_parameters() except AttributeError: _lowerCAmelCase =pl_module.model.num_parameters() _lowerCAmelCase =count_trainable_parameters(__A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def UpperCamelCase__ ( self , __A , __A ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__A , __A , 'test' ) @rank_zero_only def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def UpperCamelCase__ ( a__ ): '''simple docstring''' def decorator(a__ ): _lowerCAmelCase =getattr(a__ , 'handle_key' , [] ) handle += [key] setattr(a__ , 'handle_key' , a__ ) return func return decorator def UpperCamelCase__ ( *a__ ): '''simple docstring''' def decorator(a__ ): _lowerCAmelCase =getattr(a__ , 'handle_key' , [] ) handle += keys setattr(a__ , 'handle_key' , a__ ) return func return decorator class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __new__( cls , __A , __A , __A ) -> Tuple: _lowerCAmelCase =super().__new__(cls , __A , __A , __A ) if not hasattr(__A , 'key_handler' ): setattr(__A , 'key_handler' , {} ) setattr(__A , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): _lowerCAmelCase =getattr(__A , 'handle_key' , [] ) for key in handled_keys: _lowerCAmelCase =value return new_cls @staticmethod def UpperCamelCase__ ( cls ) -> Tuple: _lowerCAmelCase =get_character() if char != KEYMAP["undefined"]: _lowerCAmelCase =ord(__A ) _lowerCAmelCase =cls.key_handler.get(__A ) if handler: _lowerCAmelCase =char return handler(cls ) else: return None def UpperCamelCase__ ( cls ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def UpperCamelCase__ ( a__ ): '''simple docstring''' return (data["data"], data["target"]) def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(a__ , a__ ) # Predict target for test data _lowerCAmelCase =xgb.predict(a__ ) _lowerCAmelCase =predictions.reshape(len(a__ ) , 1 ) return predictions def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =fetch_california_housing() _lowerCAmelCase , _lowerCAmelCase =data_handling(a__ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =train_test_split( a__ , a__ , test_size=0.25 , random_state=1 ) _lowerCAmelCase =xgboost(a__ , a__ , a__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(a__ , a__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(a__ , a__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=4 , ) -> str: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_token_type_ids _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =type_sequence_label_size _lowerCAmelCase =initializer_range _lowerCAmelCase =num_choices def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None if self.use_token_type_ids: _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase =True _lowerCAmelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): """simple docstring""" lowercase : Any = True lowercase : Any = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCamelCase__ ( self ) -> int: for model_class_name in self.all_model_classes: _lowerCAmelCase =model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__A ) _lowerCAmelCase =model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__A ) _lowerCAmelCase =np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) _lowerCAmelCase =model(__A )[0] _lowerCAmelCase =[1, 11, 5_0265] self.assertEqual(list(output.shape ) , __A ) # compare the actual values for a slice. _lowerCAmelCase =np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __A , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=__A ) _lowerCAmelCase =np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) _lowerCAmelCase =model(__A )[0] # compare the actual values for a slice. _lowerCAmelCase =np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0 ): '''simple docstring''' if not isinstance(a__ , a__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCAmelCase =1_0**n _lowerCAmelCase =2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , a__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(10) = }')
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase : int lowercase : TreeNode | None = None lowercase : TreeNode | None = None lowercase_ = namedtuple('''CoinsDistribResult''', '''moves excess''') def UpperCamelCase__ ( a__ ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(a__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a__ ) != count_coins(a__ ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(a__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _lowerCAmelCase , _lowerCAmelCase =get_distrib(node.left ) _lowerCAmelCase , _lowerCAmelCase =get_distrib(node.right ) _lowerCAmelCase =1 - left_distrib_excess _lowerCAmelCase =1 - right_distrib_excess _lowerCAmelCase =( left_distrib_moves + right_distrib_moves + abs(a__ ) + abs(a__ ) ) _lowerCAmelCase =node.data - coins_to_left - coins_to_right return CoinsDistribResult(a__ , a__ ) return get_distrib(a__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' import requests lowercase_ = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowercase_ = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' _lowerCAmelCase =SavedModel() _lowerCAmelCase =[] with open(os.path.join(a__ , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: _lowerCAmelCase =json.load(a__ )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a__ )] ) with open(a__ , 'rb' ) as f: saved_model.ParseFromString(f.read() ) _lowerCAmelCase =set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _lowerCAmelCase =sorted(a__ ) _lowerCAmelCase =[] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a__ ) if strict and len(a__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(a__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*a__ , sep='\n' ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) lowercase_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' import math def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(a__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , __lowercase , ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : str = RobertaConfig lowercase : Dict = 'roberta' def __init__( self , __A ) -> Union[str, Any]: super().__init__(__A ) _lowerCAmelCase =RobertaEmbeddings(__A ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , __lowercase , ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = RobertaConfig lowercase : Tuple = 'roberta' def __init__( self , __A ) -> Dict: super().__init__(__A ) _lowerCAmelCase =config.num_labels _lowerCAmelCase =config.num_hidden_layers _lowerCAmelCase =DeeRobertaModel(__A ) _lowerCAmelCase =nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__A ) def UpperCamelCase__ ( self , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=-1 , __A=False , ) -> str: _lowerCAmelCase =self.num_layers try: _lowerCAmelCase =self.roberta( __A , attention_mask=__A , token_type_ids=__A , position_ids=__A , head_mask=__A , inputs_embeds=__A , ) _lowerCAmelCase =outputs[1] _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.classifier(__A ) _lowerCAmelCase =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase =e.message _lowerCAmelCase =e.exit_layer _lowerCAmelCase =outputs[0] if not self.training: _lowerCAmelCase =entropy(__A ) _lowerCAmelCase =[] _lowerCAmelCase =[] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase =MSELoss() _lowerCAmelCase =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase =CrossEntropyLoss() _lowerCAmelCase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase =[] for highway_exit in outputs[-1]: _lowerCAmelCase =highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase =MSELoss() _lowerCAmelCase =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase =CrossEntropyLoss() _lowerCAmelCase =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: _lowerCAmelCase =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase =(loss,) + outputs if not self.training: _lowerCAmelCase =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import collections import os import re from pathlib import Path lowercase_ = '''src/transformers''' # Matches is_xxx_available() lowercase_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowercase_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowercase_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowercase_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowercase_ = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowercase_ = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowercase_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowercase_ = re.compile(r'''^\s*try:''') # Catches a line with else: lowercase_ = re.compile(r'''^\s*else:''') def UpperCamelCase__ ( a__ ): '''simple docstring''' if _re_test_backend.search(a__ ) is None: return None _lowerCAmelCase =[b[0] for b in _re_backend.findall(a__ )] backends.sort() return "_and_".join(a__ ) def UpperCamelCase__ ( a__ ): '''simple docstring''' with open(a__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase =f.readlines() _lowerCAmelCase =0 while line_index < len(a__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a__ ): return None # First grab the objects without a specific backend in _import_structure _lowerCAmelCase =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: _lowerCAmelCase =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a__ ): _lowerCAmelCase =_re_one_line_import_struct.search(a__ ).groups()[0] _lowerCAmelCase =re.findall(r'\[([^\]]+)\]' , a__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue _lowerCAmelCase =_re_import_struct_key_value.search(a__ ) if single_line_import_search is not None: _lowerCAmelCase =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(a__ ) > 0] objects.extend(a__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 _lowerCAmelCase ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCAmelCase =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCAmelCase =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCAmelCase =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): _lowerCAmelCase =lines[line_index] if _re_import_struct_add_one.search(a__ ) is not None: objects.append(_re_import_struct_add_one.search(a__ ).groups()[0] ) elif _re_import_struct_add_many.search(a__ ) is not None: _lowerCAmelCase =_re_import_struct_add_many.search(a__ ).groups()[0].split(', ' ) _lowerCAmelCase =[obj[1:-1] for obj in imports if len(a__ ) > 0] objects.extend(a__ ) elif _re_between_brackets.search(a__ ) is not None: _lowerCAmelCase =_re_between_brackets.search(a__ ).groups()[0].split(', ' ) _lowerCAmelCase =[obj[1:-1] for obj in imports if len(a__ ) > 0] objects.extend(a__ ) elif _re_quote_object.search(a__ ) is not None: objects.append(_re_quote_object.search(a__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 1_2 + '"' ): objects.append(line[1_3:-3] ) line_index += 1 _lowerCAmelCase =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCAmelCase =[] while ( line_index < len(a__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): _lowerCAmelCase =lines[line_index] _lowerCAmelCase =_re_import.search(a__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCAmelCase ={'none': objects} # Let's continue with backend-specific objects while line_index < len(a__ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCAmelCase =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCAmelCase =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCAmelCase =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): _lowerCAmelCase =lines[line_index] _lowerCAmelCase =_re_import.search(a__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 _lowerCAmelCase =objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def find_duplicates(a__ ): return [k for k, v in collections.Counter(a__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCAmelCase =[] for key in import_dict_objects.keys(): _lowerCAmelCase =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _lowerCAmelCase =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCAmelCase ='base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =[] for root, _, files in os.walk(a__ ): if "__init__.py" in files: _lowerCAmelCase =os.path.join(a__ , '__init__.py' ) _lowerCAmelCase =parse_init(a__ ) if objects is not None: _lowerCAmelCase =analyze_results(*a__ ) if len(a__ ) > 0: _lowerCAmelCase =F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(a__ ) ) if len(a__ ) > 0: raise ValueError('\n\n'.join(a__ ) ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =[] for path, directories, files in os.walk(a__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(a__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a__ ) / folder).glob('*.py' ) ) ) == 0: continue _lowerCAmelCase =str((Path(a__ ) / folder).relative_to(a__ ) ) _lowerCAmelCase =short_path.replace(os.path.sep , '.' ) submodules.append(a__ ) for fname in files: if fname == "__init__.py": continue _lowerCAmelCase =str((Path(a__ ) / fname).relative_to(a__ ) ) _lowerCAmelCase =short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(a__ ) return submodules lowercase_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def UpperCamelCase__ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import _lowerCAmelCase =direct_transformers_import(a__ ) _lowerCAmelCase =set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(a__ , '__init__.py' ) , 'r' ) as f: _lowerCAmelCase =f.read() import_structure_keys.update(set(re.findall(r'import_structure\[\"([^\"]*)\"\]' , a__ ) ) ) _lowerCAmelCase =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(a__ ) > 0: _lowerCAmelCase ='\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class SCREAMING_SNAKE_CASE : """simple docstring""" def UpperCamelCase__ ( self , __A ) -> List[Any]: raise NotImplementedError() def UpperCamelCase__ ( self ) -> str: raise NotImplementedError() class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A = False , **__A ) -> Dict: _lowerCAmelCase =tokenizer _lowerCAmelCase =skip_prompt _lowerCAmelCase =decode_kwargs # variables used in the streaming process _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =True def UpperCamelCase__ ( self , __A ) -> int: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: _lowerCAmelCase =value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowerCAmelCase =False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _lowerCAmelCase =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): _lowerCAmelCase =text[self.print_len :] _lowerCAmelCase =[] _lowerCAmelCase =0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _lowerCAmelCase =text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowerCAmelCase =text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def UpperCamelCase__ ( self ) -> int: # Flush the cache, if it exists if len(self.token_cache ) > 0: _lowerCAmelCase =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _lowerCAmelCase =text[self.print_len :] _lowerCAmelCase =[] _lowerCAmelCase =0 else: _lowerCAmelCase ='' _lowerCAmelCase =True self.on_finalized_text(__A , stream_end=__A ) def UpperCamelCase__ ( self , __A , __A = False ) -> Tuple: print(__A , flush=__A , end='' if not stream_end else None ) def UpperCamelCase__ ( self , __A ) -> str: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A = False , __A = None , **__A ) -> List[Any]: super().__init__(__A , __A , **__A ) _lowerCAmelCase =Queue() _lowerCAmelCase =None _lowerCAmelCase =timeout def UpperCamelCase__ ( self , __A , __A = False ) -> Any: self.text_queue.put(__A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Optional[int]: return self def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase ={ 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _lowerCAmelCase ={ 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(__A ) , __A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__A ) , x.transpose() ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =torch.tensor(__A ) self.assertTrue(np.allclose(transpose(__A ) , transpose(__A ).numpy() ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) _lowerCAmelCase =torch.tensor(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , transpose(__A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =tf.constant(__A ) self.assertTrue(np.allclose(transpose(__A ) , transpose(__A ).numpy() ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) _lowerCAmelCase =tf.constant(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , transpose(__A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =jnp.array(__A ) self.assertTrue(np.allclose(transpose(__A ) , np.asarray(transpose(__A ) ) ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) _lowerCAmelCase =jnp.array(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , np.asarray(transpose(__A , axes=(1, 2, 0) ) ) ) ) def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , np.reshape(__A , (4, 3) ) ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , np.reshape(__A , (12, 5) ) ) ) @require_torch def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =torch.tensor(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , reshape(__A , (4, 3) ).numpy() ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) _lowerCAmelCase =torch.tensor(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , reshape(__A , (12, 5) ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =tf.constant(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , reshape(__A , (4, 3) ).numpy() ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) _lowerCAmelCase =tf.constant(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , reshape(__A , (12, 5) ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =jnp.array(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , np.asarray(reshape(__A , (4, 3) ) ) ) ) _lowerCAmelCase =np.random.randn(3 , 4 , 5 ) _lowerCAmelCase =jnp.array(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , np.asarray(reshape(__A , (12, 5) ) ) ) ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__A ) , np.squeeze(__A ) ) ) _lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , np.squeeze(__A , axis=2 ) ) ) @require_torch def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =np.random.randn(1 , 3 , 4 ) _lowerCAmelCase =torch.tensor(__A ) self.assertTrue(np.allclose(squeeze(__A ) , squeeze(__A ).numpy() ) ) _lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase =torch.tensor(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , squeeze(__A , axis=2 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =np.random.randn(1 , 3 , 4 ) _lowerCAmelCase =tf.constant(__A ) self.assertTrue(np.allclose(squeeze(__A ) , squeeze(__A ).numpy() ) ) _lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase =tf.constant(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , squeeze(__A , axis=2 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =np.random.randn(1 , 3 , 4 ) _lowerCAmelCase =jnp.array(__A ) self.assertTrue(np.allclose(squeeze(__A ) , np.asarray(squeeze(__A ) ) ) ) _lowerCAmelCase =np.random.randn(1 , 4 , 1 , 5 ) _lowerCAmelCase =jnp.array(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , np.asarray(squeeze(__A , axis=2 ) ) ) ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , np.expand_dims(__A , axis=1 ) ) ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =torch.tensor(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , expand_dims(__A , axis=1 ).numpy() ) ) @require_tf def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =tf.constant(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , expand_dims(__A , axis=1 ).numpy() ) ) @require_flax def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =np.random.randn(3 , 4 ) _lowerCAmelCase =jnp.array(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , np.asarray(expand_dims(__A , axis=1 ) ) ) )
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = 'owlvit_text_model' def __init__( self , __A=4_9408 , __A=512 , __A=2048 , __A=12 , __A=8 , __A=16 , __A="quick_gelu" , __A=1E-5 , __A=0.0 , __A=0.02 , __A=1.0 , __A=0 , __A=4_9406 , __A=4_9407 , **__A , ) -> Any: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_act _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =attention_dropout _lowerCAmelCase =initializer_range _lowerCAmelCase =initializer_factor @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": _lowerCAmelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'owlvit_vision_model' def __init__( self , __A=768 , __A=3072 , __A=12 , __A=12 , __A=3 , __A=768 , __A=32 , __A="quick_gelu" , __A=1E-5 , __A=0.0 , __A=0.02 , __A=1.0 , **__A , ) -> Dict: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =hidden_act _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =attention_dropout _lowerCAmelCase =initializer_range _lowerCAmelCase =initializer_factor @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'owlvit' lowercase : Optional[int] = True def __init__( self , __A=None , __A=None , __A=512 , __A=2.6_592 , __A=True , **__A , ) -> Optional[int]: super().__init__(**__A ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) _lowerCAmelCase =OwlViTTextConfig(**__A ) _lowerCAmelCase =OwlViTVisionConfig(**__A ) _lowerCAmelCase =projection_dim _lowerCAmelCase =logit_scale_init_value _lowerCAmelCase =return_dict _lowerCAmelCase =1.0 @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) @classmethod def UpperCamelCase__ ( cls , __A , __A , **__A ) -> Union[str, Any]: _lowerCAmelCase ={} _lowerCAmelCase =text_config _lowerCAmelCase =vision_config return cls.from_dict(__A , **__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-4 def UpperCamelCase__ ( self , __A , __A = -1 , __A = -1 , __A = None , ) -> Mapping[str, Any]: _lowerCAmelCase =super().generate_dummy_inputs( processor.tokenizer , batch_size=__A , seq_length=__A , framework=__A ) _lowerCAmelCase =super().generate_dummy_inputs( processor.image_processor , batch_size=__A , framework=__A ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase__ ( self ) -> int: return 14
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _lowerCAmelCase =Vector() def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__A ) , '(0,0,0,0,0,1)' ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 2, 3, 4] ) self.assertEqual(len(__A ) , 4 ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 2] ) _lowerCAmelCase =Vector([1, 2, 3, 4, 5] ) _lowerCAmelCase =Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _lowerCAmelCase =Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 2, 3] ) _lowerCAmelCase =Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 2, 3] ) _lowerCAmelCase =Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 2, 3] ) _lowerCAmelCase =Vector([2, -1, 4] ) # for test of dot product _lowerCAmelCase =Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def UpperCamelCase__ ( self ) -> None: self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def UpperCamelCase__ ( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 2, 3] ) _lowerCAmelCase =Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __A , __A ) ) , '(3,4,7)' ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 0, 0, 0, 0, 0] ) _lowerCAmelCase =x.copy() self.assertEqual(str(__A ) , str(__A ) ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__A ) , '(0,1,0)' ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(__A ) ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase =[[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__A , __A ) ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase =[[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__A , __A ) ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _lowerCAmelCase =Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(__A ) ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase =Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def UpperCamelCase__ ( self ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowercase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''DPTFeatureExtractor'''] lowercase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =int(a__ ) assert noofclusters < len(a__ ) # Find out the dimensionality _lowerCAmelCase =len(vectors[0] ) # Will help select random centroids from among the available vectors _lowerCAmelCase =list(range(len(a__ ) ) ) shuffle(a__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowerCAmelCase =tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowerCAmelCase =tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowerCAmelCase =[ tf.Variable(vectors[vector_indices[i]] ) for i in range(a__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowerCAmelCase =tf.placeholder('float64' , [dim] ) _lowerCAmelCase =[] for centroid in centroids: cent_assigns.append(tf.assign(a__ , a__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowerCAmelCase =[tf.Variable(0 ) for i in range(len(a__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowerCAmelCase =tf.placeholder('int32' ) _lowerCAmelCase =[] for assignment in assignments: cluster_assigns.append(tf.assign(a__ , a__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowerCAmelCase =tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowerCAmelCase =tf.reduce_mean(a__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input _lowerCAmelCase =tf.placeholder('float' , [dim] ) _lowerCAmelCase =tf.placeholder('float' , [dim] ) _lowerCAmelCase =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(a__ , a__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowerCAmelCase =tf.placeholder('float' , [noofclusters] ) _lowerCAmelCase =tf.argmin(a__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowerCAmelCase =tf.initialize_all_variables() # Initialize all variables sess.run(a__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowerCAmelCase =1_0_0 for _ in range(a__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(a__ ) ): _lowerCAmelCase =vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowerCAmelCase =[ sess.run(a__ , feed_dict={va: vect, va: sess.run(a__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowerCAmelCase =sess.run( a__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(a__ ): # Collect all the vectors assigned to this cluster _lowerCAmelCase =[ vectors[i] for i in range(len(a__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowerCAmelCase =sess.run( a__ , feed_dict={mean_input: array(a__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowerCAmelCase =sess.run(a__ ) _lowerCAmelCase =sess.run(a__ ) return centroids, assignments
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : List[str] = 'data2vec-text' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =type_vocab_size _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =classifier_dropout class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
58
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" lowercase : List[Any] = IFPipeline lowercase : Tuple = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowercase : int = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self ) -> str: return self._get_dummy_components() def UpperCamelCase__ ( self , __A , __A=0 ) -> int: if str(__A ).startswith('mps' ): _lowerCAmelCase =torch.manual_seed(__A ) else: _lowerCAmelCase =torch.Generator(device=__A ).manual_seed(__A ) _lowerCAmelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ) -> str: self._test_save_load_local() def UpperCamelCase__ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[Any]: # if _lowerCAmelCase =IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase =IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__A , tokenizer=__A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase =pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase =None _lowerCAmelCase =None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase =IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase =IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__A , __A , __A , __A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase =IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase =IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__A , __A , __A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> str: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A , __A ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , num_inference_steps=2 , generator=__A , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__A , __A ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase =torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__A ) _lowerCAmelCase =floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__A ) _lowerCAmelCase =pipe_a( prompt_embeds=__A , negative_prompt_embeds=__A , image=__A , mask_image=__A , original_image=__A , generator=__A , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase =output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase =torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__A , __A ) def UpperCamelCase__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'swinv2' lowercase : List[str] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __A=224 , __A=4 , __A=3 , __A=96 , __A=[2, 2, 6, 2] , __A=[3, 6, 12, 24] , __A=7 , __A=4.0 , __A=True , __A=0.0 , __A=0.0 , __A=0.1 , __A="gelu" , __A=False , __A=0.02 , __A=1E-5 , __A=32 , **__A , ) -> Optional[Any]: super().__init__(**__A ) _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =embed_dim _lowerCAmelCase =depths _lowerCAmelCase =len(__A ) _lowerCAmelCase =num_heads _lowerCAmelCase =window_size _lowerCAmelCase =mlp_ratio _lowerCAmelCase =qkv_bias _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =drop_path_rate _lowerCAmelCase =hidden_act _lowerCAmelCase =use_absolute_embeddings _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =initializer_range _lowerCAmelCase =encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase =int(embed_dim * 2 ** (len(__A ) - 1) ) _lowerCAmelCase =(0, 0, 0, 0)
58
'''simple docstring''' import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =0 _lowerCAmelCase =[0] _lowerCAmelCase =[0] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) _lowerCAmelCase =[60] _lowerCAmelCase =[10] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 0 ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =3 _lowerCAmelCase =[1, 2, 3] _lowerCAmelCase =[3, 2, 1] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 5 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase =50 _lowerCAmelCase =[60, 100, 120] _lowerCAmelCase =[10, 20, 30] _lowerCAmelCase =len(__A ) self.assertEqual(k.knapsack(__A , __A , __A , __A ) , 220 ) if __name__ == "__main__": unittest.main()
58
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase_ = get_tests_dir('''fixtures''') class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> str: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Union[str, Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained(__A ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __A , repo_id='test-feature-extractor' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained(__A ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __A , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Any: CustomFeatureExtractor.register_for_auto_class() _lowerCAmelCase =CustomFeatureExtractor.from_pretrained(__A ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) _lowerCAmelCase =AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
58
'''simple docstring''' lowercase_ = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
58
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowercase_ = TypeVar('''KT''') lowercase_ = TypeVar('''VT''') class SCREAMING_SNAKE_CASE ( Generic[KT, VT]): """simple docstring""" def __init__( self , __A = "root" , __A = None ) -> Dict: _lowerCAmelCase =key _lowerCAmelCase =value _lowerCAmelCase =[] def __repr__( self ) -> str: return F'''Node({self.key}: {self.value})''' @property def UpperCamelCase__ ( self ) -> int: return len(self.forward ) class SCREAMING_SNAKE_CASE ( Generic[KT, VT]): """simple docstring""" def __init__( self , __A = 0.5 , __A = 16 ) -> int: _lowerCAmelCase =Node[KT, VT]() _lowerCAmelCase =0 _lowerCAmelCase =p _lowerCAmelCase =max_level def __str__( self ) -> str: _lowerCAmelCase =list(self ) if len(__A ) == 0: return F'''SkipList(level={self.level})''' _lowerCAmelCase =max((len(str(__A ) ) for item in items) , default=4 ) _lowerCAmelCase =max(__A , 4 ) + 4 _lowerCAmelCase =self.head _lowerCAmelCase =[] _lowerCAmelCase =node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(__A , '-' ) + '* ' * len(__A ) ) lines.append(' ' * label_size + '| ' * len(__A ) ) while len(node.forward ) != 0: _lowerCAmelCase =node.forward[0] lines.append( F'''[{node.key}]'''.ljust(__A , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(__A ) ) _lowerCAmelCase =node.forward lines.append('None'.ljust(__A ) + '* ' * len(__A ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(__A ) def __iter__( self ) -> int: _lowerCAmelCase =self.head while len(node.forward ) != 0: yield node.forward[0].key _lowerCAmelCase =node.forward[0] def UpperCamelCase__ ( self ) -> int: _lowerCAmelCase =1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCamelCase__ ( self , __A ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: _lowerCAmelCase =[] _lowerCAmelCase =self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _lowerCAmelCase =node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__A ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCamelCase__ ( self , __A ) -> int: _lowerCAmelCase , _lowerCAmelCase =self._locate_node(__A ) if node is not None: for i, update_node in enumerate(__A ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _lowerCAmelCase =node.forward[i] else: _lowerCAmelCase =update_node.forward[:i] def UpperCamelCase__ ( self , __A , __A ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase =self._locate_node(__A ) if node is not None: _lowerCAmelCase =value else: _lowerCAmelCase =self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __A ): update_vector.append(self.head ) _lowerCAmelCase =level _lowerCAmelCase =Node(__A , __A ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__A ) else: _lowerCAmelCase =new_node def UpperCamelCase__ ( self , __A ) -> VT | None: _lowerCAmelCase , _lowerCAmelCase =self._locate_node(__A ) if node is not None: return node.value return None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 1_2 ) skip_list.insert('Key3' , 4_1 ) skip_list.insert('Key4' , -1_9 ) _lowerCAmelCase =skip_list.head _lowerCAmelCase ={} while node.level != 0: _lowerCAmelCase =node.forward[0] _lowerCAmelCase =node.value assert len(a__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_0 ) skip_list.insert('Key1' , 1_2 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 1_0 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 1_0 ) _lowerCAmelCase =skip_list.head _lowerCAmelCase ={} while node.level != 0: _lowerCAmelCase =node.forward[0] _lowerCAmelCase =node.value if len(a__ ) != 4: print() assert len(a__ ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() assert skip_list.find('Some key' ) is None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key2' , 2_0 ) assert skip_list.find('Key2' ) == 2_0 skip_list.insert('Some Key' , 1_0 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 1_3 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 1_0 assert skip_list.find('V' ) == 1_3 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 1_4 assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4_2 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('X' ) def traverse_keys(a__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(a__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def UpperCamelCase__ ( ): '''simple docstring''' def is_sorted(a__ ): return all(next_item >= item for item, next_item in zip(a__ , lst[1:] ) ) _lowerCAmelCase =SkipList() for i in range(1_0 ): skip_list.insert(a__ , a__ ) assert is_sorted(list(a__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(a__ ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(a__ ) ) def UpperCamelCase__ ( ): '''simple docstring''' for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
58
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase_ = '''sshleifer/mar_enro_6_3_student''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[Any]: super().setUp() _lowerCAmelCase =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=__A , ) _lowerCAmelCase =F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: MarianMTModel.from_pretrained(__A ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: _lowerCAmelCase ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script _lowerCAmelCase =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _lowerCAmelCase =F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _lowerCAmelCase =['finetune.py'] + bash_script.split() + args with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationModule.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() _lowerCAmelCase =main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' _lowerCAmelCase ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script _lowerCAmelCase =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) _lowerCAmelCase =bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) _lowerCAmelCase =bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): _lowerCAmelCase =bash_script.replace(__A , str(__A ) ) _lowerCAmelCase =self.get_auto_remove_tmp_dir() _lowerCAmelCase =bash_script.replace('--fp16' , '' ) _lowerCAmelCase =6 _lowerCAmelCase =( ['distillation.py'] + bash_script.split() + [ F'''--output_dir={output_dir}''', '--gpus=1', '--learning_rate=1e-3', F'''--num_train_epochs={epochs}''', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(__A , 'argv' , __A ): _lowerCAmelCase =argparse.ArgumentParser() _lowerCAmelCase =pl.Trainer.add_argparse_args(__A ) _lowerCAmelCase =SummarizationDistiller.add_model_specific_args(__A , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _lowerCAmelCase =distill_main(__A ) # Check metrics _lowerCAmelCase =load_json(model.metrics_save_path ) _lowerCAmelCase =metrics['val'][0] _lowerCAmelCase =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , __A ) # check lightning ckpt can be loaded and has a reasonable statedict _lowerCAmelCase =os.listdir(__A ) _lowerCAmelCase =[x for x in contents if x.endswith('.ckpt' )][0] _lowerCAmelCase =os.path.join(args.output_dir , __A ) _lowerCAmelCase =torch.load(__A , map_location='cpu' ) _lowerCAmelCase ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _lowerCAmelCase ={os.path.basename(__A ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
58
1
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = ['pixel_values'] def __init__( self , __A = True , __A = 1 / 255 , __A = True , __A = 8 , **__A , ) -> None: super().__init__(**__A ) _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_pad _lowerCAmelCase =pad_size def UpperCamelCase__ ( self , __A , __A , __A = None , **__A ) -> np.ndarray: return rescale(__A , scale=__A , data_format=__A , **__A ) def UpperCamelCase__ ( self , __A , __A , __A = None ) -> int: _lowerCAmelCase , _lowerCAmelCase =get_image_size(__A ) _lowerCAmelCase =(old_height // size + 1) * size - old_height _lowerCAmelCase =(old_width // size + 1) * size - old_width return pad(__A , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__A ) def UpperCamelCase__ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> Dict: _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_pad if do_pad is not None else self.do_pad _lowerCAmelCase =pad_size if pad_size is not None else self.pad_size _lowerCAmelCase =make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(__A ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(image=__A , scale=__A ) for image in images] if do_pad: _lowerCAmelCase =[self.pad(__A , size=__A ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(__A , __A ) for image in images] _lowerCAmelCase ={'pixel_values': images} return BatchFeature(data=__A , tensor_type=__A )
58
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'sequence-classification' def __init__( self , __A ) -> List[Any]: if type(__A ) == dict: _lowerCAmelCase =Namespace(**__A ) _lowerCAmelCase =glue_output_modes[hparams.task] _lowerCAmelCase =glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def UpperCamelCase__ ( self , **__A ) -> Any: return self.model(**__A ) def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase =outputs[0] _lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler'] _lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.hparams _lowerCAmelCase =processors[args.task]() _lowerCAmelCase =processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase =self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , __A ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _lowerCAmelCase =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _lowerCAmelCase =convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , __A ) torch.save(__A , __A ) def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader: _lowerCAmelCase ='dev' if mode == 'test' else mode _lowerCAmelCase =self._feature_file(__A ) logger.info('Loading features from cached file %s' , __A ) _lowerCAmelCase =torch.load(__A ) _lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def UpperCamelCase__ ( self , __A , __A ) -> List[str]: _lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _lowerCAmelCase =self(**__A ) _lowerCAmelCase , _lowerCAmelCase =outputs[:2] _lowerCAmelCase =logits.detach().cpu().numpy() _lowerCAmelCase =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __A ) -> tuple: _lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase =np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase =np.squeeze(__A ) _lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 ) _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )] _lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} _lowerCAmelCase =dict(results.items() ) _lowerCAmelCase =results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __A ) -> dict: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A ) _lowerCAmelCase =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __A , __A ) -> Any: BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( '--max_seq_length' , default=128 , type=__A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) _lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) _lowerCAmelCase =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase =os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCAmelCase =GLUETransformer(a__ ) _lowerCAmelCase =generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) ) _lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
58
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase_ = logging.getLogger() def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase ='\n'.join(a__ ) Path(a__ ).open('w' ).writelines(a__ ) lowercase_ = '''patrickvonplaten/t5-tiny-random''' lowercase_ = '''sshleifer/bart-tiny-random''' lowercase_ = '''sshleifer/tiny-mbart''' lowercase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> Any: _lowerCAmelCase =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _lowerCAmelCase =input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _lowerCAmelCase =[' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(__A , __A ) _lowerCAmelCase =str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _lowerCAmelCase ='translation_en_to_de' if model == T5_TINY else 'summarization' _lowerCAmelCase =F''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(__A , 'argv' , __A ): run_generate() assert Path(__A ).exists() # os.remove(Path(output_file_name)) def UpperCamelCase__ ( self ) -> str: self.run_eval_tester(__A ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCamelCase__ ( self , __A ) -> Dict: self.run_eval_tester(__A ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _lowerCAmelCase =input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _lowerCAmelCase ={ 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _lowerCAmelCase =Path(self.get_auto_remove_tmp_dir() ) _lowerCAmelCase =str(tmp_dir / 'scores.json' ) _lowerCAmelCase =str(tmp_dir / 'val.target' ) _dump_articles(__A , text['en'] ) _dump_articles(__A , text['de'] ) _lowerCAmelCase ='translation_en_to_de' if model == T5_TINY else 'summarization' _lowerCAmelCase =F''' run_eval_search.py {model} {str(__A )} {str(__A )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(__A , 'argv' , __A ): with CaptureStdout() as cs: run_search() _lowerCAmelCase =[' num_beams | length_penalty', model, 'Best score args'] _lowerCAmelCase =['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(__A ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__A ).exists() os.remove(Path(__A ) )
58
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> None: _lowerCAmelCase =num_of_nodes _lowerCAmelCase =[] _lowerCAmelCase ={} def UpperCamelCase__ ( self , __A , __A , __A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase__ ( self , __A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase__ ( self , __A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCAmelCase =self.find_component(__A ) def UpperCamelCase__ ( self , __A , __A , __A ) -> None: if component_size[u_node] <= component_size[v_node]: _lowerCAmelCase =v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCAmelCase =self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def UpperCamelCase__ ( self ) -> None: _lowerCAmelCase =[] _lowerCAmelCase =0 _lowerCAmelCase =[-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCAmelCase =self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCAmelCase =[u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =edge _lowerCAmelCase =self.m_component[u] _lowerCAmelCase =self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 _lowerCAmelCase =[-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def UpperCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCamelCase__ ( a__ ): '''simple docstring''' if "img_encoder.pos_embed" in name: _lowerCAmelCase =name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: _lowerCAmelCase =name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: _lowerCAmelCase =name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: _lowerCAmelCase =name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: _lowerCAmelCase =name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: _lowerCAmelCase =name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCAmelCase =name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: _lowerCAmelCase =name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: _lowerCAmelCase =name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: _lowerCAmelCase =name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: _lowerCAmelCase =name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: _lowerCAmelCase =name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: _lowerCAmelCase =name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: _lowerCAmelCase =name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: _lowerCAmelCase =name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: _lowerCAmelCase =name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: _lowerCAmelCase =name.replace('c_fc' , 'fc1' ) if "c_proj" in name: _lowerCAmelCase =name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: _lowerCAmelCase =name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: _lowerCAmelCase =name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: _lowerCAmelCase =name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: _lowerCAmelCase =name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: _lowerCAmelCase =name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: _lowerCAmelCase =name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase =orig_state_dict.pop(a__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCAmelCase =key.split('.' ) _lowerCAmelCase , _lowerCAmelCase =int(key_split[2] ), int(key_split[4] ) _lowerCAmelCase =config.vision_config.hidden_size if "weight" in key: _lowerCAmelCase =val[:dim, :] _lowerCAmelCase =val[dim : dim * 2, :] _lowerCAmelCase =val[-dim:, :] else: _lowerCAmelCase =val[:dim] _lowerCAmelCase =val[dim : dim * 2] _lowerCAmelCase =val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCAmelCase =key.split('.' ) _lowerCAmelCase =int(key_split[3] ) _lowerCAmelCase =config.text_config.hidden_size if "weight" in key: _lowerCAmelCase =val[:dim, :] _lowerCAmelCase =val[ dim : dim * 2, : ] _lowerCAmelCase =val[-dim:, :] else: _lowerCAmelCase =val[:dim] _lowerCAmelCase =val[dim : dim * 2] _lowerCAmelCase =val[-dim:] else: _lowerCAmelCase =rename_key(a__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCAmelCase =val.squeeze_() else: _lowerCAmelCase =val return orig_state_dict def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase =Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( a__ , a__ , a__="groupvit-gcc-yfcc" , a__=False ): '''simple docstring''' _lowerCAmelCase =GroupViTConfig() _lowerCAmelCase =GroupViTModel(a__ ).eval() _lowerCAmelCase =torch.load(a__ , map_location='cpu' )['model'] _lowerCAmelCase =convert_state_dict(a__ , a__ ) _lowerCAmelCase , _lowerCAmelCase =model.load_state_dict(a__ , strict=a__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(a__ ) == 0) # verify result _lowerCAmelCase =CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) _lowerCAmelCase =prepare_img() _lowerCAmelCase =processor(text=['a photo of a cat', 'a photo of a dog'] , images=a__ , padding=a__ , return_tensors='pt' ) with torch.no_grad(): _lowerCAmelCase =model(**a__ ) if model_name == "groupvit-gcc-yfcc": _lowerCAmelCase =torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCAmelCase =torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , a__ , atol=1E-3 ) processor.save_pretrained(a__ ) model.save_pretrained(a__ ) print('Successfully saved processor and model to' , a__ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(a__ , organization='nielsr' ) model.push_to_hub(a__ , organization='nielsr' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) lowercase_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
58
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase_ = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) _lowerCAmelCase =self.transformer_dir shutil.copy( os.path.join(__A , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase ='src/transformers' shutil.rmtree(self.transformer_dir ) def UpperCamelCase__ ( self , __A , __A , __A , __A=None ) -> Optional[Any]: _lowerCAmelCase =comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowerCAmelCase =comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowerCAmelCase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase =black.format_str(__A , mode=__A ) _lowerCAmelCase =os.path.join(self.transformer_dir , 'new_code.py' ) with open(__A , 'w' , newline='\n' ) as f: f.write(__A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__A ) with open(__A , 'r' ) as f: self.assertTrue(f.read() , __A ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(__A , __A ) def UpperCamelCase__ ( self ) -> List[str]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , __A , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , __A ) , ) # Copy consistency with a really long name _lowerCAmelCase ='TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , __A , __A ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , __A , overwrite_result=re.sub('Bert' , 'TestModel' , __A ) , ) def UpperCamelCase__ ( self ) -> Optional[Any]: _lowerCAmelCase =check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowerCAmelCase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowerCAmelCase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCAmelCase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowerCAmelCase , _lowerCAmelCase =check_copies.convert_to_localized_md( __A , __A , localized_readme['format_model_list'] ) self.assertFalse(__A ) self.assertEqual(__A , __A ) _lowerCAmelCase , _lowerCAmelCase =check_copies.convert_to_localized_md( __A , __A , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__A ) _lowerCAmelCase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowerCAmelCase =( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCAmelCase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowerCAmelCase , _lowerCAmelCase =check_copies.convert_to_localized_md( __A , __A , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(__A , __A )
58
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @classmethod def UpperCamelCase__ ( cls ) -> Optional[Any]: _lowerCAmelCase =TOKEN HfFolder.save_token(__A ) @classmethod def UpperCamelCase__ ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id='test-config' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id='valid_org/test-config-org' , push_to_hub=__A , use_auth_token=self._token ) _lowerCAmelCase =BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def UpperCamelCase__ ( self ) -> List[str]: CustomConfig.register_for_auto_class() _lowerCAmelCase =CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) _lowerCAmelCase =AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self ) -> List[Any]: _lowerCAmelCase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCAmelCase =c.n_embd + 1 # int _lowerCAmelCase =c.resid_pdrop + 1.0 # float _lowerCAmelCase =not c.scale_attn_weights # bool _lowerCAmelCase =c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__A , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__A , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__A , c.summary_type , 'mismatch for key: summary_type' ) def UpperCamelCase__ ( self ) -> List[str]: _lowerCAmelCase =PretrainedConfig() _lowerCAmelCase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) _lowerCAmelCase =[key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(__A )}.''' ) def UpperCamelCase__ ( self ) -> Optional[int]: with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__A ) def UpperCamelCase__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowerCAmelCase =mock.Mock() _lowerCAmelCase =500 _lowerCAmelCase ={} _lowerCAmelCase =HTTPError _lowerCAmelCase ={} # Download this model to make sure it's in the cache. _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__A ) as mock_head: _lowerCAmelCase =BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 _lowerCAmelCase =BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =AutoConfig.from_pretrained('bert-base-cased' ) _lowerCAmelCase =['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) _lowerCAmelCase =2 json.dump(configuration.to_dict() , open(os.path.join(__A , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCAmelCase =['config.42.0.0.json'] _lowerCAmelCase =768 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , 'config.4.0.0.json' ) , os.path.join(__A , 'config.42.0.0.json' ) ) _lowerCAmelCase =AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__ ( self ) -> Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCAmelCase ='hf-internal-testing/test-two-configs' import transformers as new_transformers _lowerCAmelCase ='v4.0.0' _lowerCAmelCase , _lowerCAmelCase =new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCAmelCase ='v3.0.0' _lowerCAmelCase =old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 768 )
58
1
'''simple docstring''' class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" pass class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" pass class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ) -> Optional[Any]: _lowerCAmelCase =[ [], [], [], ] def UpperCamelCase__ ( self , __A , __A ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(__A ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def UpperCamelCase__ ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ) -> Dict: _lowerCAmelCase =[] def UpperCamelCase__ ( self , __A ) -> None: if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(__A ) def UpperCamelCase__ ( self ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: _lowerCAmelCase =min(self.queue ) self.queue.remove(__A ) return data def __str__( self ) -> str: return str(self.queue ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(a__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(a__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(a__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(a__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
58
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} lowercase_ = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } lowercase_ = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase =bs[:] _lowerCAmelCase =0 for b in range(2**8 ): if b not in bs: bs.append(a__ ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase =[chr(a__ ) for n in cs] return dict(zip(a__ , a__ ) ) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() _lowerCAmelCase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase =char return pairs class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] = ['input_ids', 'attention_mask'] def __init__( self , __A , __A , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , **__A , ) -> int: _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding='utf-8' ) as vocab_handle: _lowerCAmelCase =json.load(__A ) _lowerCAmelCase ={v: k for k, v in self.encoder.items()} _lowerCAmelCase =errors # how to handle errors in decoding _lowerCAmelCase =bytes_to_unicode() _lowerCAmelCase ={v: k for k, v in self.byte_encoder.items()} with open(__A , encoding='utf-8' ) as merges_handle: _lowerCAmelCase =merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase =[tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase =dict(zip(__A , range(len(__A ) ) ) ) _lowerCAmelCase ={} _lowerCAmelCase =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase =re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase__ ( self ) -> Any: return len(self.encoder ) def UpperCamelCase__ ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , __A ) -> List[str]: if token in self.cache: return self.cache[token] _lowerCAmelCase =tuple(__A ) _lowerCAmelCase =get_pairs(__A ) if not pairs: return token while True: _lowerCAmelCase =min(__A , key=lambda __A : self.bpe_ranks.get(__A , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase =bigram _lowerCAmelCase =[] _lowerCAmelCase =0 while i < len(__A ): try: _lowerCAmelCase =word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase =j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase =tuple(__A ) _lowerCAmelCase =new_word if len(__A ) == 1: break else: _lowerCAmelCase =get_pairs(__A ) _lowerCAmelCase =' '.join(__A ) _lowerCAmelCase =word return word def UpperCamelCase__ ( self , __A ) -> int: _lowerCAmelCase =[] for token in re.findall(self.pat , __A ): _lowerCAmelCase =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ ( self , __A ) -> int: return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self , __A ) -> Tuple: return self.decoder.get(__A ) def UpperCamelCase__ ( self , __A ) -> int: _lowerCAmelCase =''.join(__A ) _lowerCAmelCase =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase =os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + '\n' ) _lowerCAmelCase =0 with open(__A , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase =token_index writer.write(' '.join(__A ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] _lowerCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , __A , __A=False , **__A ) -> List[Any]: _lowerCAmelCase =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): _lowerCAmelCase =' ' + text return (text, kwargs)
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase_ = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' lowercase_ = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' lowercase_ = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' return float((preds == labels).mean() ) def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =simple_accuracy(a__ , a__ ) _lowerCAmelCase =float(fa_score(y_true=a__ , y_pred=a__ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' _lowerCAmelCase =float(pearsonr(a__ , a__ )[0] ) _lowerCAmelCase =float(spearmanr(a__ , a__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def UpperCamelCase__ ( self ) -> int: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def UpperCamelCase__ ( self , __A , __A ) -> str: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__A , __A )} elif self.config_name == "stsb": return pearson_and_spearman(__A , __A ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__A , __A ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__A , __A )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
58
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =len(a__ ) // 2 # choose the middle 3 elements _lowerCAmelCase =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
58
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = 'vit' def __init__( self , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.0 , __A=0.0 , __A=0.02 , __A=1E-12 , __A=224 , __A=16 , __A=3 , __A=True , __A=16 , **__A , ) -> Tuple: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =image_size _lowerCAmelCase =patch_size _lowerCAmelCase =num_channels _lowerCAmelCase =qkv_bias _lowerCAmelCase =encoder_stride class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[Any] = version.parse('1.11') @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-4
58
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'''vocab_file''': '''vocab.txt'''} lowercase_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowercase_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } lowercase_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ConvBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> Union[str, Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) _lowerCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __A ) != do_lower_case or normalizer_state.get('strip_accents' , __A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars ): _lowerCAmelCase =getattr(__A , normalizer_state.pop('type' ) ) _lowerCAmelCase =do_lower_case _lowerCAmelCase =strip_accents _lowerCAmelCase =tokenize_chinese_chars _lowerCAmelCase =normalizer_class(**__A ) _lowerCAmelCase =do_lower_case def UpperCamelCase__ ( self , __A , __A=None ) -> int: _lowerCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , __A , __A = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , __A , __A = None ) -> Tuple[str]: _lowerCAmelCase =self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
58
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase__ ( a__ , a__ , a__ ): '''simple docstring''' if openai_config_file == "": _lowerCAmelCase =OpenAIGPTConfig() else: _lowerCAmelCase =OpenAIGPTConfig.from_json_file(a__ ) _lowerCAmelCase =OpenAIGPTModel(a__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(a__ , a__ , a__ ) # Save pytorch-model _lowerCAmelCase =pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowerCAmelCase =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , a__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(a__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) lowercase_ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
58
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = ['image_processor', 'tokenizer'] lowercase : Any = 'CLIPImageProcessor' lowercase : int = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __A=None , __A=None , **__A ) -> str: _lowerCAmelCase =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) _lowerCAmelCase =kwargs.pop('feature_extractor' ) _lowerCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase =self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: _lowerCAmelCase =self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: _lowerCAmelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Any: return self.tokenizer.batch_decode(*__A , **__A ) def UpperCamelCase__ ( self , *__A , **__A ) -> Optional[int]: return self.tokenizer.decode(*__A , **__A ) @property def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.tokenizer.model_input_names _lowerCAmelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
58
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
58
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( __lowercase , __lowercase): """simple docstring""" @register_to_config def __init__( self , __A = 128 , __A = 256 , __A = 2_000.0 , __A = 768 , __A = 12 , __A = 12 , __A = 64 , __A = 2048 , __A = 0.1 , ) -> str: super().__init__() _lowerCAmelCase =nn.Sequential( nn.Linear(__A , d_model * 4 , bias=__A ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__A ) , nn.SiLU() , ) _lowerCAmelCase =nn.Embedding(__A , __A ) _lowerCAmelCase =False _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.ModuleList() for lyr_num in range(__A ): # FiLM conditional T5 decoder _lowerCAmelCase =DecoderLayer(d_model=__A , d_kv=__A , num_heads=__A , d_ff=__A , dropout_rate=__A ) self.decoders.append(__A ) _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =nn.Dropout(p=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Any: _lowerCAmelCase =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase__ ( self , __A , __A , __A ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _lowerCAmelCase =self.conditioning_emb(__A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase =torch.broadcast_to( torch.arange(__A , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _lowerCAmelCase =self.position_encoding(__A ) _lowerCAmelCase =self.continuous_inputs_projection(__A ) inputs += position_encodings _lowerCAmelCase =self.dropout(__A ) # decoder: No padding present. _lowerCAmelCase =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase =[(x, self.encoder_decoder_mask(__A , __A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _lowerCAmelCase =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _lowerCAmelCase =lyr( __A , conditioning_emb=__A , encoder_hidden_states=__A , encoder_attention_mask=__A , )[0] _lowerCAmelCase =self.decoder_norm(__A ) _lowerCAmelCase =self.post_dropout(__A ) _lowerCAmelCase =self.spec_out(__A ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A , __A=1E-6 ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__A , d_kv=__A , num_heads=__A , dropout_rate=__A , layer_norm_epsilon=__A , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__A , d_ff=__A , dropout_rate=__A , layer_norm_epsilon=__A ) ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , __A=None , __A=None , __A=None , ) -> Any: _lowerCAmelCase =self.layer[0]( __A , conditioning_emb=__A , attention_mask=__A , ) if encoder_hidden_states is not None: _lowerCAmelCase =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase =self.layer[1]( __A , key_value_states=__A , attention_mask=__A , ) # Apply Film Conditional Feed Forward layer _lowerCAmelCase =self.layer[-1](__A , __A ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaLayerNorm(__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> List[Any]: # pre_self_attention_layer_norm _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.FiLMLayer(__A , __A ) # Self-attention block _lowerCAmelCase =self.attention(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A , __A ) -> Optional[int]: super().__init__() _lowerCAmelCase =Attention(query_dim=__A , heads=__A , dim_head=__A , out_bias=__A , scale_qk=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None , __A=None , ) -> Tuple: _lowerCAmelCase =self.layer_norm(__A ) _lowerCAmelCase =self.attention( __A , encoder_hidden_states=__A , attention_mask=attention_mask.squeeze(1 ) , ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =TaDenseGatedActDense(d_model=__A , d_ff=__A , dropout_rate=__A ) _lowerCAmelCase =TaFiLMLayer(in_features=d_model * 4 , out_features=__A ) _lowerCAmelCase =TaLayerNorm(__A , eps=__A ) _lowerCAmelCase =nn.Dropout(__A ) def UpperCamelCase__ ( self , __A , __A=None ) -> List[Any]: _lowerCAmelCase =self.layer_norm(__A ) if conditioning_emb is not None: _lowerCAmelCase =self.film(__A , __A ) _lowerCAmelCase =self.DenseReluDense(__A ) _lowerCAmelCase =hidden_states + self.dropout(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A , __A ) -> Union[str, Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Linear(__A , __A , bias=__A ) _lowerCAmelCase =nn.Dropout(__A ) _lowerCAmelCase =NewGELUActivation() def UpperCamelCase__ ( self , __A ) -> List[Any]: _lowerCAmelCase =self.act(self.wi_a(__A ) ) _lowerCAmelCase =self.wi_a(__A ) _lowerCAmelCase =hidden_gelu * hidden_linear _lowerCAmelCase =self.dropout(__A ) _lowerCAmelCase =self.wo(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A=1E-6 ) -> int: super().__init__() _lowerCAmelCase =nn.Parameter(torch.ones(__A ) ) _lowerCAmelCase =eps def UpperCamelCase__ ( self , __A ) -> Dict: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _lowerCAmelCase =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__A ) _lowerCAmelCase =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def UpperCamelCase__ ( self , __A ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__A , 3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" def __init__( self , __A , __A ) -> Optional[Any]: super().__init__() _lowerCAmelCase =nn.Linear(__A , out_features * 2 , bias=__A ) def UpperCamelCase__ ( self , __A , __A ) -> Optional[Any]: _lowerCAmelCase =self.scale_bias(__A ) _lowerCAmelCase , _lowerCAmelCase =torch.chunk(__A , 2 , -1 ) _lowerCAmelCase =x * (1 + scale) + shift return x
58
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'gpt_neox' def __init__( self , __A=5_0432 , __A=6144 , __A=44 , __A=64 , __A=2_4576 , __A="gelu" , __A=0.25 , __A=1_0000 , __A=0.0 , __A=0.0 , __A=0.1 , __A=2048 , __A=0.02 , __A=1E-5 , __A=True , __A=0 , __A=2 , __A=False , __A=True , __A=None , **__A , ) -> str: super().__init__(bos_token_id=__A , eos_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_act _lowerCAmelCase =rotary_pct _lowerCAmelCase =rotary_emb_base _lowerCAmelCase =attention_dropout _lowerCAmelCase =hidden_dropout _lowerCAmelCase =classifier_dropout _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =use_cache _lowerCAmelCase =tie_word_embeddings _lowerCAmelCase =use_parallel_residual _lowerCAmelCase =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCamelCase__ ( self ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) _lowerCAmelCase =self.rope_scaling.get('type' , __A ) _lowerCAmelCase =self.rope_scaling.get('factor' , __A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
58
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowercase_ = False lowercase_ = False def UpperCamelCase__ ( a__ ): '''simple docstring''' return TrainCommand(a__ ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" @staticmethod def UpperCamelCase__ ( __A ) -> Tuple: _lowerCAmelCase =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__A , required=__A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__A , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__A , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__A , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__A , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__A , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__A , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__A , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__A , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__A , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__A , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__A , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__A ) def __init__( self , __A ) -> List[str]: _lowerCAmelCase =logging.get_logger('transformers-cli/training' ) _lowerCAmelCase ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__A ) _lowerCAmelCase =args.output _lowerCAmelCase =args.column_label _lowerCAmelCase =args.column_text _lowerCAmelCase =args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": _lowerCAmelCase =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) _lowerCAmelCase =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _lowerCAmelCase =args.validation_split _lowerCAmelCase =args.train_batch_size _lowerCAmelCase =args.valid_batch_size _lowerCAmelCase =args.learning_rate _lowerCAmelCase =args.adam_epsilon def UpperCamelCase__ ( self ) -> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCamelCase__ ( self ) -> Union[str, Any]: raise NotImplementedError def UpperCamelCase__ ( self ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
58
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A = None , __A = None , __A=None , __A=None ) -> Tuple: if not conversation_id: _lowerCAmelCase =uuid.uuida() if past_user_inputs is None: _lowerCAmelCase =[] if generated_responses is None: _lowerCAmelCase =[] _lowerCAmelCase =conversation_id _lowerCAmelCase =past_user_inputs _lowerCAmelCase =generated_responses _lowerCAmelCase =text def __eq__( self , __A ) -> int: if not isinstance(__A , __A ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCamelCase__ ( self , __A , __A = False ) -> Any: if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) _lowerCAmelCase =text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: _lowerCAmelCase =text def UpperCamelCase__ ( self ) -> List[str]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _lowerCAmelCase =None def UpperCamelCase__ ( self , __A ) -> Optional[Any]: self.generated_responses.append(__A ) def UpperCamelCase__ ( self ) -> Optional[int]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> Dict: _lowerCAmelCase =F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): _lowerCAmelCase ='user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( __lowercase , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , *__A , **__A ) -> Tuple: super().__init__(*__A , **__A ) if self.tokenizer.pad_token_id is None: _lowerCAmelCase =self.tokenizer.eos_token def UpperCamelCase__ ( self , __A=None , __A=None , __A=None , **__A ) -> Optional[Any]: _lowerCAmelCase ={} _lowerCAmelCase ={} _lowerCAmelCase ={} if min_length_for_response is not None: _lowerCAmelCase =min_length_for_response if minimum_tokens is not None: _lowerCAmelCase =minimum_tokens if "max_length" in generate_kwargs: _lowerCAmelCase =generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _lowerCAmelCase =clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__A ) return preprocess_params, forward_params, postprocess_params def __call__( self , __A , __A=0 , **__A ) -> List[str]: _lowerCAmelCase =super().__call__(__A , num_workers=__A , **__A ) if isinstance(__A , __A ) and len(__A ) == 1: return outputs[0] return outputs def UpperCamelCase__ ( self , __A , __A=32 ) -> Dict[str, Any]: if not isinstance(__A , __A ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _lowerCAmelCase =self.tokenizer._build_conversation_input_ids(__A ) else: # If the tokenizer cannot handle conversations, we default to only the old version _lowerCAmelCase =self._legacy_parse_and_tokenize(__A ) if self.framework == "pt": _lowerCAmelCase =torch.LongTensor([input_ids] ) elif self.framework == "tf": _lowerCAmelCase =tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCamelCase__ ( self , __A , __A=10 , **__A ) -> int: _lowerCAmelCase =generate_kwargs.get('max_length' , self.model.config.max_length ) _lowerCAmelCase =model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) _lowerCAmelCase =max_length - minimum_tokens _lowerCAmelCase =model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _lowerCAmelCase =model_inputs['attention_mask'][:, -trim:] _lowerCAmelCase =model_inputs.pop('conversation' ) _lowerCAmelCase =max_length _lowerCAmelCase =self.model.generate(**__A , **__A ) if self.model.config.is_encoder_decoder: _lowerCAmelCase =1 else: _lowerCAmelCase =n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCamelCase__ ( self , __A , __A=True ) -> Dict: _lowerCAmelCase =model_outputs['output_ids'] _lowerCAmelCase =self.tokenizer.decode( output_ids[0] , skip_special_tokens=__A , clean_up_tokenization_spaces=__A , ) _lowerCAmelCase =model_outputs['conversation'] conversation.mark_processed() conversation.append_response(__A ) return conversation def UpperCamelCase__ ( self , __A ) -> Dict: _lowerCAmelCase =self.tokenizer.eos_token_id _lowerCAmelCase =[] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__A , add_special_tokens=__A ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__A , add_special_tokens=__A ) ) if len(__A ) > self.tokenizer.model_max_length: _lowerCAmelCase =input_ids[-self.tokenizer.model_max_length :] return input_ids
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = True lowercase : bool = False lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Optional[int]: _lowerCAmelCase =[] _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) _lowerCAmelCase =resnets _lowerCAmelCase =attentions if self.add_downsample: _lowerCAmelCase =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A , __A=True ) -> Optional[Any]: _lowerCAmelCase =() for resnet, attn in zip(self.resnets , self.attentions ): _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) _lowerCAmelCase =attn(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase =self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : bool = True lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =resnets if self.add_downsample: _lowerCAmelCase =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A=True ) -> Optional[int]: _lowerCAmelCase =() for resnet in self.resnets: _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase =self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = True lowercase : bool = False lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =[] _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase =self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) _lowerCAmelCase =resnets _lowerCAmelCase =attentions if self.add_upsample: _lowerCAmelCase =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A , __A , __A=True ) -> Any: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCAmelCase =res_hidden_states_tuple[-1] _lowerCAmelCase =res_hidden_states_tuple[:-1] _lowerCAmelCase =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) _lowerCAmelCase =attn(__A , __A , deterministic=__A ) if self.add_upsample: _lowerCAmelCase =self.upsamplers_a(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : int lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : bool = True lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =[] for i in range(self.num_layers ): _lowerCAmelCase =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase =self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =resnets if self.add_upsample: _lowerCAmelCase =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __A , __A , __A , __A=True ) -> Any: for resnet in self.resnets: # pop res hidden states _lowerCAmelCase =res_hidden_states_tuple[-1] _lowerCAmelCase =res_hidden_states_tuple[:-1] _lowerCAmelCase =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) if self.add_upsample: _lowerCAmelCase =self.upsamplers_a(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module): """simple docstring""" lowercase : int lowercase : float = 0.0 lowercase : int = 1 lowercase : int = 1 lowercase : bool = False lowercase : bool = False lowercase : jnp.dtype = jnp.floataa def UpperCamelCase__ ( self ) -> int: # there is always at least one resnet _lowerCAmelCase =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCAmelCase =[] for _ in range(self.num_layers ): _lowerCAmelCase =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) _lowerCAmelCase =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) _lowerCAmelCase =resnets _lowerCAmelCase =attentions def __call__( self , __A , __A , __A , __A=True ) -> int: _lowerCAmelCase =self.resnets[0](__A , __A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCAmelCase =attn(__A , __A , deterministic=__A ) _lowerCAmelCase =resnet(__A , __A , deterministic=__A ) return hidden_states
58
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase =json.loads(open(a__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): _lowerCAmelCase =args.output + '.pt' _lowerCAmelCase =OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase =tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase =reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase =reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase =int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase =8 _lowerCAmelCase ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase =key_name[-9:-7] for i in range(1_6 ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase =state[:, 0, :, :] _lowerCAmelCase =state[:, 1, :, :] _lowerCAmelCase =state[:, 2, :, :] _lowerCAmelCase =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif key_name.endswith('/g' ): _lowerCAmelCase ='model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase ='model.%s.weight' % nlayer _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase ='lm_head.weight' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =torch.tensor(a__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase ='final_logits_bias' _lowerCAmelCase =vnp.copy() # same in embedded _lowerCAmelCase =state.reshape((1, -1) ) _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase ='model.last_project.weight' _lowerCAmelCase =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase =torch.tensor(a__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase ='model.last_project.bias' _lowerCAmelCase =vnp.copy() # same because it is one dimensional _lowerCAmelCase =torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
1
'''simple docstring''' import pprint import requests lowercase_ = '''https://zenquotes.io/api''' def UpperCamelCase__ ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/today' ).json() def UpperCamelCase__ ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowercase_ = random_quotes() pprint.pprint(response)
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = (DPMSolverSDEScheduler,) lowercase : Dict = 10 def UpperCamelCase__ ( self , **__A ) -> Union[str, Any]: _lowerCAmelCase ={ 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**__A ) return config def UpperCamelCase__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def UpperCamelCase__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def UpperCamelCase__ ( self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config(prediction_type='v_prediction' ) _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def UpperCamelCase__ ( self ) -> Dict: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A , use_karras_sigmas=__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for t in scheduler.timesteps: _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
58
'''simple docstring''' def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =set() # To detect a back edge, keep track of vertices currently in the recursion stack _lowerCAmelCase =set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def UpperCamelCase__ ( a__ , a__ , a__ , a__ ): '''simple docstring''' visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
58
1
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def UpperCamelCase__ ( a__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase =2 while True: if is_prime(a__ ): yield num num += 1 def UpperCamelCase__ ( a__ = 2_0_0_0_0_0_0 ): '''simple docstring''' return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
58
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Any = (DDIMParallelScheduler,) lowercase : Union[str, Any] = (('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self , **__A ) -> List[str]: _lowerCAmelCase ={ 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**__A ) return config def UpperCamelCase__ ( self , **__A ) -> str: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config(**__A ) _lowerCAmelCase =scheduler_class(**__A ) _lowerCAmelCase , _lowerCAmelCase =10, 0.0 _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter scheduler.set_timesteps(__A ) for t in scheduler.timesteps: _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A , __A ).prev_sample return sample def UpperCamelCase__ ( self ) -> Optional[Any]: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase__ ( self ) -> Tuple: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def UpperCamelCase__ ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def UpperCamelCase__ ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def UpperCamelCase__ ( self ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def UpperCamelCase__ ( self ) -> Dict: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__A ) def UpperCamelCase__ ( self ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__A ) def UpperCamelCase__ ( self ) -> Optional[int]: self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def UpperCamelCase__ ( self ) -> Optional[Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=__A ) def UpperCamelCase__ ( self ) -> Any: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__A , num_inference_steps=__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__A , eta=__A ) def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ) -> str: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) _lowerCAmelCase , _lowerCAmelCase =10, 0.0 scheduler.set_timesteps(__A ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter _lowerCAmelCase =self.dummy_sample_deter + 0.1 _lowerCAmelCase =self.dummy_sample_deter - 0.1 _lowerCAmelCase =samplea.shape[0] _lowerCAmelCase =torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase =torch.arange(__A )[0:3, None].repeat(1 , __A ) _lowerCAmelCase =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase =scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __A ) _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1E-2 assert abs(result_mean.item() - 0.4_982 ) < 1E-3 def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.full_loop() _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 172.0_067 ) < 1E-2 assert abs(result_mean.item() - 0.223_967 ) < 1E-3 def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 52.5_302 ) < 1E-2 assert abs(result_mean.item() - 0.0_684 ) < 1E-3 def UpperCamelCase__ ( self ) -> Any: # We specify different beta, so that the first alpha is 0.99 _lowerCAmelCase =self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.8_295 ) < 1E-2 assert abs(result_mean.item() - 0.1_951 ) < 1E-3 def UpperCamelCase__ ( self ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 _lowerCAmelCase =self.full_loop(set_alpha_to_one=__A , beta_start=0.01 ) _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 149.0_784 ) < 1E-2 assert abs(result_mean.item() - 0.1_941 ) < 1E-3
58
'''simple docstring''' lowercase_ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase__ ( a__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase__ ( a__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase ='Morse code here!' print(a__ ) _lowerCAmelCase =encrypt(a__ ) print(a__ ) _lowerCAmelCase =decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
58
1