code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy # List of input, output pairs __UpperCAmelCase : Tuple = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) __UpperCAmelCase : Optional[int] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) __UpperCAmelCase : Any = [2, 4, 1, 5] __UpperCAmelCase : int = len(train_data) __UpperCAmelCase : Optional[int] = 0.009 def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Dict="train" ) -> int: '''simple docstring''' return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def lowercase_ ( __snake_case : Dict ) -> List[str]: '''simple docstring''' snake_case__ :Any = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowercase_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowercase_ ( __snake_case : List[Any] , __snake_case : List[Any] ) -> str: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowercase_ ( __snake_case : List[str] , __snake_case : Optional[int]=m ) -> Optional[int]: '''simple docstring''' snake_case__ :Dict = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def lowercase_ ( __snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def lowercase_ ( ) -> Dict: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output snake_case__ :str = 0.0_0_0_0_0_2 snake_case__ :Union[str, Any] = 0 snake_case__ :Dict = 0 while True: j += 1 snake_case__ :Dict = [0, 0, 0, 0] for i in range(0 , len(__A ) ): snake_case__ :Tuple = get_cost_derivative(i - 1 ) snake_case__ :int = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break snake_case__ :Optional[Any] = temp_parameter_vector print(("Number of iterations:", j) ) def lowercase_ ( ) -> Optional[int]: '''simple docstring''' for i in range(len(__A ) ): print(("Actual output value:", output(__A , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _snake_case : def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: return None class _snake_case : def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: return None class _snake_case ( unittest.TestCase ): _A = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCAmelCase_ ( self ) -> str: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCAmelCase_ ,"tf" ,12 ,**UpperCAmelCase_ ) @require_torch @slow def lowerCAmelCase_ ( self ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCAmelCase_ ,"pt" ,12 ,**UpperCAmelCase_ ) @require_torch @slow def lowerCAmelCase_ ( self ) -> str: from transformers import BertModel snake_case__ :str = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(UpperCAmelCase_ ) ) vocab_file.flush() snake_case__ :Tuple = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: snake_case__ :List[str] = BertModel(BertConfig(vocab_size=len(UpperCAmelCase_ ) ) ) model.save_pretrained(UpperCAmelCase_ ) self._test_export(UpperCAmelCase_ ,"pt" ,12 ,UpperCAmelCase_ ) @require_tf @slow def lowerCAmelCase_ ( self ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case__ :Union[str, Any] = self._test_export(UpperCAmelCase_ ,"tf" ,12 ,**UpperCAmelCase_ ) snake_case__ :Any = quantize(Path(UpperCAmelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCAmelCase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case__ :Dict = self._test_export(UpperCAmelCase_ ,"pt" ,12 ,**UpperCAmelCase_ ) snake_case__ :str = quantize(UpperCAmelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCAmelCase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> int: try: # Compute path with TemporaryDirectory() as tempdir: snake_case__ :Optional[int] = Path(UpperCAmelCase_ ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ) return path except Exception as e: self.fail(UpperCAmelCase_ ) @require_torch @require_tokenizers @slow def lowerCAmelCase_ ( self ) -> Dict: from transformers import BertModel snake_case__ :Dict = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) snake_case__ :Union[str, Any] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(UpperCAmelCase_ ,UpperCAmelCase_ ,"pt" ) @require_tf @require_tokenizers @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: from transformers import TFBertModel snake_case__ :Union[str, Any] = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) snake_case__ :List[str] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(UpperCAmelCase_ ,UpperCAmelCase_ ,"tf" ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :Tuple = FeatureExtractionPipeline(UpperCAmelCase_ ,UpperCAmelCase_ ) snake_case__ :Union[str, Any] = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] snake_case__ , snake_case__ , snake_case__ , snake_case__ :Any = infer_shapes(UpperCAmelCase_ ,UpperCAmelCase_ ) # Assert all variables are present self.assertEqual(len(UpperCAmelCase_ ) ,len(UpperCAmelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,UpperCAmelCase_ ) self.assertSequenceEqual(variable_names[3:] ,UpperCAmelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] ,{0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] ,{0: "batch"} ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[Any] = ["input_ids", "attention_mask", "token_type_ids"] snake_case__ :Union[str, Any] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} snake_case__ , snake_case__ :int = ensure_valid_input(FuncContiguousArgs() ,UpperCAmelCase_ ,UpperCAmelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(UpperCAmelCase_ ) ,3 ) # Should have exactly the same input names self.assertEqual(set(UpperCAmelCase_ ) ,set(UpperCAmelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(UpperCAmelCase_ ,(tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) snake_case__ , snake_case__ :str = ensure_valid_input(FuncNonContiguousArgs() ,UpperCAmelCase_ ,UpperCAmelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(UpperCAmelCase_ ) ,1 ) self.assertEqual(len(UpperCAmelCase_ ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] ,"input_ids" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :str = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) ,"-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" ,generated.as_posix() )
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __UpperCAmelCase : Dict = logging.get_logger("transformers.models.speecht5") __UpperCAmelCase : Optional[int] = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __UpperCAmelCase : Dict = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __UpperCAmelCase : Optional[Any] = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __UpperCAmelCase : Optional[int] = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __UpperCAmelCase : Any = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __UpperCAmelCase : Optional[Any] = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __UpperCAmelCase : Dict = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __UpperCAmelCase : Optional[Any] = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __UpperCAmelCase : Optional[int] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __UpperCAmelCase : Optional[int] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCAmelCase : Optional[int] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __UpperCAmelCase : str = [] __UpperCAmelCase : Union[str, Any] = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __UpperCAmelCase : Tuple = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __UpperCAmelCase : List[Any] = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __UpperCAmelCase : Any = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase_ ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for attribute in key.split("." ): snake_case__ :Optional[Any] = getattr(__snake_case , __snake_case ) if weight_type is not None: snake_case__ :Union[str, Any] = getattr(__snake_case , __snake_case ).shape else: snake_case__ :Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case__ :Tuple = value elif weight_type == "weight_g": snake_case__ :Optional[int] = value elif weight_type == "weight_v": snake_case__ :int = value elif weight_type == "bias": snake_case__ :List[str] = value elif weight_type == "running_mean": snake_case__ :Optional[Any] = value elif weight_type == "running_var": snake_case__ :str = value elif weight_type == "num_batches_tracked": snake_case__ :Union[str, Any] = value else: snake_case__ :Dict = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowercase_ ( __snake_case : str , __snake_case : List[Any] ) -> Tuple: '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case__ , snake_case__ :Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[str] ) -> List[str]: '''simple docstring''' snake_case__ :str = [] if task == "s2t": snake_case__ :int = hf_model.speechta.encoder.prenet.feature_encoder snake_case__ :Optional[int] = MAPPING_S2T snake_case__ :str = IGNORE_KEYS_S2T elif task == "t2s": snake_case__ :List[Any] = None snake_case__ :Dict = MAPPING_T2S snake_case__ :Tuple = IGNORE_KEYS_T2S elif task == "s2s": snake_case__ :Tuple = hf_model.speechta.encoder.prenet.feature_encoder snake_case__ :Optional[Any] = MAPPING_S2S snake_case__ :Union[str, Any] = IGNORE_KEYS_S2S else: raise ValueError(F'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(__snake_case , __snake_case ): logger.info(F'{name} was ignored' ) continue snake_case__ :List[str] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) snake_case__ :Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: snake_case__ , snake_case__ :Optional[int] = key.split(".*." ) if prefix in name and suffix in name: snake_case__ :Tuple = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: snake_case__ :Dict = True if "*" in mapped_key: snake_case__ :Optional[int] = name.split(__snake_case )[0].split("." )[-2] snake_case__ :int = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: snake_case__ :Optional[int] = "weight_g" elif "weight_v" in name: snake_case__ :List[str] = "weight_v" elif "bias" in name: snake_case__ :Tuple = "bias" elif "weight" in name: snake_case__ :Optional[Any] = "weight" elif "running_mean" in name: snake_case__ :List[Any] = "running_mean" elif "running_var" in name: snake_case__ :List[str] = "running_var" elif "num_batches_tracked" in name: snake_case__ :Tuple = "num_batches_tracked" else: snake_case__ :Any = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __snake_case : Dict , __snake_case : Tuple , __snake_case : int , __snake_case : List[str] , __snake_case : str ) -> Optional[int]: '''simple docstring''' snake_case__ :Any = full_name.split("conv_layers." )[-1] snake_case__ :Optional[int] = name.split("." ) snake_case__ :List[str] = int(items[0] ) snake_case__ :Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case__ :Any = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case__ :Tuple = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case__ :List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case__ :Any = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase_ ( __snake_case : int , __snake_case : Tuple , __snake_case : Dict , __snake_case : Tuple=None , __snake_case : List[str]=None , __snake_case : Optional[int]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: snake_case__ :List[str] = SpeechTaConfig.from_pretrained(__snake_case ) else: snake_case__ :Dict = SpeechTaConfig() if task == "s2t": snake_case__ :List[Any] = config.max_text_positions snake_case__ :Any = SpeechTaForSpeechToText(__snake_case ) elif task == "t2s": snake_case__ :str = 18_76 snake_case__ :List[Any] = 6_00 snake_case__ :Dict = config.max_speech_positions snake_case__ :str = SpeechTaForTextToSpeech(__snake_case ) elif task == "s2s": snake_case__ :Any = 18_76 snake_case__ :List[str] = config.max_speech_positions snake_case__ :int = SpeechTaForSpeechToSpeech(__snake_case ) else: raise ValueError(F'Unknown task name: {task}' ) if vocab_path: snake_case__ :Any = SpeechTaTokenizer(__snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it snake_case__ :List[str] = AddedToken("<mask>" , lstrip=__snake_case , rstrip=__snake_case ) snake_case__ :Optional[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) snake_case__ :Any = SpeechTaFeatureExtractor() snake_case__ :Optional[Any] = SpeechTaProcessor(tokenizer=__snake_case , feature_extractor=__snake_case ) processor.save_pretrained(__snake_case ) snake_case__ :Any = torch.load(__snake_case ) recursively_load_weights(fairseq_checkpoint["model"] , __snake_case , __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __UpperCAmelCase : Optional[Any] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCAmelCase : Tuple = datasets.logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' __UpperCAmelCase : Dict = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' __UpperCAmelCase : Union[str, Any] = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' __UpperCAmelCase : Dict = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="https://github.com/google-research/bleurt" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("string" ,id="sequence" ), "references": datasets.Value("string" ,id="sequence" ), } ) ,codebase_urls=["https://github.com/google-research/bleurt"] ,reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] ,) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\')." ) snake_case__ :Optional[int] = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: snake_case__ :int = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case__ :Tuple = self.config_name.upper() else: raise KeyError( f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer snake_case__ :Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) snake_case__ :str = score.BleurtScorer(os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[str] = self.scorer.score(references=UpperCamelCase_ ,candidates=UpperCamelCase_ ) return {"scores": scores}
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase_ ( __snake_case : List[str] ) -> Tuple: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __snake_case : str ) -> Union[str, Any]: '''simple docstring''' for char in word: snake_case__ :Union[str, Any] = ord(_A ) if not _is_chinese_char(_A ): return 0 return 1 def lowercase_ ( __snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case__ :Any = set() for token in tokens: snake_case__ :Optional[int] = len(_A ) > 1 and is_chinese(_A ) if chinese_word: word_set.add(_A ) snake_case__ :Dict = list(_A ) return word_list def lowercase_ ( __snake_case : List[str] , __snake_case : set() ) -> str: '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case__ :List[str] = max([len(_A ) for w in chinese_word_set] ) snake_case__ :Tuple = bert_tokens snake_case__ :Tuple = 0, len(_A ) while start < end: snake_case__ :Optional[Any] = True if is_chinese(bert_word[start] ): snake_case__ :Any = min(end - start , _A ) for i in range(_A , 1 , -1 ): snake_case__ :Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case__ :Dict = "##" + bert_word[j] snake_case__ :str = start + i snake_case__ :List[str] = False break if single_word: start += 1 return bert_word def lowercase_ ( __snake_case : List[str] , __snake_case : LTP , __snake_case : BertTokenizer ) -> str: '''simple docstring''' snake_case__ :Optional[Any] = [] for i in range(0 , len(_A ) , 1_00 ): snake_case__ :Optional[Any] = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] snake_case__ :int = [get_chinese_word(_A ) for r in res] ltp_res.extend(_A ) assert len(_A ) == len(_A ) snake_case__ :Union[str, Any] = [] for i in range(0 , len(_A ) , 1_00 ): snake_case__ :int = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_A , truncation=_A , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(_A ) == len(_A ) snake_case__ :List[str] = [] for input_ids, chinese_word in zip(_A , _A ): snake_case__ :Union[str, Any] = [] for id in input_ids: snake_case__ :List[Any] = bert_tokenizer._convert_id_to_token(_A ) input_tokens.append(_A ) snake_case__ :int = add_sub_symbol(_A , _A ) snake_case__ :List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_A ): if token[:2] == "##": snake_case__ :Any = token[2:] # save chinese tokens' pos if len(_A ) == 1 and _is_chinese_char(ord(_A ) ): ref_id.append(_A ) ref_ids.append(_A ) assert len(_A ) == len(_A ) return ref_ids def lowercase_ ( __snake_case : Dict ) -> List[Any]: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case__ :Dict = f.readlines() snake_case__ :List[Any] = [line.strip() for line in data if len(_A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case__ :List[str] = LTP(args.ltp ) # faster in GPU device snake_case__ :Any = BertTokenizer.from_pretrained(args.bert ) snake_case__ :Dict = prepare_ref(_A , _A , _A ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case__ :List[str] = [json.dumps(_A ) + "\n" for ref in ref_ids] f.writelines(_A ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") __UpperCAmelCase : Any = parser.parse_args() main(args)
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : Tuple = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) __UpperCAmelCase : List[Any] = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __UpperCAmelCase : Optional[int] = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __UpperCAmelCase : Union[str, Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) __UpperCAmelCase : List[str] = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) __UpperCAmelCase : List[str] = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) __UpperCAmelCase : int = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) __UpperCAmelCase : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) __UpperCAmelCase : Tuple = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) __UpperCAmelCase : Dict = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) __UpperCAmelCase : str = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) __UpperCAmelCase : int = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) __UpperCAmelCase : Any = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) __UpperCAmelCase : List[Any] = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) __UpperCAmelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __UpperCAmelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __UpperCAmelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __UpperCAmelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __UpperCAmelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __UpperCAmelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __UpperCAmelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __UpperCAmelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __UpperCAmelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __UpperCAmelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __UpperCAmelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __UpperCAmelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __UpperCAmelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __UpperCAmelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_MAPPING __UpperCAmelCase : int = auto_class_update(FlaxAutoModel) class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_PRETRAINING_MAPPING __UpperCAmelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __UpperCAmelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_MASKED_LM_MAPPING __UpperCAmelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCAmelCase : int = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __UpperCAmelCase : List[str] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __UpperCAmelCase : Optional[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __UpperCAmelCase : Optional[Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCAmelCase : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase : Any = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class _snake_case ( _BaseAutoModelClass ): _A = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __UpperCAmelCase : Any = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): _A = ShapEPipeline _A = ['prompt'] _A = ['prompt'] _A = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] _A = False @property def lowerCAmelCase_ ( self ) -> Dict: return 32 @property def lowerCAmelCase_ ( self ) -> int: return 32 @property def lowerCAmelCase_ ( self ) -> List[str]: return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self ) -> str: return 8 @property def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) snake_case__ :Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModelWithProjection(_lowercase ) @property def lowerCAmelCase_ ( self ) -> Any: torch.manual_seed(0 ) snake_case__ :Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } snake_case__ :Union[str, Any] = PriorTransformer(**_lowercase ) return model @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ :List[str] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } snake_case__ :Dict = ShapERenderer(**_lowercase ) return model def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[int] = self.dummy_prior snake_case__ :Optional[Any] = self.dummy_text_encoder snake_case__ :Optional[int] = self.dummy_tokenizer snake_case__ :List[Any] = self.dummy_renderer snake_case__ :Any = HeunDiscreteScheduler( beta_schedule="exp" ,num_train_timesteps=1_024 ,prediction_type="sample" ,use_karras_sigmas=_lowercase ,clip_sample=_lowercase ,clip_sample_range=1.0 ,) snake_case__ :str = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> Tuple: if str(_lowercase ).startswith("mps" ): snake_case__ :Union[str, Any] = torch.manual_seed(_lowercase ) else: snake_case__ :int = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case__ :Union[str, Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[Any] = 'cpu' snake_case__ :List[Any] = self.get_dummy_components() snake_case__ :Optional[Any] = self.pipeline_class(**_lowercase ) snake_case__ :List[str] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case__ :Dict = pipe(**self.get_dummy_inputs(_lowercase ) ) snake_case__ :Dict = output.images[0] snake_case__ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) snake_case__ :int = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :str = torch_device == 'cpu' snake_case__ :str = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=_lowercase ,relax_max_difference=_lowercase ,) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :int = self.get_dummy_components() snake_case__ :Any = self.pipeline_class(**_lowercase ) snake_case__ :Optional[int] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case__ :List[Any] = 1 snake_case__ :int = 2 snake_case__ :Union[str, Any] = self.get_dummy_inputs(_lowercase ) for key in inputs.keys(): if key in self.batch_params: snake_case__ :List[Any] = batch_size * [inputs[key]] snake_case__ :Tuple = pipe(**_lowercase ,num_images_per_prompt=_lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) snake_case__ :int = ShapEPipeline.from_pretrained("openai/shap-e" ) snake_case__ :str = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case__ :Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case__ :Union[str, Any] = pipe( "a shark" ,generator=_lowercase ,guidance_scale=15.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="np" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowercase ,_lowercase )
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , __A , ) class _snake_case ( __A ): _A = RobertaConfig _A = 'roberta' def __init__( self ,UpperCamelCase ) -> Optional[int]: super().__init__(UpperCamelCase ) snake_case__ :List[str] = RobertaEmbeddings(UpperCamelCase ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , __A , ) class _snake_case ( __A ): _A = RobertaConfig _A = 'roberta' def __init__( self ,UpperCamelCase ) -> Union[str, Any]: super().__init__(UpperCamelCase ) snake_case__ :Optional[int] = config.num_labels snake_case__ :List[Any] = config.num_hidden_layers snake_case__ :Any = DeeRobertaModel(UpperCamelCase ) snake_case__ :str = nn.Dropout(config.hidden_dropout_prob ) snake_case__ :int = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=-1 ,UpperCamelCase=False ,) -> Dict: snake_case__ :List[str] = self.num_layers try: snake_case__ :Tuple = self.roberta( UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ,position_ids=UpperCamelCase ,head_mask=UpperCamelCase ,inputs_embeds=UpperCamelCase ,) snake_case__ :Optional[Any] = outputs[1] snake_case__ :Any = self.dropout(UpperCamelCase ) snake_case__ :int = self.classifier(UpperCamelCase ) snake_case__ :int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ :List[str] = e.message snake_case__ :Optional[Any] = e.exit_layer snake_case__ :Any = outputs[0] if not self.training: snake_case__ :List[str] = entropy(UpperCamelCase ) snake_case__ :int = [] snake_case__ :Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ :Dict = MSELoss() snake_case__ :Any = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: snake_case__ :str = CrossEntropyLoss() snake_case__ :Any = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits snake_case__ :List[Any] = [] for highway_exit in outputs[-1]: snake_case__ :Any = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ :Union[str, Any] = MSELoss() snake_case__ :Optional[Any] = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: snake_case__ :Tuple = CrossEntropyLoss() snake_case__ :List[Any] = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(UpperCamelCase ) if train_highway: snake_case__ :int = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ :Any = (loss,) + outputs if not self.training: snake_case__ :Union[str, Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ :Tuple = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __UpperCAmelCase : Dict = logging.get_logger(__name__) class _snake_case ( _A ): def __init__( self ,*UpperCamelCase ,**UpperCamelCase ) -> List[Any]: warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
def lowercase_ ( __snake_case : str , __snake_case : Any ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) snake_case__ :Dict = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b" snake_case__ :List[Any] = str(bin(lowerCamelCase__ ) )[2:] snake_case__ :Optional[Any] = max(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase__ ) , b_binary.zfill(lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowercase_ ( __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] ) -> Any: '''simple docstring''' snake_case__ :Dict = tmp_path / "cache" snake_case__ :List[str] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ :str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def lowercase_ ( __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> str: '''simple docstring''' snake_case__ :int = tmp_path / "cache" snake_case__ :Tuple = {"text": "string"} snake_case__ :Optional[Any] = features.copy() if features else default_expected_features snake_case__ :List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ :Any = TextDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowercase_ ( __snake_case : Dict , __snake_case : str , __snake_case : int ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = tmp_path / "cache" snake_case__ :List[Any] = {"text": "string"} snake_case__ :Dict = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowercase_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Optional[int]: '''simple docstring''' if issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ :Dict = text_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ :int = [text_path] snake_case__ :List[Any] = tmp_path / "cache" snake_case__ :Optional[int] = {"text": "string"} snake_case__ :Union[str, Any] = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) def lowercase_ ( __snake_case : Dict , __snake_case : int , __snake_case : List[Any]=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: snake_case__ :Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Any ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Optional[int] = tmp_path / "cache" snake_case__ :Dict = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ :Dict = TextDatasetReader({"train": text_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def lowercase_ ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : int ) -> Union[str, Any]: '''simple docstring''' snake_case__ :List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case__ :Optional[int] = {"text": "string"} snake_case__ :Optional[int] = features.copy() if features else default_expected_features snake_case__ :str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ :Tuple = TextDatasetReader({"train": text_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Any , __snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' if split: snake_case__ :Tuple = {split: text_path} else: snake_case__ :List[str] = "train" snake_case__ :List[str] = {"train": text_path, "test": text_path} snake_case__ :str = tmp_path / "cache" snake_case__ :int = {"text": "string"} snake_case__ :str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( UpperCamelCase_ , unittest.TestCase ): _A = UnCLIPImageVariationPipeline _A = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} _A = IMAGE_VARIATION_BATCH_PARAMS _A = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] _A = False @property def lowerCAmelCase_ ( self ) -> int: return 32 @property def lowerCAmelCase_ ( self ) -> List[Any]: return 32 @property def lowerCAmelCase_ ( self ) -> List[str]: return self.time_input_dim @property def lowerCAmelCase_ ( self ) -> Dict: return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self ) -> Any: return 100 @property def lowerCAmelCase_ ( self ) -> str: snake_case__ :str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase_ ( self ) -> List[str]: torch.manual_seed(0 ) snake_case__ :Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModelWithProjection(_a ) @property def lowerCAmelCase_ ( self ) -> Dict: torch.manual_seed(0 ) snake_case__ :str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) return CLIPVisionModelWithProjection(_a ) @property def lowerCAmelCase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) snake_case__ :Optional[int] = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } snake_case__ :List[Any] = UnCLIPTextProjModel(**_a ) return model @property def lowerCAmelCase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) snake_case__ :Tuple = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } snake_case__ :List[str] = UNetaDConditionModel(**_a ) return model @property def lowerCAmelCase_ ( self ) -> List[str]: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ :List[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(1 ) snake_case__ :List[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :str = self.dummy_decoder snake_case__ :Dict = self.dummy_text_proj snake_case__ :Any = self.dummy_text_encoder snake_case__ :Optional[Any] = self.dummy_tokenizer snake_case__ :Any = self.dummy_super_res_first snake_case__ :Dict = self.dummy_super_res_last snake_case__ :int = UnCLIPScheduler( variance_type="learned_range" ,prediction_type="epsilon" ,num_train_timesteps=1_000 ,) snake_case__ :Dict = UnCLIPScheduler( variance_type="fixed_small_log" ,prediction_type="epsilon" ,num_train_timesteps=1_000 ,) snake_case__ :List[Any] = CLIPImageProcessor(crop_size=32 ,size=32 ) snake_case__ :Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ,UpperCamelCase=True ) -> Dict: snake_case__ :Dict = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("mps" ): snake_case__ :Optional[Any] = torch.manual_seed(_a ) else: snake_case__ :Tuple = torch.Generator(device=_a ).manual_seed(_a ) if pil_image: snake_case__ :Union[str, Any] = input_image * 0.5 + 0.5 snake_case__ :int = input_image.clamp(0 ,1 ) snake_case__ :int = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() snake_case__ :str = DiffusionPipeline.numpy_to_pil(_a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = """cpu""" snake_case__ :str = self.get_dummy_components() snake_case__ :Optional[int] = self.pipeline_class(**_a ) snake_case__ :str = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ :Dict = self.get_dummy_inputs(_a ,pil_image=_a ) snake_case__ :Optional[int] = pipe(**_a ) snake_case__ :List[Any] = output.images snake_case__ :int = self.get_dummy_inputs(_a ,pil_image=_a ) snake_case__ :Union[str, Any] = pipe( **_a ,return_dict=_a ,)[0] snake_case__ :Optional[int] = image[0, -3:, -3:, -1] snake_case__ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ :str = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[int] = """cpu""" snake_case__ :List[Any] = self.get_dummy_components() snake_case__ :Optional[Any] = self.pipeline_class(**_a ) snake_case__ :Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ :int = self.get_dummy_inputs(_a ,pil_image=_a ) snake_case__ :str = pipe(**_a ) snake_case__ :List[str] = output.images snake_case__ :Union[str, Any] = self.get_dummy_inputs(_a ,pil_image=_a ) snake_case__ :Any = pipe( **_a ,return_dict=_a ,)[0] snake_case__ :List[Any] = image[0, -3:, -3:, -1] snake_case__ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ :Any = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> int: snake_case__ :Dict = """cpu""" snake_case__ :Dict = self.get_dummy_components() snake_case__ :str = self.pipeline_class(**_a ) snake_case__ :Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ :Union[str, Any] = self.get_dummy_inputs(_a ,pil_image=_a ) snake_case__ :int = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] snake_case__ :int = pipe(**_a ) snake_case__ :List[Any] = output.images snake_case__ :List[str] = self.get_dummy_inputs(_a ,pil_image=_a ) snake_case__ :List[str] = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] snake_case__ :int = pipe( **_a ,return_dict=_a ,)[0] snake_case__ :List[Any] = image[0, -3:, -3:, -1] snake_case__ :Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) snake_case__ :Union[str, Any] = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[Any] = torch.device("cpu" ) class _snake_case : _A = 1 snake_case__ :str = self.get_dummy_components() snake_case__ :str = self.pipeline_class(**_a ) snake_case__ :Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ :Union[str, Any] = torch.Generator(device=_a ).manual_seed(0 ) snake_case__ :List[Any] = pipe.decoder.dtype snake_case__ :List[Any] = 1 snake_case__ :List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case__ :Any = pipe.prepare_latents( _a ,dtype=_a ,device=_a ,generator=_a ,latents=_a ,scheduler=DummyScheduler() ) snake_case__ :Tuple = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case__ :List[Any] = pipe.prepare_latents( _a ,dtype=_a ,device=_a ,generator=_a ,latents=_a ,scheduler=DummyScheduler() ) snake_case__ :int = self.get_dummy_inputs(_a ,pil_image=_a ) snake_case__ :List[Any] = pipe( **_a ,decoder_latents=_a ,super_res_latents=_a ).images snake_case__ :Tuple = self.get_dummy_inputs(_a ,pil_image=_a ) # Don't pass image, instead pass embedding snake_case__ :Dict = pipeline_inputs.pop("image" ) snake_case__ :Union[str, Any] = pipe.image_encoder(_a ).image_embeds snake_case__ :Optional[int] = pipe( **_a ,decoder_latents=_a ,super_res_latents=_a ,image_embeddings=_a ,).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case__ :Tuple = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=_a ,expected_max_diff=_a ) @skip_mps def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[str] = torch_device == """cpu""" snake_case__ :List[str] = True snake_case__ :List[str] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=_a ,relax_max_difference=_a ,additional_params_copy_to_batched_inputs=_a ,) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[int] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case__ :List[Any] = [2, 3] self._test_inference_batch_consistent( batch_sizes=_a ,additional_params_copy_to_batched_inputs=_a ,) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_a ) @skip_mps def lowerCAmelCase_ ( self ) -> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase_ ( self ) -> Optional[Any]: return super().test_save_load_local() @skip_mps def lowerCAmelCase_ ( self ) -> Optional[int]: return super().test_save_load_optional_components() @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ) -> str: snake_case__ :Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) snake_case__ :str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) snake_case__ :List[Any] = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" ,torch_dtype=torch.floataa ) snake_case__ :int = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) snake_case__ :List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case__ :Any = pipeline( _a ,generator=_a ,output_type="np" ,) snake_case__ :Any = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(_a ,_a ,15 )
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase_ ( __snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): snake_case__ :Any = False def lowercase_ ( ) -> Dict: '''simple docstring''' snake_case__ :int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case__ :Optional[Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase_ ( __snake_case : List[Any] ) -> Any: '''simple docstring''' snake_case__ :Optional[int] = plt.imshow(__UpperCAmelCase ) fig.axes.get_xaxis().set_visible(__UpperCAmelCase ) fig.axes.get_yaxis().set_visible(__UpperCAmelCase ) plt.show() def lowercase_ ( ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = datetime.now() snake_case__ :List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[int] = 1 snake_case__ :Any = 3 snake_case__ :Union[str, Any] = (32, 32) snake_case__ :str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image @property def lowerCAmelCase_ ( self ) -> Dict: torch.manual_seed(0 ) snake_case__ :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) return model @property def lowerCAmelCase_ ( self ) -> str: torch.manual_seed(0 ) snake_case__ :Any = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) return model @property def lowerCAmelCase_ ( self ) -> Tuple: torch.manual_seed(0 ) snake_case__ :List[str] = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5_006 ,) return RobertaSeriesModelWithTransformation(_UpperCAmelCase ) @property def lowerCAmelCase_ ( self ) -> str: def extract(*UpperCamelCase ,**UpperCamelCase ): class _snake_case : def __init__( self ) -> str: snake_case__ :Union[str, Any] = torch.ones([0] ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: self.pixel_values.to(_UpperCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :List[str] = self.dummy_cond_unet snake_case__ :List[Any] = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) snake_case__ :Optional[int] = self.dummy_vae snake_case__ :Any = self.dummy_text_encoder snake_case__ :Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case__ :Union[str, Any] = 77 snake_case__ :int = self.dummy_image.to(_UpperCAmelCase ) snake_case__ :str = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case__ :List[Any] = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase ,scheduler=_UpperCAmelCase ,vae=_UpperCAmelCase ,text_encoder=_UpperCAmelCase ,tokenizer=_UpperCAmelCase ,safety_checker=_UpperCAmelCase ,feature_extractor=self.dummy_extractor ,) snake_case__ :List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=_UpperCAmelCase ) snake_case__ :int = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case__ :List[Any] = "A painting of a squirrel eating a burger" snake_case__ :int = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case__ :Union[str, Any] = alt_pipe( [prompt] ,generator=_UpperCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,image=_UpperCAmelCase ,) snake_case__ :Optional[int] = output.images snake_case__ :List[str] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case__ :Optional[Any] = alt_pipe( [prompt] ,generator=_UpperCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,image=_UpperCAmelCase ,return_dict=_UpperCAmelCase ,)[0] snake_case__ :Dict = image[0, -3:, -3:, -1] snake_case__ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ :int = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = self.dummy_cond_unet snake_case__ :Tuple = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) snake_case__ :List[str] = self.dummy_vae snake_case__ :List[Any] = self.dummy_text_encoder snake_case__ :int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case__ :List[Any] = 77 snake_case__ :Optional[int] = self.dummy_image.to(_UpperCAmelCase ) # put models in fp16 snake_case__ :Dict = unet.half() snake_case__ :List[Any] = vae.half() snake_case__ :List[Any] = bert.half() # make sure here that pndm scheduler skips prk snake_case__ :Optional[int] = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase ,scheduler=_UpperCAmelCase ,vae=_UpperCAmelCase ,text_encoder=_UpperCAmelCase ,tokenizer=_UpperCAmelCase ,safety_checker=_UpperCAmelCase ,feature_extractor=self.dummy_extractor ,) snake_case__ :Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=_UpperCAmelCase ) snake_case__ :Dict = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case__ :Tuple = "A painting of a squirrel eating a burger" snake_case__ :Dict = torch.manual_seed(0 ) snake_case__ :List[Any] = alt_pipe( [prompt] ,generator=_UpperCAmelCase ,num_inference_steps=2 ,output_type="np" ,image=_UpperCAmelCase ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ :Tuple = init_image.resize((760, 504) ) snake_case__ :Dict = "BAAI/AltDiffusion" snake_case__ :str = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase ,safety_checker=_UpperCAmelCase ,) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case__ :List[str] = "A fantasy landscape, trending on artstation" snake_case__ :List[str] = torch.manual_seed(0 ) snake_case__ :Optional[int] = pipe( prompt=_UpperCAmelCase ,image=_UpperCAmelCase ,strength=0.75 ,guidance_scale=7.5 ,generator=_UpperCAmelCase ,output_type="np" ,) snake_case__ :str = output.images[0] snake_case__ :Dict = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case__ :Tuple = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case__ :Any = init_image.resize((768, 512) ) snake_case__ :str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case__ :str = "BAAI/AltDiffusion" snake_case__ :int = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase ,safety_checker=_UpperCAmelCase ,) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case__ :Any = "A fantasy landscape, trending on artstation" snake_case__ :Any = torch.manual_seed(0 ) snake_case__ :Dict = pipe( prompt=_UpperCAmelCase ,image=_UpperCAmelCase ,strength=0.75 ,guidance_scale=7.5 ,generator=_UpperCAmelCase ,output_type="np" ,) snake_case__ :List[str] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCAmelCase : List[Any] = pytest.mark.integration @require_faiss class _snake_case ( __lowerCAmelCase ): def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Dict = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(_UpperCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def lowerCAmelCase_ ( self ) -> Union[str, Any]: import faiss snake_case__ :Dataset = self._create_dummy_dataset() snake_case__ :Optional[Any] = dset.map( lambda UpperCamelCase ,UpperCamelCase : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=_UpperCamelCase ,keep_in_memory=_UpperCamelCase ) snake_case__ :Dict = dset.add_faiss_index("vecs" ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case__ :Optional[int] = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) dset.drop_index("vecs" ) def lowerCAmelCase_ ( self ) -> int: import faiss snake_case__ :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) snake_case__ :Optional[int] = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) def lowerCAmelCase_ ( self ) -> Optional[int]: import faiss snake_case__ :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCamelCase ) as tmp_file: dset.save_faiss_index("vecs" ,tmp_file.name ) dset.load_faiss_index("vecs2" ,tmp_file.name ) os.unlink(tmp_file.name ) snake_case__ :str = dset.get_nearest_examples("vecs2" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(_UpperCamelCase ,partial(dset.get_nearest_examples ,"vecs2" ,np.ones(5 ,dtype=np.floataa ) ) ) def lowerCAmelCase_ ( self ) -> Dict: from elasticsearch import Elasticsearch snake_case__ :Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: snake_case__ :Union[str, Any] = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) snake_case__ :Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} snake_case__ :Any = Elasticsearch() dset.add_elasticsearch_index("filename" ,es_client=_UpperCamelCase ) snake_case__ :List[Any] = dset.get_nearest_examples("filename" ,"my_name-train_29" ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) @require_faiss class _snake_case ( __lowerCAmelCase ): def lowerCAmelCase_ ( self ) -> str: import faiss snake_case__ :Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query snake_case__ :List[Any] = np.zeros(5 ,dtype=np.floataa ) snake_case__ :int = 1 snake_case__ :Tuple = index.search(_UpperCamelCase ) self.assertRaises(_UpperCamelCase ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries snake_case__ :List[str] = np.eye(5 ,dtype=np.floataa )[::-1] snake_case__ :Tuple = index.search_batch(_UpperCamelCase ) self.assertRaises(_UpperCamelCase ,index.search_batch ,queries[0] ) snake_case__ :int = [scores[0] for scores in total_scores] snake_case__ :str = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,_UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: import faiss snake_case__ :List[str] = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) snake_case__ :Union[str, Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(_UpperCamelCase ): snake_case__ :List[str] = FaissIndex(string_factory="Flat" ,custom_index=faiss.IndexFlat(5 ) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: import faiss snake_case__ :str = faiss.IndexFlat(5 ) snake_case__ :List[str] = FaissIndex(custom_index=_UpperCamelCase ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def lowerCAmelCase_ ( self ) -> int: import faiss snake_case__ :Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCamelCase ) as tmp_file: index.save(tmp_file.name ) snake_case__ :Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) snake_case__ :Optional[Any] = np.zeros(5 ,dtype=np.floataa ) snake_case__ :Tuple = 1 snake_case__ :Optional[int] = index.search(_UpperCamelCase ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def lowercase_ ( __snake_case : Any ) -> Any: '''simple docstring''' import faiss snake_case__ :Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) snake_case__ :int = """index.faiss""" snake_case__ :List[Any] = F'mock://{index_name}' index.save(__A , storage_options=mockfs.storage_options ) snake_case__ :str = FaissIndex.load(__A , storage_options=mockfs.storage_options ) snake_case__ :List[str] = np.zeros(5 , dtype=np.floataa ) snake_case__ :Any = 1 snake_case__ :Union[str, Any] = index.search(__A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( __lowerCAmelCase ): def lowerCAmelCase_ ( self ) -> List[str]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: snake_case__ :Optional[int] = Elasticsearch() snake_case__ :List[Any] = {"""acknowledged""": True} snake_case__ :Union[str, Any] = ElasticSearchIndex(es_client=_UpperCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query snake_case__ :int = """foo""" snake_case__ :List[str] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} snake_case__ :Optional[int] = index.search(_UpperCamelCase ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout snake_case__ :Dict = """foo""" snake_case__ :str = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} snake_case__ :List[Any] = index.search(_UpperCamelCase ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries snake_case__ :List[str] = ["""foo""", """bar""", """foobar"""] snake_case__ :Union[str, Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} snake_case__ :Optional[Any] = index.search_batch(_UpperCamelCase ) snake_case__ :str = [scores[0] for scores in total_scores] snake_case__ :Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,_UpperCamelCase ) # batched queries with timeout snake_case__ :Union[str, Any] = ["""foo""", """bar""", """foobar"""] snake_case__ :str = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} snake_case__ :Any = index.search_batch(_UpperCamelCase ,request_timeout=30 ) snake_case__ :List[Any] = [scores[0] for scores in total_scores] snake_case__ :Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,_UpperCamelCase )
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _snake_case ( datasets.BuilderConfig ): _A = None class _snake_case ( datasets.ArrowBasedBuilder ): _A = PandasConfig def lowerCAmelCase_ ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case__ :Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A ,(str, list, tuple) ): snake_case__ :Tuple = data_files if isinstance(_A ,_A ): snake_case__ :List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case__ :List[str] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"files": files} )] snake_case__ :Any = [] for split_name, files in data_files.items(): if isinstance(_A ,_A ): snake_case__ :int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case__ :List[str] = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A ,gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ :Optional[int] = table_cast(_A ,self.config.features.arrow_schema ) return pa_table def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Dict: for i, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A ,"rb" ) as f: snake_case__ :List[Any] = pa.Table.from_pandas(pd.read_pickle(_A ) ) yield i, self._cast_table(_A )
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowercase_ ( __snake_case : List[str] , __snake_case : str , __snake_case : int = "x" , __snake_case : List[Any] = 1_0**-1_0 , __snake_case : List[str] = 1 , ) -> int: '''simple docstring''' snake_case__ :str = symbols(_lowerCamelCase ) snake_case__ :int = lambdify(_lowerCamelCase , _lowerCamelCase ) snake_case__ :List[str] = lambdify(_lowerCamelCase , diff(_lowerCamelCase , _lowerCamelCase ) ) snake_case__ :Optional[int] = starting_point while True: if diff_function(_lowerCamelCase ) != 0: snake_case__ :Optional[Any] = prev_guess - multiplicity * func(_lowerCamelCase ) / diff_function( _lowerCamelCase ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case__ :int = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'''{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=16 ,UpperCamelCase=[1, 2, 1] ,UpperCamelCase=[2, 2, 4] ,UpperCamelCase=2 ,UpperCamelCase=2.0 ,UpperCamelCase=True ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.1 ,UpperCamelCase="gelu" ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=0.02 ,UpperCamelCase=1E-5 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=10 ,UpperCamelCase=8 ,) -> int: snake_case__ :Optional[Any] = parent snake_case__ :int = batch_size snake_case__ :int = image_size snake_case__ :Union[str, Any] = patch_size snake_case__ :Tuple = num_channels snake_case__ :Any = embed_dim snake_case__ :int = depths snake_case__ :List[str] = num_heads snake_case__ :Union[str, Any] = window_size snake_case__ :Optional[Any] = mlp_ratio snake_case__ :List[Any] = qkv_bias snake_case__ :Union[str, Any] = hidden_dropout_prob snake_case__ :Dict = attention_probs_dropout_prob snake_case__ :List[str] = drop_path_rate snake_case__ :List[Any] = hidden_act snake_case__ :Optional[Any] = use_absolute_embeddings snake_case__ :Any = patch_norm snake_case__ :Union[str, Any] = layer_norm_eps snake_case__ :List[Any] = initializer_range snake_case__ :Any = is_training snake_case__ :List[Any] = scope snake_case__ :Optional[Any] = use_labels snake_case__ :Optional[Any] = type_sequence_label_size snake_case__ :Optional[Any] = encoder_stride def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :int = None if self.use_labels: snake_case__ :Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :Tuple = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> int: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ :int = model(lowerCamelCase_ ) snake_case__ :List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case__ :Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :List[str] = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ :Dict = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ :Tuple = 1 snake_case__ :List[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ :List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :Tuple = self.type_sequence_label_size snake_case__ :Optional[Any] = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ :Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[str] = self.prepare_config_and_inputs() snake_case__ :Optional[int] = config_and_inputs snake_case__ :int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _snake_case ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _A = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _A = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :int = SwinvaModelTester(self ) snake_case__ :Dict = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def lowerCAmelCase_ ( self ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def lowerCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> Any: pass def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) snake_case__ :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Optional[Any] = model_class(lowerCamelCase_ ) snake_case__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Optional[int] = [*signature.parameters.keys()] snake_case__ :Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Tuple = True for model_class in self.all_model_classes: snake_case__ :List[str] = True snake_case__ :List[Any] = False snake_case__ :Any = True snake_case__ :Any = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): snake_case__ :str = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) snake_case__ :Tuple = outputs.attentions snake_case__ :Tuple = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ :Union[str, Any] = True snake_case__ :Optional[int] = config.window_size**2 snake_case__ :str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): snake_case__ :Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) snake_case__ :Dict = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) snake_case__ :Dict = len(lowerCamelCase_ ) # Check attention is always last and order is fine snake_case__ :int = True snake_case__ :Dict = True snake_case__ :int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): snake_case__ :List[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"num_hidden_states_types" ): snake_case__ :Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case__ :Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) snake_case__ :Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): snake_case__ :Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) snake_case__ :Dict = outputs.hidden_states snake_case__ :str = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length snake_case__ :List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ :Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) snake_case__ :Any = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) snake_case__ :Any = reshaped_hidden_states[0].shape snake_case__ :Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case__ :Tuple = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :List[Any] = 3 snake_case__ :int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case__ :Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ :Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case__ :Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case__ :Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCAmelCase_ ( self ) -> List[str]: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :Tuple = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Tuple = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: snake_case__ :Dict = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> List[Any]: return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[int] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( lowerCamelCase_ ) snake_case__ :Dict = self.default_image_processor snake_case__ :Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) snake_case__ :List[str] = image_processor(images=lowerCamelCase_ ,return_tensors="pt" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): snake_case__ :Tuple = model(**lowerCamelCase_ ) # verify the logits snake_case__ :List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) snake_case__ :int = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1E-4 ) )
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __UpperCAmelCase : List[str] = datasets.load_iris() __UpperCAmelCase : int = np.array(data["data"]) __UpperCAmelCase : Optional[int] = np.array(data["target"]) __UpperCAmelCase : Optional[int] = data['''target_names'''] __UpperCAmelCase : Optional[Any] = train_test_split(X, y) def lowercase_ ( __snake_case : List[str] , __snake_case : Any ) -> Tuple: '''simple docstring''' return np.linalg.norm(np.array(_A ) - np.array(_A ) ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any]=5 ) -> str: '''simple docstring''' snake_case__ :Optional[Any] = zip(_A , _A ) # List of distances of all points from the point to be classified snake_case__ :List[str] = [] for data_point in data: snake_case__ :Optional[Any] = euclidean_distance(data_point[0] , _A ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. snake_case__ :Dict = [i[1] for i in sorted(_A )[:k]] # Most commonly occurring class among them # is the class into which the point is classified snake_case__ :Union[str, Any] = Counter(_A ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=100 ,UpperCamelCase=13 ,UpperCamelCase=30 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=10 ,UpperCamelCase=0.02 ,UpperCamelCase=3 ,) -> Optional[int]: snake_case__ :Tuple = parent snake_case__ :Any = vocab_size snake_case__ :List[str] = batch_size snake_case__ :int = image_size snake_case__ :Any = patch_size snake_case__ :List[str] = num_channels snake_case__ :List[Any] = is_training snake_case__ :Optional[Any] = use_labels snake_case__ :str = hidden_size snake_case__ :int = num_hidden_layers snake_case__ :Optional[Any] = num_attention_heads snake_case__ :Optional[int] = intermediate_size snake_case__ :Any = hidden_act snake_case__ :Any = hidden_dropout_prob snake_case__ :List[Any] = attention_probs_dropout_prob snake_case__ :int = type_sequence_label_size snake_case__ :Optional[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ :Dict = (image_size // patch_size) ** 2 snake_case__ :Tuple = num_patches + 1 def lowerCAmelCase_ ( self ) -> str: snake_case__ :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :Dict = None if self.use_labels: snake_case__ :Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :Optional[int] = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case_ ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :int = FlaxBeitModel(config=snake_case_ ) snake_case__ :List[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :Tuple = FlaxBeitForMaskedImageModeling(config=snake_case_ ) snake_case__ :Tuple = model(snake_case_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :Dict = self.type_sequence_label_size snake_case__ :List[str] = FlaxBeitForImageClassification(config=snake_case_ ) snake_case__ :Tuple = model(snake_case_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ :Tuple = 1 snake_case__ :List[str] = FlaxBeitForImageClassification(snake_case_ ) snake_case__ :Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :List[str] = model(snake_case_ ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :int = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) :Tuple = config_and_inputs snake_case__ :int = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _snake_case ( _a , unittest.TestCase ): _A = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> None: snake_case__ :List[Any] = FlaxBeitModelTester(self ) snake_case__ :List[str] = ConfigTester(self ,config_class=snake_case_ ,has_text_modality=snake_case_ ,hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Dict: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Union[str, Any] = model_class(snake_case_ ) snake_case__ :Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :int = [*signature.parameters.keys()] snake_case__ :List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,snake_case_ ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ , snake_case__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ :Optional[Any] = self._prepare_for_class(snake_case_ ,snake_case_ ) snake_case__ :Tuple = model_class(snake_case_ ) @jax.jit def model_jitted(UpperCamelCase ,**UpperCamelCase ): return model(pixel_values=snake_case_ ,**snake_case_ ) with self.subTest("JIT Enabled" ): snake_case__ :Tuple = model_jitted(**snake_case_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case__ :Any = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) ,len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ ,snake_case_ ): self.assertEqual(jitted_output.shape ,output.shape ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCAmelCase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: snake_case__ :str = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) snake_case__ :List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def lowercase_ ( ) -> Optional[int]: '''simple docstring''' snake_case__ :Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> List[Any]: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) snake_case__ :Any = self.default_image_processor snake_case__ :List[Any] = prepare_img() snake_case__ :int = image_processor(images=snake_case_ ,return_tensors="np" ).pixel_values # prepare bool_masked_pos snake_case__ :str = np.ones((1, 196) ,dtype=snake_case_ ) # forward pass snake_case__ :Optional[Any] = model(pixel_values=snake_case_ ,bool_masked_pos=snake_case_ ) snake_case__ :Optional[int] = outputs.logits # verify the logits snake_case__ :str = (1, 196, 8_192) self.assertEqual(logits.shape ,snake_case_ ) snake_case__ :Any = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,snake_case_ ,atol=1E-2 ) ) @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Dict = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) snake_case__ :List[str] = self.default_image_processor snake_case__ :Any = prepare_img() snake_case__ :Dict = image_processor(images=snake_case_ ,return_tensors="np" ) # forward pass snake_case__ :Dict = model(**snake_case_ ) snake_case__ :Optional[Any] = outputs.logits # verify the logits snake_case__ :Dict = (1, 1_000) self.assertEqual(logits.shape ,snake_case_ ) snake_case__ :List[str] = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] ,snake_case_ ,atol=1E-4 ) ) snake_case__ :Optional[int] = 281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case_ ) @slow def lowerCAmelCase_ ( self ) -> int: snake_case__ :Union[str, Any] = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) snake_case__ :int = self.default_image_processor snake_case__ :Any = prepare_img() snake_case__ :Union[str, Any] = image_processor(images=snake_case_ ,return_tensors="np" ) # forward pass snake_case__ :Union[str, Any] = model(**snake_case_ ) snake_case__ :Optional[Any] = outputs.logits # verify the logits snake_case__ :int = (1, 21_841) self.assertEqual(logits.shape ,snake_case_ ) snake_case__ :str = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] ,snake_case_ ,atol=1E-4 ) ) snake_case__ :str = 2_396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case_ )
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
def lowercase_ ( __snake_case : int , __snake_case : int ) -> Dict: '''simple docstring''' snake_case__ :Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case__ :Optional[int] = n - k # Calculate C(n,k) for i in range(__UpperCamelCase ): result *= n - i result //= i + 1 return result def lowercase_ ( __snake_case : int ) -> List[str]: '''simple docstring''' return binomial_coefficient(2 * node_count , __UpperCamelCase ) // (node_count + 1) def lowercase_ ( __snake_case : int ) -> List[Any]: '''simple docstring''' if n < 0: raise ValueError("factorial() not defined for negative values" ) snake_case__ :Optional[int] = 1 for i in range(1 , n + 1 ): result *= i return result def lowercase_ ( __snake_case : int ) -> Dict: '''simple docstring''' return catalan_number(__UpperCamelCase ) * factorial(__UpperCamelCase ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class _snake_case ( _lowercase ): _A = '''conditional_detr''' _A = ['''past_key_values'''] _A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=3 ,UpperCamelCase=300 ,UpperCamelCase=6 ,UpperCamelCase=2_048 ,UpperCamelCase=8 ,UpperCamelCase=6 ,UpperCamelCase=2_048 ,UpperCamelCase=8 ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=True ,UpperCamelCase="relu" ,UpperCamelCase=256 ,UpperCamelCase=0.1 ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1.0 ,UpperCamelCase=False ,UpperCamelCase="sine" ,UpperCamelCase="resnet50" ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=2 ,UpperCamelCase=5 ,UpperCamelCase=2 ,UpperCamelCase=1 ,UpperCamelCase=1 ,UpperCamelCase=2 ,UpperCamelCase=5 ,UpperCamelCase=2 ,UpperCamelCase=0.25 ,**UpperCamelCase ,) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case__ :List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A_ ,A_ ): snake_case__ :Tuple = backbone_config.get("model_type" ) snake_case__ :Dict = CONFIG_MAPPING[backbone_model_type] snake_case__ :Tuple = config_class.from_dict(A_ ) snake_case__ :Dict = use_timm_backbone snake_case__ :Dict = backbone_config snake_case__ :Optional[int] = num_channels snake_case__ :Union[str, Any] = num_queries snake_case__ :List[str] = d_model snake_case__ :str = encoder_ffn_dim snake_case__ :Optional[int] = encoder_layers snake_case__ :Any = encoder_attention_heads snake_case__ :Tuple = decoder_ffn_dim snake_case__ :Any = decoder_layers snake_case__ :List[str] = decoder_attention_heads snake_case__ :List[Any] = dropout snake_case__ :int = attention_dropout snake_case__ :List[Any] = activation_dropout snake_case__ :Dict = activation_function snake_case__ :Optional[int] = init_std snake_case__ :int = init_xavier_std snake_case__ :List[Any] = encoder_layerdrop snake_case__ :Tuple = decoder_layerdrop snake_case__ :Union[str, Any] = encoder_layers snake_case__ :List[str] = auxiliary_loss snake_case__ :Optional[Any] = position_embedding_type snake_case__ :Tuple = backbone snake_case__ :Optional[int] = use_pretrained_backbone snake_case__ :Optional[Any] = dilation # Hungarian matcher snake_case__ :List[Any] = class_cost snake_case__ :Tuple = bbox_cost snake_case__ :Any = giou_cost # Loss coefficients snake_case__ :Optional[int] = mask_loss_coefficient snake_case__ :Any = dice_loss_coefficient snake_case__ :Optional[int] = cls_loss_coefficient snake_case__ :List[Any] = bbox_loss_coefficient snake_case__ :Dict = giou_loss_coefficient snake_case__ :Dict = focal_alpha super().__init__(is_encoder_decoder=A_ ,**A_ ) @property def lowerCAmelCase_ ( self ) -> int: return self.encoder_attention_heads @property def lowerCAmelCase_ ( self ) -> int: return self.d_model def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case__ :str = self.backbone_config.to_dict() snake_case__ :str = self.__class__.model_type return output class _snake_case ( _lowercase ): _A = version.parse('1.11' ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase_ ( self ) -> float: return 1E-5 @property def lowerCAmelCase_ ( self ) -> int: return 12
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :str = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } snake_case__ :str = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(UpperCamelCase ) ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) ,x.transpose() ) ) snake_case__ :List[Any] = np.random.randn(3 ,4 ,5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase ,axes=(1, 2, 0) ) ,x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :List[Any] = np.random.randn(3 ,4 ) snake_case__ :Dict = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) ,transpose(UpperCamelCase ).numpy() ) ) snake_case__ :Union[str, Any] = np.random.randn(3 ,4 ,5 ) snake_case__ :Tuple = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ,axes=(1, 2, 0) ) ,transpose(UpperCamelCase ,axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Any = np.random.randn(3 ,4 ) snake_case__ :str = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) ,transpose(UpperCamelCase ).numpy() ) ) snake_case__ :Optional[int] = np.random.randn(3 ,4 ,5 ) snake_case__ :List[Any] = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ,axes=(1, 2, 0) ) ,transpose(UpperCamelCase ,axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[int] = np.random.randn(3 ,4 ) snake_case__ :Dict = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) ,np.asarray(transpose(UpperCamelCase ) ) ) ) snake_case__ :List[str] = np.random.randn(3 ,4 ,5 ) snake_case__ :Optional[Any] = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ,axes=(1, 2, 0) ) ,np.asarray(transpose(UpperCamelCase ,axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Dict = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(4, 3) ) ,np.reshape(UpperCamelCase ,(4, 3) ) ) ) snake_case__ :Optional[Any] = np.random.randn(3 ,4 ,5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(12, 5) ) ,np.reshape(UpperCamelCase ,(12, 5) ) ) ) @require_torch def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[str] = np.random.randn(3 ,4 ) snake_case__ :Optional[Any] = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(4, 3) ) ,reshape(UpperCamelCase ,(4, 3) ).numpy() ) ) snake_case__ :Union[str, Any] = np.random.randn(3 ,4 ,5 ) snake_case__ :Tuple = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(12, 5) ) ,reshape(UpperCamelCase ,(12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = np.random.randn(3 ,4 ) snake_case__ :Optional[Any] = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(4, 3) ) ,reshape(UpperCamelCase ,(4, 3) ).numpy() ) ) snake_case__ :int = np.random.randn(3 ,4 ,5 ) snake_case__ :Any = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(12, 5) ) ,reshape(UpperCamelCase ,(12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :int = np.random.randn(3 ,4 ) snake_case__ :List[Any] = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(4, 3) ) ,np.asarray(reshape(UpperCamelCase ,(4, 3) ) ) ) ) snake_case__ :Tuple = np.random.randn(3 ,4 ,5 ) snake_case__ :Union[str, Any] = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase ,(12, 5) ) ,np.asarray(reshape(UpperCamelCase ,(12, 5) ) ) ) ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Tuple = np.random.randn(1 ,3 ,4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) ,np.squeeze(UpperCamelCase ) ) ) snake_case__ :Any = np.random.randn(1 ,4 ,1 ,5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ,axis=2 ) ,np.squeeze(UpperCamelCase ,axis=2 ) ) ) @require_torch def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Any = np.random.randn(1 ,3 ,4 ) snake_case__ :Dict = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) ,squeeze(UpperCamelCase ).numpy() ) ) snake_case__ :Optional[Any] = np.random.randn(1 ,4 ,1 ,5 ) snake_case__ :Optional[Any] = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ,axis=2 ) ,squeeze(UpperCamelCase ,axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :int = np.random.randn(1 ,3 ,4 ) snake_case__ :Dict = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) ,squeeze(UpperCamelCase ).numpy() ) ) snake_case__ :Optional[Any] = np.random.randn(1 ,4 ,1 ,5 ) snake_case__ :Dict = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ,axis=2 ) ,squeeze(UpperCamelCase ,axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self ) -> int: snake_case__ :str = np.random.randn(1 ,3 ,4 ) snake_case__ :Optional[Any] = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) ,np.asarray(squeeze(UpperCamelCase ) ) ) ) snake_case__ :Tuple = np.random.randn(1 ,4 ,1 ,5 ) snake_case__ :Optional[int] = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ,axis=2 ) ,np.asarray(squeeze(UpperCamelCase ,axis=2 ) ) ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :int = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase ,axis=1 ) ,np.expand_dims(UpperCamelCase ,axis=1 ) ) ) @require_torch def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[str] = np.random.randn(3 ,4 ) snake_case__ :Optional[int] = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase ,axis=1 ) ,expand_dims(UpperCamelCase ,axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :str = np.random.randn(3 ,4 ) snake_case__ :Optional[Any] = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase ,axis=1 ) ,expand_dims(UpperCamelCase ,axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[int] = np.random.randn(3 ,4 ) snake_case__ :Tuple = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase ,axis=1 ) ,np.asarray(expand_dims(UpperCamelCase ,axis=1 ) ) ) )
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[Any] = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' from string import ascii_uppercase __UpperCAmelCase : List[Any] = {str(ord(c) - 5_5): c for c in ascii_uppercase} def lowercase_ ( __snake_case : int , __snake_case : int ) -> Tuple: '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(snake_case_ , snake_case_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(snake_case_ , snake_case_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) snake_case__ :Union[str, Any] = "" snake_case__ :List[Any] = 0 snake_case__ :str = 0 while div != 1: snake_case__ :Optional[Any] = divmod(snake_case_ , snake_case_ ) if base >= 11 and 9 < mod < 36: snake_case__ :Union[str, Any] = ALPHABET_VALUES[str(snake_case_ )] else: snake_case__ :Optional[Any] = str(snake_case_ ) new_value += actual_value snake_case__ :Any = num // base snake_case__ :Any = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(snake_case_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 3_7): for num in range(1_0_0_0): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase_ ( __snake_case : List[Any] , __snake_case : Optional[int] ) -> str: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowercase_ ( __snake_case : Dict , __snake_case : Optional[int] , __snake_case : str ) -> Tuple: '''simple docstring''' snake_case__ :Tuple = tmp_path / "cache" snake_case__ :Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ :List[Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> Any: '''simple docstring''' snake_case__ :Dict = tmp_path / "cache" snake_case__ :List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case__ :Optional[Any] = features.copy() if features else default_expected_features snake_case__ :int = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ :Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def lowercase_ ( __snake_case : int , __snake_case : str , __snake_case : List[Any] ) -> List[str]: '''simple docstring''' snake_case__ :Union[str, Any] = tmp_path / "cache" snake_case__ :Dict = {"col_3": "float64", "col_1": "string", "col_2": "int64"} snake_case__ :Optional[Any] = features.copy() if features else default_expected_features snake_case__ :str = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ :Any = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase_ ( __snake_case : Optional[Any] , __snake_case : str ) -> Any: '''simple docstring''' snake_case__ :List[str] = {"col_2": "int64", "col_3": "float64", "col_1": "string"} snake_case__ :int = features.copy() snake_case__ :Optional[Any] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ :Union[str, Any] = tmp_path / "cache" snake_case__ :Dict = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowercase_ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = tmp_path / "cache" snake_case__ :Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case__ :Optional[Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowercase_ ( __snake_case : Any , __snake_case : Tuple , __snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' if issubclass(_lowerCamelCase , _lowerCamelCase ): snake_case__ :List[Any] = jsonl_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): snake_case__ :Optional[int] = [jsonl_path] snake_case__ :Tuple = tmp_path / "cache" snake_case__ :Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case__ :Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) def lowercase_ ( __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any]=("train",) ) -> Any: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: snake_case__ :List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : int ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = tmp_path / "cache" snake_case__ :Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ :Optional[int] = JsonDatasetReader({"train": jsonl_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowercase_ ( __snake_case : str , __snake_case : Any , __snake_case : Tuple ) -> Tuple: '''simple docstring''' snake_case__ :str = tmp_path / "cache" snake_case__ :List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case__ :Any = features.copy() if features else default_expected_features snake_case__ :List[str] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ :int = JsonDatasetReader({"train": jsonl_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowercase_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Optional[int]: '''simple docstring''' if split: snake_case__ :int = {split: jsonl_path} else: snake_case__ :Optional[Any] = "train" snake_case__ :Dict = {"train": jsonl_path, "test": jsonl_path} snake_case__ :Union[str, Any] = tmp_path / "cache" snake_case__ :Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} snake_case__ :int = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase_ ( __snake_case : Any ) -> Union[str, Any]: '''simple docstring''' return json.load(_lowerCamelCase ) def lowercase_ ( __snake_case : Any ) -> List[str]: '''simple docstring''' return [json.loads(_lowerCamelCase ) for line in buffer] class _snake_case : @pytest.mark.parametrize("lines, load_json_function" ,[(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase ,UpperCamelCase ,lines=UpperCamelCase ).write() buffer.seek(0 ) snake_case__ :str = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase ,UpperCamelCase ) assert isinstance(exported_content[0] ,UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" ,[ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase ,UpperCamelCase ,lines=UpperCamelCase ,orient=UpperCamelCase ).write() buffer.seek(0 ) snake_case__ :Union[str, Any] = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase ,UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase ,"keys" ) and not hasattr(exported_content[0] ,"keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize("lines, load_json_function" ,[(True, load_json_lines), (False, load_json)] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase ,UpperCamelCase ,lines=UpperCamelCase ,num_proc=2 ).write() buffer.seek(0 ) snake_case__ :List[Any] = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase ,UpperCamelCase ) assert isinstance(exported_content[0] ,UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" ,[ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase ,UpperCamelCase ,lines=UpperCamelCase ,orient=UpperCamelCase ,num_proc=2 ).write() buffer.seek(0 ) snake_case__ :Dict = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase ,UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase ,"keys" ) and not hasattr(exported_content[0] ,"keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: with pytest.raises(UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase ,UpperCamelCase ,num_proc=0 ) @pytest.mark.parametrize("compression, extension" ,[("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :Dict = tmp_path_factory.mktemp("data" ) / f'test.json.{extension}' snake_case__ :List[str] = str(shared_datadir / f'test_file.json.{extension}' ) JsonDatasetWriter(UpperCamelCase ,UpperCamelCase ,compression=UpperCamelCase ).write() with fsspec.open(UpperCamelCase ,"rb" ,compression="infer" ) as f: snake_case__ :Dict = f.read() with fsspec.open(UpperCamelCase ,"rb" ,compression="infer" ) as f: snake_case__ :Any = f.read() assert exported_content == original_content
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase_ ( __snake_case : Dict ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = image.size snake_case__ :Optional[int] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case__ :Optional[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) snake_case__ :Dict = np.array(__snake_case ).astype(np.floataa ) / 2_5_5.0 snake_case__ :List[str] = image[None].transpose(0 , 3 , 1 , 2 ) snake_case__ :int = torch.from_numpy(__snake_case ) return 2.0 * image - 1.0 class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Any: super().__init__() self.register_modules(vqvae=_a ,unet=_a ,scheduler=_a ) @torch.no_grad() def __call__( self ,UpperCamelCase = None ,UpperCamelCase = 1 ,UpperCamelCase = 100 ,UpperCamelCase = 0.0 ,UpperCamelCase = None ,UpperCamelCase = "pil" ,UpperCamelCase = True ,) -> Dict: if isinstance(_a ,PIL.Image.Image ): snake_case__ :Any = 1 elif isinstance(_a ,torch.Tensor ): snake_case__ :Optional[int] = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}' ) if isinstance(_a ,PIL.Image.Image ): snake_case__ :str = preprocess(_a ) snake_case__ :Any = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case__ :Dict = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case__ :Optional[int] = next(self.unet.parameters() ).dtype snake_case__ :int = randn_tensor(_a ,generator=_a ,device=self.device ,dtype=_a ) snake_case__ :List[Any] = image.to(device=self.device ,dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a ,device=self.device ) snake_case__ :Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case__ :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case__ :Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case__ :List[Any] = {} if accepts_eta: snake_case__ :Union[str, Any] = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. snake_case__ :List[str] = torch.cat([latents, image] ,dim=1 ) snake_case__ :Optional[Any] = self.scheduler.scale_model_input(_a ,_a ) # predict the noise residual snake_case__ :Union[str, Any] = self.unet(_a ,_a ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case__ :Union[str, Any] = self.scheduler.step(_a ,_a ,_a ,**_a ).prev_sample # decode the image latents with the VQVAE snake_case__ :Any = self.vqvae.decode(_a ).sample snake_case__ :Tuple = torch.clamp(_a ,-1.0 ,1.0 ) snake_case__ :int = image / 2 + 0.5 snake_case__ :Any = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": snake_case__ :List[Any] = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase_ ( __snake_case : Namespace ) -> Union[str, Any]: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __UpperCAmelCase : int = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class _snake_case ( __a ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> str: snake_case__ :Union[str, Any] = parser.add_parser( "convert" ,help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." ,) train_parser.add_argument("--model_type" ,type=a_ ,required=a_ ,help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" ,type=a_ ,required=a_ ,help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" ,type=a_ ,required=a_ ,help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" ,type=a_ ,default="" ,help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" ,type=a_ ,default=a_ ,help="Optional fine-tuning task name if the TF model was a finetuned model." ,) train_parser.set_defaults(func=a_ ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,*UpperCamelCase ,) -> Optional[int]: snake_case__ :str = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'Loading model {model_type}' ) snake_case__ :Any = model_type snake_case__ :Union[str, Any] = tf_checkpoint snake_case__ :List[Any] = pytorch_dump_output snake_case__ :List[Any] = config snake_case__ :Optional[int] = finetuning_task_name def lowerCAmelCase_ ( self ) -> List[Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) if "ckpt" in self._tf_checkpoint.lower(): snake_case__ :Tuple = self._tf_checkpoint snake_case__ :Any = """""" else: snake_case__ :Any = self._tf_checkpoint snake_case__ :Dict = """""" convert_transfo_xl_checkpoint_to_pytorch( a_ ,self._config ,self._pytorch_dump_output ,a_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Tuple = torch.device("cpu") def lowercase_ ( ) -> List[Any]: '''simple docstring''' snake_case__ :int = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ :int = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def lowercase_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Tuple: '''simple docstring''' snake_case__ :List[Any] = dct.pop(__snake_case ) snake_case__ :Optional[Any] = val def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' snake_case__ :Union[str, Any] = [] for k in state_dict.keys(): snake_case__ :int = k if ".pwconv" in k: snake_case__ :Tuple = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: snake_case__ :Tuple = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: snake_case__ :List[Any] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: snake_case__ :Tuple = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: snake_case__ :Union[str, Any] = k_new.split("." ) if ls[2].isdigit(): snake_case__ :Optional[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: snake_case__ :Union[str, Any] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowercase_ ( __snake_case : List[Any] , __snake_case : str , __snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case__ :Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ :str = 10_00 snake_case__ :Tuple = "huggingface/label-files" snake_case__ :Union[str, Any] = "imagenet-1k-id2label.json" snake_case__ :int = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) snake_case__ :Tuple = {int(__snake_case ): v for k, v in idalabel.items()} snake_case__ :List[str] = idalabel snake_case__ :List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case__ :Dict = [3, 3, 6, 4] snake_case__ :Any = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": snake_case__ :str = [3, 3, 9, 6] snake_case__ :Optional[int] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": snake_case__ :List[str] = [4, 3, 10, 5] snake_case__ :List[Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": snake_case__ :Tuple = [4, 4, 12, 6] snake_case__ :List[Any] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): snake_case__ :Any = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" , check_hash=__snake_case ) else: snake_case__ :Tuple = torch.load(__snake_case , map_location="cpu" ) snake_case__ :List[Any] = checkpoint snake_case__ :List[str] = create_rename_keys(__snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # load HuggingFace model snake_case__ :Optional[Any] = SwiftFormerForImageClassification(__snake_case ).eval() hf_model.load_state_dict(__snake_case ) # prepare test inputs snake_case__ :Optional[int] = prepare_img() snake_case__ :List[str] = ViTImageProcessor.from_pretrained("preprocessor_config" ) snake_case__ :Dict = processor(images=__snake_case , return_tensors="pt" ) # compare outputs from both models snake_case__ :int = get_expected_output(__snake_case ) snake_case__ :List[Any] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , __snake_case , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __UpperCAmelCase : Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
def lowercase_ ( __snake_case : Optional[Any] ): '''simple docstring''' snake_case__ :Optional[int] = [False] * len(UpperCAmelCase__ ) snake_case__ :Union[str, Any] = [-1] * len(UpperCAmelCase__ ) def dfs(__snake_case : str , __snake_case : Optional[Any] ): snake_case__ :List[str] = True snake_case__ :str = c for u in graph[v]: if not visited[u]: dfs(UpperCAmelCase__ , 1 - c ) for i in range(len(UpperCAmelCase__ ) ): if not visited[i]: dfs(UpperCAmelCase__ , 0 ) for i in range(len(UpperCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCAmelCase : List[str] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase : List[Any] = logging.getLogger(__name__) class _snake_case ( a__ ): _A = """summarization""" _A = ["""loss"""] _A = ROUGE_KEYS _A = """rouge2""" def __init__( self ,UpperCamelCase ,**UpperCamelCase ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: snake_case__ :Union[str, Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(lowerCAmelCase__ ,num_labels=lowerCAmelCase__ ,mode=self.mode ,**lowerCAmelCase__ ) use_task_specific_params(self.model ,"summarization" ) save_git_info(self.hparams.output_dir ) snake_case__ :Optional[Any] = Path(self.output_dir ) / "metrics.json" snake_case__ :int = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams ,self.hparams_save_path ) snake_case__ :List[Any] = 0 snake_case__ :Union[str, Any] = defaultdict(lowerCAmelCase__ ) snake_case__ :Any = self.config.model_type snake_case__ :str = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size snake_case__ :dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } snake_case__ :Tuple = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } snake_case__ :Optional[Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} snake_case__ :str = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) snake_case__ :Optional[Any] = get_git_info()["repo_sha"] snake_case__ :List[Any] = hparams.num_workers snake_case__ :Union[str, Any] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer ,lowerCAmelCase__ ): snake_case__ :Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] snake_case__ :Optional[Any] = self.decoder_start_token_id snake_case__ :Union[str, Any] = ( SeqaSeqDataset if hasattr(self.tokenizer ,"prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) snake_case__ :Optional[Any] = False snake_case__ :int = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: snake_case__ :Any = self.hparams.eval_max_gen_length else: snake_case__ :Optional[int] = self.model.config.max_length snake_case__ :Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Dict[str, List[str]]: snake_case__ :str = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase__ ,Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} ,Path(self.output_dir ) / "tok_batch.json" ) snake_case__ :Any = True return readable_batch def lowerCAmelCase_ ( self ,UpperCamelCase ,**UpperCamelCase ) -> int: return self.model(lowerCAmelCase__ ,**lowerCAmelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: snake_case__ :str = self.tokenizer.batch_decode( lowerCAmelCase__ ,skip_special_tokens=lowerCAmelCase__ ,clean_up_tokenization_spaces=lowerCAmelCase__ ) return lmap(str.strip ,lowerCAmelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: snake_case__ :List[Any] = self.tokenizer.pad_token_id snake_case__ :Optional[int] = batch["input_ids"], batch["attention_mask"] snake_case__ :Tuple = batch["labels"] if isinstance(self.model ,lowerCAmelCase__ ): snake_case__ :Optional[int] = self.model._shift_right(lowerCAmelCase__ ) else: snake_case__ :Optional[int] = shift_tokens_right(lowerCAmelCase__ ,lowerCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero snake_case__ :List[str] = decoder_input_ids self.save_readable_batch(lowerCAmelCase__ ) snake_case__ :Any = self(lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,decoder_input_ids=lowerCAmelCase__ ,use_cache=lowerCAmelCase__ ) snake_case__ :Any = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id snake_case__ :List[str] = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size snake_case__ :Optional[int] = ce_loss_fct(lm_logits.view(-1 ,lm_logits.shape[-1] ) ,tgt_ids.view(-1 ) ) else: snake_case__ :Tuple = nn.functional.log_softmax(lowerCAmelCase__ ,dim=-1 ) snake_case__ :Any = label_smoothed_nll_loss( lowerCAmelCase__ ,lowerCAmelCase__ ,self.hparams.label_smoothing ,ignore_index=lowerCAmelCase__ ) return (loss,) @property def lowerCAmelCase_ ( self ) -> int: return self.tokenizer.pad_token_id def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :Optional[int] = self._step(lowerCAmelCase__ ) snake_case__ :Dict = dict(zip(self.loss_names ,lowerCAmelCase__ ) ) # tokens per batch snake_case__ :List[Any] = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() snake_case__ :List[Any] = batch["input_ids"].shape[0] snake_case__ :Any = batch["input_ids"].eq(self.pad ).sum() snake_case__ :str = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Dict: return self._generative_step(lowerCAmelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase="val" ) -> Dict: self.step_count += 1 snake_case__ :List[str] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} snake_case__ :int = losses["loss"] snake_case__ :Any = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } snake_case__ :Optional[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) snake_case__ :torch.FloatTensor = torch.tensor(lowerCAmelCase__ ).type_as(lowerCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase__ ) snake_case__ :Optional[int] = {f'{prefix}_avg_{k}': x for k, x in losses.items()} snake_case__ :List[Any] = self.step_count self.metrics[prefix].append(lowerCAmelCase__ ) # callback writes this to self.metrics_save_path snake_case__ :Optional[int] = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'{prefix}_loss': loss, f'{prefix}_{self.val_metric}': metric_tensor, } def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Dict: return calculate_rouge(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> dict: snake_case__ :Any = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') snake_case__ :Optional[int] = self.model.generate( batch["input_ids"] ,attention_mask=batch["attention_mask"] ,use_cache=lowerCAmelCase__ ,decoder_start_token_id=self.decoder_start_token_id ,num_beams=self.eval_beams ,max_length=self.eval_max_length ,) snake_case__ :str = (time.time() - ta) / batch["input_ids"].shape[0] snake_case__ :List[str] = self.ids_to_clean_text(lowerCAmelCase__ ) snake_case__ :List[str] = self.ids_to_clean_text(batch["labels"] ) snake_case__ :int = self._step(lowerCAmelCase__ ) snake_case__ :int = dict(zip(self.loss_names ,lowerCAmelCase__ ) ) snake_case__ :Dict = self.calc_generative_metrics(lowerCAmelCase__ ,lowerCAmelCase__ ) snake_case__ :Optional[int] = np.mean(lmap(lowerCAmelCase__ ,lowerCAmelCase__ ) ) base_metrics.update(gen_time=lowerCAmelCase__ ,gen_len=lowerCAmelCase__ ,preds=lowerCAmelCase__ ,target=lowerCAmelCase__ ,**lowerCAmelCase__ ) return base_metrics def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: return self._generative_step(lowerCAmelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: return self.validation_epoch_end(lowerCAmelCase__ ,prefix="test" ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> SeqaSeqDataset: snake_case__ :Union[str, Any] = self.n_obs[type_path] snake_case__ :List[str] = self.target_lens[type_path] snake_case__ :Any = self.dataset_class( self.tokenizer ,type_path=lowerCAmelCase__ ,n_obs=lowerCAmelCase__ ,max_target_length=lowerCAmelCase__ ,**self.dataset_kwargs ,) return dataset def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ) -> DataLoader: snake_case__ :Tuple = self.get_dataset(lowerCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": snake_case__ :int = dataset.make_sortish_sampler(lowerCAmelCase__ ,distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,collate_fn=dataset.collate_fn ,shuffle=lowerCAmelCase__ ,num_workers=self.num_workers ,sampler=lowerCAmelCase__ ,) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": snake_case__ :Union[str, Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch ,distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ ,batch_sampler=lowerCAmelCase__ ,collate_fn=dataset.collate_fn ,num_workers=self.num_workers ,) else: return DataLoader( lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,collate_fn=dataset.collate_fn ,shuffle=lowerCAmelCase__ ,num_workers=self.num_workers ,sampler=lowerCAmelCase__ ,) def lowerCAmelCase_ ( self ) -> DataLoader: snake_case__ :List[str] = self.get_dataloader("train" ,batch_size=self.hparams.train_batch_size ,shuffle=lowerCAmelCase__ ) return dataloader def lowerCAmelCase_ ( self ) -> DataLoader: return self.get_dataloader("val" ,batch_size=self.hparams.eval_batch_size ) def lowerCAmelCase_ ( self ) -> DataLoader: return self.get_dataloader("test" ,batch_size=self.hparams.eval_batch_size ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase ,UpperCamelCase ) -> Optional[int]: BaseTransformer.add_model_specific_args(lowerCAmelCase__ ,lowerCAmelCase__ ) add_generic_args(lowerCAmelCase__ ,lowerCAmelCase__ ) parser.add_argument( "--max_source_length" ,default=1_024 ,type=lowerCAmelCase__ ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--max_target_length" ,default=56 ,type=lowerCAmelCase__ ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--val_max_target_length" ,default=142 ,type=lowerCAmelCase__ ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--test_max_target_length" ,default=142 ,type=lowerCAmelCase__ ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument("--freeze_encoder" ,action="store_true" ) parser.add_argument("--freeze_embeds" ,action="store_true" ) parser.add_argument("--sortish_sampler" ,action="store_true" ,default=lowerCAmelCase__ ) parser.add_argument("--overwrite_output_dir" ,action="store_true" ,default=lowerCAmelCase__ ) parser.add_argument("--max_tokens_per_batch" ,type=lowerCAmelCase__ ,default=lowerCAmelCase__ ) parser.add_argument("--logger_name" ,type=lowerCAmelCase__ ,choices=["default", "wandb", "wandb_shared"] ,default="default" ) parser.add_argument("--n_train" ,type=lowerCAmelCase__ ,default=-1 ,required=lowerCAmelCase__ ,help="# examples. -1 means use all." ) parser.add_argument("--n_val" ,type=lowerCAmelCase__ ,default=500 ,required=lowerCAmelCase__ ,help="# examples. -1 means use all." ) parser.add_argument("--n_test" ,type=lowerCAmelCase__ ,default=-1 ,required=lowerCAmelCase__ ,help="# examples. -1 means use all." ) parser.add_argument( "--task" ,type=lowerCAmelCase__ ,default="summarization" ,required=lowerCAmelCase__ ,help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" ,type=lowerCAmelCase__ ,default=0.0 ,required=lowerCAmelCase__ ) parser.add_argument("--src_lang" ,type=lowerCAmelCase__ ,default="" ,required=lowerCAmelCase__ ) parser.add_argument("--tgt_lang" ,type=lowerCAmelCase__ ,default="" ,required=lowerCAmelCase__ ) parser.add_argument("--eval_beams" ,type=lowerCAmelCase__ ,default=lowerCAmelCase__ ,required=lowerCAmelCase__ ) parser.add_argument( "--val_metric" ,type=lowerCAmelCase__ ,default=lowerCAmelCase__ ,required=lowerCAmelCase__ ,choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" ,type=lowerCAmelCase__ ,default=lowerCAmelCase__ ,help="never generate more than n tokens" ) parser.add_argument("--save_top_k" ,type=lowerCAmelCase__ ,default=1 ,required=lowerCAmelCase__ ,help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" ,type=lowerCAmelCase__ ,default=-1 ,required=lowerCAmelCase__ ,help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) ,) return parser class _snake_case ( a__ ): _A = """translation""" _A = ["""loss"""] _A = ["""bleu"""] _A = """bleu""" def __init__( self ,UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: super().__init__(lowerCAmelCase__ ,**lowerCAmelCase__ ) snake_case__ :Optional[Any] = hparams.src_lang snake_case__ :Union[str, Any] = hparams.tgt_lang def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> dict: return calculate_bleu(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Tuple=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=_lowercase ) check_output_dir(_lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: snake_case__ :SummarizationModule = SummarizationModule(_lowercase ) else: snake_case__ :SummarizationModule = TranslationModule(_lowercase ) snake_case__ :int = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): snake_case__ :Tuple = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger snake_case__ :Optional[int] = os.environ.get("WANDB_PROJECT" , _lowercase ) snake_case__ :Dict = WandbLogger(name=model.output_dir.name , project=_lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger snake_case__ :str = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: snake_case__ :Tuple = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: snake_case__ :Optional[int] = False snake_case__ :Optional[Any] = args.val_metric == "loss" snake_case__ :pl.Trainer = generic_train( _lowercase , _lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowercase ) , early_stopping_callback=_lowercase , logger=_lowercase , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model snake_case__ :Optional[Any] = "" snake_case__ :Dict = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=_lowercase ) ) if checkpoints: snake_case__ :Optional[int] = checkpoints[-1] snake_case__ :int = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase : List[str] = argparse.ArgumentParser() __UpperCAmelCase : Optional[int] = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase : int = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase : Union[str, Any] = parser.parse_args() main(args)
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
__UpperCAmelCase : str = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 1_0: '''a''', 1_1: '''b''', 1_2: '''c''', 1_3: '''d''', 1_4: '''e''', 1_5: '''f''', } def lowercase_ ( __snake_case : float ) -> List[Any]: '''simple docstring''' assert type(UpperCAmelCase__ ) in (int, float) and decimal == int(UpperCAmelCase__ ) snake_case__ :Dict = int(UpperCAmelCase__ ) snake_case__ :Optional[Any] = "" snake_case__ :Any = False if decimal < 0: snake_case__ :int = True decimal *= -1 while decimal > 0: snake_case__ , snake_case__ :Union[str, Any] = divmod(UpperCAmelCase__ , 16 ) snake_case__ :Union[str, Any] = values[remainder] + hexadecimal snake_case__ :Tuple = "0x" + hexadecimal if negative: snake_case__ :Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : List[str] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
from math import factorial class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :str = real if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Dict = [1] * rank else: snake_case__ :Optional[int] = rank def __repr__( self ) -> List[Any]: return ( f'{self.real}+' f'{"+".join(str(UpperCamelCase__ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,UpperCamelCase__ ) def __add__( self ,UpperCamelCase ) -> Dict: if not isinstance(UpperCamelCase__ ,UpperCamelCase__ ): return Dual(self.real + other ,self.duals ) snake_case__ :List[Any] = self.duals.copy() snake_case__ :List[str] = other.duals.copy() if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): o_dual.extend([1] * (len(UpperCamelCase__ ) - len(UpperCamelCase__ )) ) elif len(UpperCamelCase__ ) < len(UpperCamelCase__ ): s_dual.extend([1] * (len(UpperCamelCase__ ) - len(UpperCamelCase__ )) ) snake_case__ :Dict = [] for i in range(len(UpperCamelCase__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,UpperCamelCase__ ) _A = __add__ def __sub__( self ,UpperCamelCase ) -> Any: return self + other * -1 def __mul__( self ,UpperCamelCase ) -> List[Any]: if not isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,UpperCamelCase__ ) snake_case__ :Optional[int] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,UpperCamelCase__ ) _A = __mul__ def __truediv__( self ,UpperCamelCase ) -> int: if not isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Any = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,UpperCamelCase__ ) raise ValueError def __floordiv__( self ,UpperCamelCase ) -> Union[str, Any]: if not isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Optional[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,UpperCamelCase__ ) raise ValueError def __pow__( self ,UpperCamelCase ) -> List[str]: if n < 0 or isinstance(UpperCamelCase__ ,UpperCamelCase__ ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self snake_case__ :str = self for _ in range(n - 1 ): x *= self return x def lowercase_ ( __snake_case : int , __snake_case : Dict , __snake_case : Any ) -> Optional[Any]: '''simple docstring''' if not callable(_lowercase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_lowercase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_lowercase , _lowercase ): raise ValueError("differentiate() requires an int as input for order" ) snake_case__ :List[Any] = Dual(_lowercase , 1 ) snake_case__ :Dict = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def lowercase_ ( __snake_case : Dict ) -> Any: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __UpperCAmelCase : str = getLogger(__name__) __UpperCAmelCase : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" def lowercase_ ( __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[Any] = 8 , __snake_case : List[str] = DEFAULT_DEVICE , __snake_case : Dict=False , __snake_case : List[Any]="summarization" , __snake_case : Tuple=None , **__snake_case : List[Any] , ) -> Dict: '''simple docstring''' snake_case__ :Union[str, Any] = Path(__UpperCamelCase ).open("w" , encoding="utf-8" ) snake_case__ :Union[str, Any] = str(__UpperCamelCase ) snake_case__ :Tuple = AutoModelForSeqaSeqLM.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) if fpaa: snake_case__ :Any = model.half() snake_case__ :Optional[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. snake_case__ :Optional[Any] = time.time() # update config with task specific params use_task_specific_params(__UpperCamelCase , __UpperCamelCase ) if prefix is None: snake_case__ :List[Any] = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(__UpperCamelCase , __UpperCamelCase ) ) ): snake_case__ :int = [prefix + text for text in examples_chunk] snake_case__ :Optional[Any] = tokenizer(__UpperCamelCase , return_tensors="pt" , truncation=__UpperCamelCase , padding="longest" ).to(__UpperCamelCase ) snake_case__ :int = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__UpperCamelCase , ) snake_case__ :int = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() snake_case__ :Dict = int(time.time() - start_time ) # seconds snake_case__ :str = len(__UpperCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase_ ( ) -> Dict: '''simple docstring''' return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def lowercase_ ( __snake_case : List[str]=True ) -> Optional[int]: '''simple docstring''' snake_case__ :str = argparse.ArgumentParser() parser.add_argument("model_name" , type=__UpperCamelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=__UpperCamelCase , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=__UpperCamelCase , help="where to save summaries" ) parser.add_argument("--reference_path" , type=__UpperCamelCase , required=__UpperCamelCase , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=__UpperCamelCase , required=__UpperCamelCase , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=__UpperCamelCase , required=__UpperCamelCase , default=__UpperCamelCase , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=__UpperCamelCase , required=__UpperCamelCase , default=__UpperCamelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=__UpperCamelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__UpperCamelCase , default=8 , required=__UpperCamelCase , help="batch size" ) parser.add_argument( "--n_obs" , type=__UpperCamelCase , default=-1 , required=__UpperCamelCase , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=__UpperCamelCase , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate snake_case__ , snake_case__ :Tuple = parser.parse_known_args() snake_case__ :Dict = parse_numeric_n_bool_cl_kwargs(__UpperCamelCase ) if parsed_args and verbose: print(F'parsed the following generate kwargs: {parsed_args}' ) snake_case__ :int = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: snake_case__ :Union[str, Any] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__UpperCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) snake_case__ :Tuple = generate_summaries_or_translations( __UpperCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__UpperCamelCase , ) if args.reference_path is None: return {} # Compute scores snake_case__ :Optional[int] = calculate_bleu if "translation" in args.task else calculate_rouge snake_case__ :Any = [x.rstrip() for x in open(args.save_path ).readlines()] snake_case__ :Optional[int] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__UpperCamelCase )] snake_case__ :Union[str, Any] = score_fn(__UpperCamelCase , __UpperCamelCase ) scores.update(__UpperCamelCase ) if args.dump_args: scores.update(__UpperCamelCase ) if args.info: snake_case__ :List[Any] = args.info if verbose: print(__UpperCamelCase ) if args.score_path is not None: json.dump(__UpperCamelCase , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _snake_case : @staticmethod def lowerCAmelCase_ ( *UpperCamelCase ,**UpperCamelCase ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class _snake_case ( unittest.TestCase ): _A = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :int = ObjectDetectionPipeline(model=UpperCamelCase ,image_processor=UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Any: snake_case__ :int = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" ,threshold=0.0 ) self.assertGreater(len(UpperCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( UpperCamelCase ,{ "score": ANY(UpperCamelCase ), "label": ANY(UpperCamelCase ), "box": {"xmin": ANY(UpperCamelCase ), "ymin": ANY(UpperCamelCase ), "xmax": ANY(UpperCamelCase ), "ymax": ANY(UpperCamelCase )}, } ,) import datasets snake_case__ :Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" ,"image" ,split="test" ) snake_case__ :str = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] snake_case__ :Any = object_detector(UpperCamelCase ,threshold=0.0 ) self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(UpperCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( UpperCamelCase ,{ "score": ANY(UpperCamelCase ), "label": ANY(UpperCamelCase ), "box": {"xmin": ANY(UpperCamelCase ), "ymin": ANY(UpperCamelCase ), "xmax": ANY(UpperCamelCase ), "ymax": ANY(UpperCamelCase )}, } ,) @require_tf @unittest.skip("Object detection not implemented in TF" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass @require_torch def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = """hf-internal-testing/tiny-detr-mobilenetsv3""" snake_case__ :Union[str, Any] = AutoModelForObjectDetection.from_pretrained(UpperCamelCase ) snake_case__ :Any = AutoFeatureExtractor.from_pretrained(UpperCamelCase ) snake_case__ :int = ObjectDetectionPipeline(model=UpperCamelCase ,feature_extractor=UpperCamelCase ) snake_case__ :int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ,threshold=0.0 ) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] ,) snake_case__ :str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] ,) @require_torch @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Union[str, Any] = """facebook/detr-resnet-50""" snake_case__ :Dict = AutoModelForObjectDetection.from_pretrained(UpperCamelCase ) snake_case__ :Any = AutoFeatureExtractor.from_pretrained(UpperCamelCase ) snake_case__ :Tuple = ObjectDetectionPipeline(model=UpperCamelCase ,feature_extractor=UpperCamelCase ) snake_case__ :Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] ,) snake_case__ :str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] ,) @require_torch @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Any = """facebook/detr-resnet-50""" snake_case__ :int = pipeline("object-detection" ,model=UpperCamelCase ) snake_case__ :Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] ,) snake_case__ :Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] ,) @require_torch @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[Any] = 0.9985 snake_case__ :Tuple = """facebook/detr-resnet-50""" snake_case__ :str = pipeline("object-detection" ,model=UpperCamelCase ) snake_case__ :Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ,threshold=UpperCamelCase ) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] ,) @require_torch @require_pytesseract @slow def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Union[str, Any] = """Narsil/layoutlmv3-finetuned-funsd""" snake_case__ :Union[str, Any] = 0.9993 snake_case__ :Any = pipeline("object-detection" ,model=UpperCamelCase ,threshold=UpperCamelCase ) snake_case__ :Optional[int] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(UpperCamelCase ,decimals=4 ) ,[ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] ,)
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _snake_case ( lowercase__ ): def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase ,"hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowercase ,"num_attention_heads" ) ) class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=64 ,UpperCamelCase=3 ,UpperCamelCase=3 ,UpperCamelCase=2 ,UpperCamelCase=1 ,UpperCamelCase=16 ,UpperCamelCase=[128, 256, 384] ,UpperCamelCase=[4, 6, 8] ,UpperCamelCase=[2, 3, 4] ,UpperCamelCase=[16, 16, 16] ,UpperCamelCase=0 ,UpperCamelCase=[2, 2, 2] ,UpperCamelCase=[2, 2, 2] ,UpperCamelCase=0.02 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=2 ,) -> int: snake_case__ :List[str] = parent snake_case__ :Tuple = batch_size snake_case__ :Optional[int] = image_size snake_case__ :str = num_channels snake_case__ :int = kernel_size snake_case__ :Optional[int] = stride snake_case__ :List[Any] = padding snake_case__ :str = hidden_sizes snake_case__ :int = num_attention_heads snake_case__ :str = depths snake_case__ :Optional[int] = key_dim snake_case__ :Any = drop_path_rate snake_case__ :Optional[Any] = patch_size snake_case__ :List[str] = attention_ratio snake_case__ :Tuple = mlp_ratio snake_case__ :str = initializer_range snake_case__ :int = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] snake_case__ :List[str] = is_training snake_case__ :Optional[int] = use_labels snake_case__ :str = num_labels snake_case__ :Tuple = initializer_range def lowerCAmelCase_ ( self ) -> int: snake_case__ :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :int = None if self.use_labels: snake_case__ :List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) snake_case__ :Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> Dict: return LevitConfig( image_size=self.image_size ,num_channels=self.num_channels ,kernel_size=self.kernel_size ,stride=self.stride ,padding=self.padding ,patch_size=self.patch_size ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,depths=self.depths ,key_dim=self.key_dim ,drop_path_rate=self.drop_path_rate ,mlp_ratio=self.mlp_ratio ,attention_ratio=self.attention_ratio ,initializer_range=self.initializer_range ,down_ops=self.down_ops ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: snake_case__ :List[str] = LevitModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ :Dict = model(__lowercase ) snake_case__ :Union[str, Any] = (self.image_size, self.image_size) snake_case__ , snake_case__ :List[Any] = image_size[0], image_size[1] for _ in range(4 ): snake_case__ :Dict = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) snake_case__ :Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :Optional[int] = self.num_labels snake_case__ :List[str] = LevitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ :str = model(__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ :Optional[Any] = config_and_inputs snake_case__ :List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase ): _A = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _A = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _A = False _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = LevitModelTester(self ) snake_case__ :str = ConfigTester(self ,config_class=__lowercase ,has_text_modality=__lowercase ,hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self ) -> Tuple: return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> Any: pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason="Levit does not output attentions" ) def lowerCAmelCase_ ( self ) -> Any: pass def lowerCAmelCase_ ( self ) -> int: snake_case__ , snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Tuple = model_class(__lowercase ) snake_case__ :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Optional[Any] = [*signature.parameters.keys()] snake_case__ :Any = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowercase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: def check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): snake_case__ :List[str] = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): snake_case__ :List[str] = model(**self._prepare_for_class(__lowercase ,__lowercase ) ) snake_case__ :str = outputs.hidden_states snake_case__ :int = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowercase ) ,__lowercase ) snake_case__ :Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) snake_case__ , snake_case__ :Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): snake_case__ :int = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) snake_case__ :Optional[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[ height * width, self.model_tester.hidden_sizes[0], ] ,) snake_case__ , snake_case__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :List[Any] = True check_hidden_states_output(__lowercase ,__lowercase ,__lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :str = True check_hidden_states_output(__lowercase ,__lowercase ,__lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self ) -> List[Any]: pass def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=False ) -> Dict: snake_case__ :Any = super()._prepare_for_class(__lowercase ,__lowercase ,return_labels=__lowercase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def lowerCAmelCase_ ( self ) -> Dict: if not self.model_tester.is_training: return snake_case__ , snake_case__ :Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Optional[int] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowercase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue snake_case__ :Tuple = model_class(__lowercase ) model.to(__lowercase ) model.train() snake_case__ :Dict = self._prepare_for_class(__lowercase ,__lowercase ,return_labels=__lowercase ) snake_case__ :int = model(**__lowercase ).loss loss.backward() def lowerCAmelCase_ ( self ) -> int: snake_case__ , snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case__ :List[Any] = False snake_case__ :int = True for model_class in self.all_model_classes: if model_class in get_values(__lowercase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue snake_case__ :Tuple = model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() snake_case__ :Union[str, Any] = self._prepare_for_class(__lowercase ,__lowercase ,return_labels=__lowercase ) snake_case__ :Dict = model(**__lowercase ).loss loss.backward() def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ , snake_case__ :int = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Optional[Any] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowercase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): snake_case__ :Optional[int] = problem_type["title"] snake_case__ :Tuple = problem_type["num_labels"] snake_case__ :List[Any] = model_class(__lowercase ) model.to(__lowercase ) model.train() snake_case__ :Dict = self._prepare_for_class(__lowercase ,__lowercase ,return_labels=__lowercase ) if problem_type["num_labels"] > 1: snake_case__ :Optional[Any] = inputs["labels"].unsqueeze(1 ).repeat(1 ,problem_type["num_labels"] ) snake_case__ :List[str] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowercase ) as warning_list: snake_case__ :Dict = model(**__lowercase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def lowerCAmelCase_ ( self ) -> str: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :Optional[Any] = LevitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowercase_ ( ) -> str: '''simple docstring''' snake_case__ :Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Dict: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Union[str, Any] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) snake_case__ :str = self.default_image_processor snake_case__ :Tuple = prepare_img() snake_case__ :Union[str, Any] = image_processor(images=__lowercase ,return_tensors="pt" ).to(__lowercase ) # forward pass with torch.no_grad(): snake_case__ :str = model(**__lowercase ) # verify the logits snake_case__ :int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,__lowercase ) snake_case__ :int = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowercase ,atol=1E-4 ) )
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
import random from .binary_exp_mod import bin_exp_mod def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Any=10_00 ) -> Optional[int]: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case__ :Union[str, Any] = n - 1 snake_case__ :Tuple = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case__ :Optional[int] = 0 while count < prec: snake_case__ :Optional[int] = random.randint(2 , n - 1 ) snake_case__ :Dict = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: snake_case__ :List[Any] = True for _ in range(_lowerCAmelCase ): if b == n - 1: snake_case__ :Optional[Any] = False break snake_case__ :Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __UpperCAmelCase : Optional[int] = { # 1536-bit 5: { '''prime''': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=1_6, ), '''generator''': 2, }, # 2048-bit 1_4: { '''prime''': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=1_6, ), '''generator''': 2, }, # 3072-bit 1_5: { '''prime''': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=1_6, ), '''generator''': 2, }, # 4096-bit 1_6: { '''prime''': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=1_6, ), '''generator''': 2, }, # 6144-bit 1_7: { '''prime''': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=1_6, ), '''generator''': 2, }, # 8192-bit 1_8: { '''prime''': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=1_6, ), '''generator''': 2, }, } class _snake_case : def __init__( self ,UpperCamelCase = 14 ) -> None: if group not in primes: raise ValueError("Unsupported Group" ) snake_case__ :List[str] = primes[group]["prime"] snake_case__ :Tuple = primes[group]["generator"] snake_case__ :Optional[int] = int(hexlify(urandom(32 ) ) ,base=16 ) def lowerCAmelCase_ ( self ) -> str: return hex(self.__private_key )[2:] def lowerCAmelCase_ ( self ) -> str: snake_case__ :Dict = pow(self.generator ,self.__private_key ,self.prime ) return hex(UpperCamelCase )[2:] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(UpperCamelCase ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: snake_case__ :List[str] = int(UpperCamelCase ,base=16 ) if not self.is_valid_public_key(UpperCamelCase ): raise ValueError("Invalid public key" ) snake_case__ :Tuple = pow(UpperCamelCase ,self.__private_key ,self.prime ) return shaaaa(str(UpperCamelCase ).encode() ).hexdigest() @staticmethod def lowerCAmelCase_ ( UpperCamelCase ,UpperCamelCase ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCamelCase ,(prime - 1) // 2 ,UpperCamelCase ) == 1 ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 14 ) -> str: snake_case__ :Union[str, Any] = int(UpperCamelCase ,base=16 ) snake_case__ :Any = int(UpperCamelCase ,base=16 ) snake_case__ :Any = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(UpperCamelCase ,UpperCamelCase ): raise ValueError("Invalid public key" ) snake_case__ :Union[str, Any] = pow(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) return shaaaa(str(UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( UpperCAmelCase__ , unittest.TestCase ): _A = LEDTokenizer _A = LEDTokenizerFast _A = True def lowerCAmelCase_ ( self ) -> List[str]: super().setUp() snake_case__ :Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case__ :Tuple = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) snake_case__ :Tuple = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case__ :Optional[int] = {"unk_token": "<unk>"} snake_case__ :Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ :str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase_ ( self ) -> str: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def lowerCAmelCase_ ( self ) -> Any: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = ["A long paragraph for summarization.", "Another paragraph for summarization."] snake_case__ :Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ :Any = tokenizer(lowerCamelCase__ ,max_length=len(lowerCamelCase__ ) ,padding=lowerCamelCase__ ,return_tensors="pt" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) snake_case__ :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) @require_torch def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ :Optional[Any] = tokenizer(lowerCamelCase__ ,padding=lowerCamelCase__ ,return_tensors="pt" ) self.assertIn("input_ids" ,lowerCamelCase__ ) self.assertIn("attention_mask" ,lowerCamelCase__ ) self.assertNotIn("labels" ,lowerCamelCase__ ) self.assertNotIn("decoder_attention_mask" ,lowerCamelCase__ ) @require_torch def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ :Dict = tokenizer(text_target=lowerCamelCase__ ,max_length=32 ,padding="max_length" ,return_tensors="pt" ) self.assertEqual(32 ,targets["input_ids"].shape[1] ) @require_torch def lowerCAmelCase_ ( self ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ :Union[str, Any] = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,return_tensors="pt" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(batch.input_ids.shape ,(2, 5_122) ) @require_torch def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = ["A long paragraph for summarization."] snake_case__ :List[str] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ :List[str] = tokenizer(lowerCamelCase__ ,return_tensors="pt" ) snake_case__ :Tuple = tokenizer(text_target=lowerCamelCase__ ,return_tensors="pt" ) snake_case__ :str = inputs["input_ids"] snake_case__ :Optional[int] = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase_ ( self ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ :List[Any] = ["Summary of the text.", "Another summary."] snake_case__ :Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] snake_case__ :List[str] = tokenizer(lowerCamelCase__ ,padding=lowerCamelCase__ ) snake_case__ :List[Any] = [[0] * len(lowerCamelCase__ ) for x in encoded_output["input_ids"]] snake_case__ :Tuple = tokenizer.pad(lowerCamelCase__ ) self.assertSequenceEqual(outputs["global_attention_mask"] ,lowerCamelCase__ ) def lowerCAmelCase_ ( self ) -> Any: pass def lowerCAmelCase_ ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case__ :Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) snake_case__ :Tuple = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) snake_case__ :Dict = "A, <mask> AllenNLP sentence." snake_case__ :List[str] = tokenizer_r.encode_plus(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ) snake_case__ :List[Any] = tokenizer_p.encode_plus(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) ,sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) ,sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) ,) snake_case__ :int = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) snake_case__ :List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase__ ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowerCamelCase__ ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase : Tuple = logging.getLogger() def lowercase_ ( __snake_case : List[str] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = {} snake_case__ :Optional[Any] = os.path.join(lowercase__ , "all_results.json" ) if os.path.exists(lowercase__ ): with open(lowercase__ , "r" ) as f: snake_case__ :Tuple = json.load(lowercase__ ) else: raise ValueError(F'can\'t find {path}' ) return results __UpperCAmelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class _snake_case ( __a ): def lowerCAmelCase_ ( self ) -> List[Any]: import xla_spawn snake_case__ :List[str] = self.get_auto_remove_tmp_dir() snake_case__ :Optional[Any] = f'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(lowerCAmelCase_ ,"argv" ,lowerCAmelCase_ ): snake_case__ :List[Any] = time() xla_spawn.main() snake_case__ :Tuple = time() snake_case__ :Union[str, Any] = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,500 ) def lowerCAmelCase_ ( self ) -> Tuple: import xla_spawn snake_case__ :str = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(lowerCAmelCase_ ,"argv" ,lowerCAmelCase_ ): xla_spawn.main()
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : int = logging.get_logger(__name__) class _snake_case ( __lowercase ): _A = ['''pixel_values'''] def __init__( self ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = 1 / 255 ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = None ,**UpperCamelCase ,) -> None: super().__init__(**__a ) snake_case__ :Optional[Any] = size if size is not None else {"""shortest_edge""": 384} snake_case__ :List[str] = get_size_dict(__a ,default_to_square=__a ) snake_case__ :Tuple = do_resize snake_case__ :Dict = size # Default value set here for backwards compatibility where the value in config is None snake_case__ :List[Any] = crop_pct if crop_pct is not None else 224 / 256 snake_case__ :Dict = resample snake_case__ :Any = do_rescale snake_case__ :str = rescale_factor snake_case__ :Optional[Any] = do_normalize snake_case__ :int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ :int = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BICUBIC ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[Any] = get_size_dict(__a ,default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) snake_case__ :Optional[Any] = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct snake_case__ :Union[str, Any] = int(shortest_edge / crop_pct ) snake_case__ :str = get_resize_output_image_size(__a ,size=__a ,default_to_square=__a ) snake_case__ :Optional[int] = resize(image=__a ,size=__a ,resample=__a ,data_format=__a ,**__a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__a ,size=(shortest_edge, shortest_edge) ,data_format=__a ,**__a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __a ,size=(shortest_edge, shortest_edge) ,resample=__a ,data_format=__a ,**__a ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> Union[str, Any]: return rescale(__a ,scale=__a ,data_format=__a ,**__a ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: return normalize(__a ,mean=__a ,std=__a ,data_format=__a ,**__a ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Dict = do_resize if do_resize is not None else self.do_resize snake_case__ :List[str] = crop_pct if crop_pct is not None else self.crop_pct snake_case__ :Optional[int] = resample if resample is not None else self.resample snake_case__ :Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ :Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :int = image_mean if image_mean is not None else self.image_mean snake_case__ :Tuple = image_std if image_std is not None else self.image_std snake_case__ :Tuple = size if size is not None else self.size snake_case__ :Any = get_size_dict(__a ,default_to_square=__a ) snake_case__ :Any = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case__ :int = [to_numpy_array(__a ) for image in images] if do_resize: snake_case__ :Tuple = [self.resize(image=__a ,size=__a ,crop_pct=__a ,resample=__a ) for image in images] if do_rescale: snake_case__ :Tuple = [self.rescale(image=__a ,scale=__a ) for image in images] if do_normalize: snake_case__ :List[str] = [self.normalize(image=__a ,mean=__a ,std=__a ) for image in images] snake_case__ :Dict = [to_channel_dimension_format(__a ,__a ) for image in images] snake_case__ :int = {"""pixel_values""": images} return BatchFeature(data=__a ,tensor_type=__a )
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __UpperCAmelCase : Optional[int] = { "google/pegasus-xsum": 5_1_2, } class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = PegasusTokenizer _A = ['input_ids', 'attention_mask'] def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<pad>" ,UpperCamelCase="</s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<mask_2>" ,UpperCamelCase="<mask_1>" ,UpperCamelCase=None ,UpperCamelCase=103 ,**UpperCamelCase ,) -> Optional[int]: snake_case__ :List[str] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): raise TypeError( f'additional_special_tokens should be of type {type(UpperCAmelCase__ )}, but is' f' {type(UpperCAmelCase__ )}' ) snake_case__ :Any = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(UpperCAmelCase__ ) ,self.offset - 1 ) ] if len(set(UpperCAmelCase__ ) ) != len(UpperCAmelCase__ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) snake_case__ :Any = additional_special_tokens_extended else: snake_case__ :int = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 ,self.offset )] super().__init__( UpperCAmelCase__ ,tokenizer_file=UpperCAmelCase__ ,pad_token=UpperCAmelCase__ ,eos_token=UpperCAmelCase__ ,unk_token=UpperCAmelCase__ ,mask_token=UpperCAmelCase__ ,mask_token_sent=UpperCAmelCase__ ,offset=UpperCAmelCase__ ,additional_special_tokens=UpperCAmelCase__ ,**UpperCAmelCase__ ,) snake_case__ :Tuple = vocab_file snake_case__ :Any = False if not self.vocab_file else True def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case__ :Optional[int] = os.path.join( UpperCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file ,UpperCAmelCase__ ) return (out_vocab_file,)
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __UpperCAmelCase : Dict = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): _A = 10000 _A = None _A = None class _snake_case ( datasets.ArrowBasedBuilder ): _A = ParquetConfig def lowerCAmelCase_ ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case__ :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ ,(str, list, tuple) ): snake_case__ :List[Any] = data_files if isinstance(A__ ,A__ ): snake_case__ :Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case__ :Optional[int] = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"files": files} )] snake_case__ :Any = [] for split_name, files in data_files.items(): if isinstance(A__ ,A__ ): snake_case__ :List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case__ :Union[str, Any] = [dl_manager.iter_files(A__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(A__ ): with open(A__ ,"rb" ) as f: snake_case__ :Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(A__ ) ) break splits.append(datasets.SplitGenerator(name=A__ ,gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase_ ( self ,UpperCamelCase ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ :int = table_cast(A__ ,self.info.features.arrow_schema ) return pa_table def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[int]: snake_case__ :Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): with open(A__ ,"rb" ) as f: snake_case__ :List[str] = pq.ParquetFile(A__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size ,columns=self.config.columns ) ): snake_case__ :Optional[Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(A__ ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(A__ )}: {e}' ) raise
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class _snake_case ( _A ): _A = 'efficientformer' def __init__( self ,UpperCamelCase = [3, 2, 6, 4] ,UpperCamelCase = [48, 96, 224, 448] ,UpperCamelCase = [True, True, True, True] ,UpperCamelCase = 448 ,UpperCamelCase = 32 ,UpperCamelCase = 4 ,UpperCamelCase = 7 ,UpperCamelCase = 5 ,UpperCamelCase = 8 ,UpperCamelCase = 4 ,UpperCamelCase = 0.0 ,UpperCamelCase = 16 ,UpperCamelCase = 3 ,UpperCamelCase = 3 ,UpperCamelCase = 3 ,UpperCamelCase = 2 ,UpperCamelCase = 1 ,UpperCamelCase = 0.0 ,UpperCamelCase = 1 ,UpperCamelCase = True ,UpperCamelCase = True ,UpperCamelCase = 1E-5 ,UpperCamelCase = "gelu" ,UpperCamelCase = 0.02 ,UpperCamelCase = 1E-12 ,UpperCamelCase = 224 ,UpperCamelCase = 1E-05 ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :Tuple = hidden_act snake_case__ :Any = hidden_dropout_prob snake_case__ :Any = hidden_sizes snake_case__ :Union[str, Any] = num_hidden_layers snake_case__ :List[Any] = num_attention_heads snake_case__ :Tuple = initializer_range snake_case__ :Tuple = layer_norm_eps snake_case__ :List[Any] = patch_size snake_case__ :Optional[Any] = num_channels snake_case__ :Dict = depths snake_case__ :Union[str, Any] = mlp_expansion_ratio snake_case__ :Optional[int] = downsamples snake_case__ :Union[str, Any] = dim snake_case__ :Optional[Any] = key_dim snake_case__ :Dict = attention_ratio snake_case__ :List[str] = resolution snake_case__ :List[str] = pool_size snake_case__ :Optional[Any] = downsample_patch_size snake_case__ :Dict = downsample_stride snake_case__ :Dict = downsample_pad snake_case__ :Optional[int] = drop_path_rate snake_case__ :str = num_metaad_blocks snake_case__ :int = distillation snake_case__ :Tuple = use_layer_scale snake_case__ :List[Any] = layer_scale_init_value snake_case__ :Union[str, Any] = image_size snake_case__ :Union[str, Any] = batch_norm_eps
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowercase__ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowercase__ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowercase__ ) return parser.parse_args() def lowercase_ ( ) -> List[str]: '''simple docstring''' snake_case__ :Dict = parse_args() # Import training_script as a module. snake_case__ :List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case__ :List[str] = script_fpath.stem snake_case__ :Optional[Any] = importlib.import_module(lowercase__ ) # Patch sys.argv snake_case__ :Any = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowercase_ ( __snake_case : List[Any] ) -> List[Any]: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __snake_case : List[Any] ) -> Dict: '''simple docstring''' for char in word: snake_case__ :Tuple = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def lowercase_ ( __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Tuple = set() for token in tokens: snake_case__ :Tuple = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) snake_case__ :Any = list(lowerCAmelCase_ ) return word_list def lowercase_ ( __snake_case : List[str] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case__ :str = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) snake_case__ :Tuple = bert_tokens snake_case__ :Dict = 0, len(lowerCAmelCase_ ) while start < end: snake_case__ :Any = True if is_chinese(bert_word[start] ): snake_case__ :int = min(end - start , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ , 1 , -1 ): snake_case__ :int = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case__ :Optional[int] = '''##''' + bert_word[j] snake_case__ :Dict = start + i snake_case__ :Dict = False break if single_word: start += 1 return bert_word def lowercase_ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] ) -> Tuple: '''simple docstring''' snake_case__ :List[Any] = [] for i in range(0 , len(lowerCAmelCase_ ) , 1_00 ): snake_case__ :Any = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["cws"] ).cws snake_case__ :List[Any] = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) snake_case__ :Dict = [] for i in range(0 , len(lowerCAmelCase_ ) , 1_00 ): snake_case__ :Dict = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) snake_case__ :Optional[Any] = [] for input_ids, chinese_word in zip(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case__ :Dict = [] for id in input_ids: snake_case__ :Optional[int] = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) snake_case__ :Dict = add_sub_symbol(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case__ :Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": snake_case__ :Tuple = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def lowercase_ ( __snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case__ :int = f.readlines() snake_case__ :int = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case__ :Union[str, Any] = LTP(args.ltp ) # faster in GPU device snake_case__ :Any = BertTokenizer.from_pretrained(args.bert ) snake_case__ :Tuple = prepare_ref(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case__ :Dict = [json.dumps(lowerCAmelCase_ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __UpperCAmelCase : Union[str, Any] = parser.parse_args() main(args)
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __UpperCAmelCase : str = get_tests_dir("fixtures") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :Union[str, Any] = 500 snake_case__ :str = {} snake_case__ :Dict = HTTPError snake_case__ :List[str] = {} # Download this model to make sure it's in the cache. snake_case__ :List[str] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" ,return_value=lowercase__ ) as mock_head: snake_case__ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 snake_case__ :List[str] = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class _snake_case ( unittest.TestCase ): @classmethod def lowerCAmelCase_ ( cls ) -> Any: snake_case__ :List[Any] = TOKEN HfFolder.save_token(lowercase__ ) @classmethod def lowerCAmelCase_ ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token ,repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = WavaVecaFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub("test-feature-extractor" ,use_auth_token=self._token ) snake_case__ :Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ ,getattr(lowercase__ ,lowercase__ ) ) # Reset repo delete_repo(token=self._token ,repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase__ ,repo_id="test-feature-extractor" ,push_to_hub=lowercase__ ,use_auth_token=self._token ) snake_case__ :List[str] = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ ,getattr(lowercase__ ,lowercase__ ) ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" ,use_auth_token=self._token ) snake_case__ :Any = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ ,getattr(lowercase__ ,lowercase__ ) ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase__ ,repo_id="valid_org/test-feature-extractor-org" ,push_to_hub=lowercase__ ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ ,getattr(lowercase__ ,lowercase__ ) ) def lowerCAmelCase_ ( self ) -> List[Any]: CustomFeatureExtractor.register_for_auto_class() snake_case__ :List[Any] = CustomFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map ,{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} ,) snake_case__ :str = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' ,trust_remote_code=lowercase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ ,"CustomFeatureExtractor" )
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
def lowercase_ ( __snake_case : List[Any] ) -> Dict: '''simple docstring''' snake_case__ :Optional[int] = len(a_ ) for i in range(length - 1 ): snake_case__ :Dict = i for k in range(i + 1 , a_ ): if collection[k] < collection[least]: snake_case__ :int = k if least != i: snake_case__ :List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _snake_case ( _A ): _A = "mra" def __init__( self ,UpperCamelCase=50_265 ,UpperCamelCase=768 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3_072 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=1 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-5 ,UpperCamelCase="absolute" ,UpperCamelCase=4 ,UpperCamelCase="full" ,UpperCamelCase=0 ,UpperCamelCase=0 ,UpperCamelCase=1 ,UpperCamelCase=0 ,UpperCamelCase=2 ,**UpperCamelCase ,) -> Any: super().__init__(pad_token_id=UpperCamelCase ,bos_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,**UpperCamelCase ) snake_case__ :Union[str, Any] = vocab_size snake_case__ :List[str] = max_position_embeddings snake_case__ :List[Any] = hidden_size snake_case__ :Any = num_hidden_layers snake_case__ :Optional[int] = num_attention_heads snake_case__ :List[Any] = intermediate_size snake_case__ :Union[str, Any] = hidden_act snake_case__ :int = hidden_dropout_prob snake_case__ :int = attention_probs_dropout_prob snake_case__ :List[Any] = initializer_range snake_case__ :List[Any] = type_vocab_size snake_case__ :str = layer_norm_eps snake_case__ :List[str] = position_embedding_type snake_case__ :Tuple = block_per_row snake_case__ :Optional[int] = approx_mode snake_case__ :Optional[Any] = initial_prior_first_n_blocks snake_case__ :Union[str, Any] = initial_prior_diagonal_n_blocks
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Any = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _snake_case ( _UpperCamelCase ): _A = "altclip_text_model" def __init__( self ,UpperCamelCase=250_002 ,UpperCamelCase=1_024 ,UpperCamelCase=24 ,UpperCamelCase=16 ,UpperCamelCase=4_096 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=514 ,UpperCamelCase=1 ,UpperCamelCase=0.02 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-05 ,UpperCamelCase=1 ,UpperCamelCase=0 ,UpperCamelCase=2 ,UpperCamelCase="absolute" ,UpperCamelCase=True ,UpperCamelCase=768 ,**UpperCamelCase ,) -> Optional[int]: super().__init__(pad_token_id=__a ,bos_token_id=__a ,eos_token_id=__a ,**__a ) snake_case__ :Union[str, Any] = vocab_size snake_case__ :Optional[int] = hidden_size snake_case__ :Tuple = num_hidden_layers snake_case__ :Tuple = num_attention_heads snake_case__ :int = hidden_act snake_case__ :Any = intermediate_size snake_case__ :Union[str, Any] = hidden_dropout_prob snake_case__ :Dict = attention_probs_dropout_prob snake_case__ :List[str] = max_position_embeddings snake_case__ :List[str] = type_vocab_size snake_case__ :Dict = initializer_range snake_case__ :List[str] = initializer_factor snake_case__ :Union[str, Any] = layer_norm_eps snake_case__ :Tuple = position_embedding_type snake_case__ :Optional[Any] = use_cache snake_case__ :Optional[int] = project_dim class _snake_case ( _UpperCamelCase ): _A = "altclip_vision_model" def __init__( self ,UpperCamelCase=768 ,UpperCamelCase=3_072 ,UpperCamelCase=512 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3 ,UpperCamelCase=224 ,UpperCamelCase=32 ,UpperCamelCase="quick_gelu" ,UpperCamelCase=1E-5 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1.0 ,**UpperCamelCase ,) -> Any: super().__init__(**__a ) snake_case__ :int = hidden_size snake_case__ :Optional[int] = intermediate_size snake_case__ :Any = projection_dim snake_case__ :Tuple = num_hidden_layers snake_case__ :List[str] = num_attention_heads snake_case__ :List[Any] = num_channels snake_case__ :Dict = patch_size snake_case__ :Any = image_size snake_case__ :List[str] = initializer_range snake_case__ :List[str] = initializer_factor snake_case__ :Optional[Any] = attention_dropout snake_case__ :Union[str, Any] = layer_norm_eps snake_case__ :Dict = hidden_act @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,**UpperCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__a ) snake_case__ :int = cls.get_config_dict(__a ,**__a ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": snake_case__ :Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__a ,**__a ) class _snake_case ( _UpperCamelCase ): _A = "altclip" _A = True def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=768 ,UpperCamelCase=2.6592 ,**UpperCamelCase ) -> List[Any]: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). snake_case__ :Tuple = kwargs.pop("text_config_dict" ,__a ) snake_case__ :Tuple = kwargs.pop("vision_config_dict" ,__a ) super().__init__(**__a ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case__ :int = {} # This is the complete result when using `text_config_dict`. snake_case__ :Any = AltCLIPTextConfig(**__a ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case__ :Optional[int] = ( f'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case__ :Union[str, Any] = ( f'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' f'value `text_config["{key}"]` will be overriden.' ) logger.warning(__a ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case__ :int = {} # This is the complete result when using `vision_config_dict`. snake_case__ :List[Any] = AltCLIPVisionConfig(**__a ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case__ :Dict = { str(__a ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case__ :Optional[int] = ( f'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case__ :Optional[Any] = ( f'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' f'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(__a ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case__ :Optional[Any] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: snake_case__ :Dict = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) snake_case__ :Union[str, Any] = AltCLIPTextConfig(**__a ) snake_case__ :Dict = AltCLIPVisionConfig(**__a ) snake_case__ :Any = projection_dim snake_case__ :Union[str, Any] = logit_scale_init_value snake_case__ :Optional[Any] = 1.0 @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**__a ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case__ :List[str] = self.text_config.to_dict() snake_case__ :int = self.vision_config.to_dict() snake_case__ :Optional[int] = self.__class__.model_type return output
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ): _A = "bit" _A = ["preactivation", "bottleneck"] _A = ["SAME", "VALID"] def __init__( self ,UpperCamelCase=3 ,UpperCamelCase=64 ,UpperCamelCase=[256, 512, 1_024, 2_048] ,UpperCamelCase=[3, 4, 6, 3] ,UpperCamelCase="preactivation" ,UpperCamelCase="relu" ,UpperCamelCase=None ,UpperCamelCase=32 ,UpperCamelCase=0.0 ,UpperCamelCase=False ,UpperCamelCase=32 ,UpperCamelCase=1 ,UpperCamelCase=None ,UpperCamelCase=None ,**UpperCamelCase ,) -> List[Any]: super().__init__(**_snake_case ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ :List[Any] = global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) snake_case__ :str = num_channels snake_case__ :Dict = embedding_size snake_case__ :Tuple = hidden_sizes snake_case__ :List[Any] = depths snake_case__ :List[str] = layer_type snake_case__ :Optional[int] = hidden_act snake_case__ :Union[str, Any] = global_padding snake_case__ :int = num_groups snake_case__ :Optional[Any] = drop_path_rate snake_case__ :Any = embedding_dynamic_padding snake_case__ :Union[str, Any] = output_stride snake_case__ :List[str] = width_factor snake_case__ :str = ["stem"] + [f'stage{idx}' for idx in range(1 ,len(_snake_case ) + 1 )] snake_case__ , snake_case__ :List[Any] = get_aligned_output_features_output_indices( out_features=_snake_case ,out_indices=_snake_case ,stage_names=self.stage_names )
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=16 ,UpperCamelCase=2 ,UpperCamelCase=0.02 ,UpperCamelCase=4 ,) -> Dict: snake_case__ :Union[str, Any] = parent snake_case__ :Optional[int] = batch_size snake_case__ :str = seq_length snake_case__ :Tuple = is_training snake_case__ :Optional[Any] = use_attention_mask snake_case__ :str = use_token_type_ids snake_case__ :Optional[Any] = use_labels snake_case__ :Dict = vocab_size snake_case__ :Union[str, Any] = hidden_size snake_case__ :str = num_hidden_layers snake_case__ :str = num_attention_heads snake_case__ :int = intermediate_size snake_case__ :Union[str, Any] = hidden_act snake_case__ :Optional[int] = hidden_dropout_prob snake_case__ :Optional[Any] = attention_probs_dropout_prob snake_case__ :Optional[int] = max_position_embeddings snake_case__ :List[str] = type_vocab_size snake_case__ :Union[str, Any] = type_sequence_label_size snake_case__ :Tuple = initializer_range snake_case__ :Any = num_choices def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :Optional[Any] = None if self.use_attention_mask: snake_case__ :int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :int = None if self.use_token_type_ids: snake_case__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ :List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[str] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ :Tuple = config_and_inputs snake_case__ :Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ :Optional[Any] = config_and_inputs snake_case__ :Tuple = True snake_case__ :Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ :Any = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _snake_case ( _lowerCAmelCase , unittest.TestCase ): _A = True _A = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[str] = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCAmelCase_ ( self ) -> str: for model_class_name in self.all_model_classes: snake_case__ :Optional[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=_lowerCAmelCase ) snake_case__ :Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> str: snake_case__ :Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=_lowerCAmelCase ) snake_case__ :Tuple = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ,dtype=jnp.intaa ) snake_case__ :Union[str, Any] = model(_lowerCAmelCase )[0] snake_case__ :List[Any] = [1, 11, 50_265] self.assertEqual(list(output.shape ) ,_lowerCAmelCase ) # compare the actual values for a slice. snake_case__ :Union[str, Any] = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Dict = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=_lowerCAmelCase ) snake_case__ :str = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ,dtype=jnp.intaa ) snake_case__ :List[Any] = model(_lowerCAmelCase )[0] # compare the actual values for a slice. snake_case__ :List[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
from math import ceil def lowercase_ ( __snake_case : Optional[int] , __snake_case : str ) -> int: '''simple docstring''' snake_case__ :Optional[int] = list(range(0 , snake_case_ ) ) snake_case__ :Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check snake_case__ :Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(snake_case_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case_ ) # Missing blocks snake_case__ :List[str] = [i for i in blocks if i not in device_map_blocks] snake_case__ :Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(snake_case_ ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(snake_case_ ) ) def lowercase_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = list(range(snake_case_ ) ) snake_case__ :Tuple = int(ceil(n_layers / len(snake_case_ ) ) ) snake_case__ :int = [layers[i : i + n_blocks] for i in range(0 , snake_case_ , snake_case_ )] return dict(zip(snake_case_ , snake_case_ ) )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=[0.5, 0.5, 0.5] ,UpperCamelCase=[0.5, 0.5, 0.5] ,UpperCamelCase=False ,) -> str: snake_case__ :Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} snake_case__ :Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} snake_case__ :Any = parent snake_case__ :List[Any] = batch_size snake_case__ :Tuple = num_channels snake_case__ :int = image_size snake_case__ :List[Any] = min_resolution snake_case__ :List[Any] = max_resolution snake_case__ :List[Any] = do_resize snake_case__ :int = size snake_case__ :int = do_center_crop snake_case__ :int = crop_size snake_case__ :Tuple = do_normalize snake_case__ :List[str] = image_mean snake_case__ :Any = image_std snake_case__ :Union[str, Any] = do_reduce_labels def lowerCAmelCase_ ( self ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :int = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) snake_case__ :Any = Image.open(dataset[0]["file"] ) snake_case__ :List[Any] = Image.open(dataset[1]["file"] ) return image, map def lowercase_ ( ) -> Tuple: '''simple docstring''' snake_case__ :Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) snake_case__ :List[str] = Image.open(ds[0]["file"] ) snake_case__ :int = Image.open(ds[1]["file"] ) snake_case__ :Any = Image.open(ds[2]["file"] ) snake_case__ :Dict = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _A = BeitImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :str = BeitImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase__ ,"do_center_crop" ) ) self.assertTrue(hasattr(UpperCamelCase__ ,"center_crop" ) ) self.assertTrue(hasattr(UpperCamelCase__ ,"do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ ,"image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ ,"image_std" ) ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,UpperCamelCase__ ) snake_case__ :Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=UpperCamelCase__ ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,UpperCamelCase__ ) def lowerCAmelCase_ ( self ) -> Tuple: pass def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image_processing snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ ,Image.Image ) # Test not batched input snake_case__ :Any = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :List[Any] = image_processing(UpperCamelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Dict: # Initialize image_processing snake_case__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase__ ,numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ ,np.ndarray ) # Test not batched input snake_case__ :List[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :Dict = image_processing(UpperCamelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def lowerCAmelCase_ ( self ) -> str: # Initialize image_processing snake_case__ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase__ ,torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ ,torch.Tensor ) # Test not batched input snake_case__ :Tuple = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :Tuple = image_processing(UpperCamelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Optional[Any]: # Initialize image_processing snake_case__ :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase__ ,torchify=UpperCamelCase__ ) snake_case__ :int = [] for image in image_inputs: self.assertIsInstance(UpperCamelCase__ ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input snake_case__ :Tuple = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched snake_case__ :Any = image_processing(UpperCamelCase__ ,UpperCamelCase__ ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) snake_case__ :Optional[Any] = prepare_semantic_single_inputs() snake_case__ :Dict = image_processing(UpperCamelCase__ ,UpperCamelCase__ ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) snake_case__ :List[str] = prepare_semantic_batch_inputs() snake_case__ :List[str] = image_processing(UpperCamelCase__ ,UpperCamelCase__ ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image_processing snake_case__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 snake_case__ :List[Any] = prepare_semantic_single_inputs() snake_case__ :int = image_processing(UpperCamelCase__ ,UpperCamelCase__ ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) snake_case__ :Optional[int] = True snake_case__ :str = image_processing(UpperCamelCase__ ,UpperCamelCase__ ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
def lowercase_ ( __snake_case : int = 10_00 ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = -1 snake_case__ :Tuple = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case__ :Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case__ :Any = n - a - b if c * c == (a * a + b * b): snake_case__ :List[Any] = a * b * c if candidate >= product: snake_case__ :Union[str, Any] = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCAmelCase : int = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __UpperCAmelCase : Dict = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Any = SavedModel() snake_case__ :str = [] with open(os.path.join(a__ , "utils" , "tf_ops" , "onnx.json" ) ) as f: snake_case__ :Dict = json.load(a__ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(a__ )] ) with open(a__ , "rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case__ :List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case__ :Tuple = sorted(a__ ) snake_case__ :Union[str, Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(a__ ) if strict and len(a__ ) > 0: raise Exception(F'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(a__ ) > 0: print(F'Found the following incompatible ops for the opset {opset}:' ) print(*a__ , sep="\n" ) else: print(F'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=1_2, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __UpperCAmelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase_ ( __snake_case : Any ) -> Optional[Any]: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase_ ( ) -> Dict: '''simple docstring''' snake_case__ :Tuple = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=UpperCamelCase__ ) snake_case__ :Union[str, Any] = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(UpperCamelCase__ ) EnvironmentCommand.register_subcommand(UpperCamelCase__ ) TestCommand.register_subcommand(UpperCamelCase__ ) RunBeamCommand.register_subcommand(UpperCamelCase__ ) DummyDataCommand.register_subcommand(UpperCamelCase__ ) # Parse args snake_case__ , snake_case__ :int = parser.parse_known_args() if not hasattr(UpperCamelCase__ , "func" ): parser.print_help() exit(1 ) snake_case__ :List[Any] = parse_unknown_args(UpperCamelCase__ ) # Run snake_case__ :List[Any] = args.func(UpperCamelCase__ , **UpperCamelCase__ ) service.run() if __name__ == "__main__": main()
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Any = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _snake_case ( __UpperCAmelCase ): _A = '''owlvit_text_model''' def __init__( self ,UpperCamelCase=49_408 ,UpperCamelCase=512 ,UpperCamelCase=2_048 ,UpperCamelCase=12 ,UpperCamelCase=8 ,UpperCamelCase=16 ,UpperCamelCase="quick_gelu" ,UpperCamelCase=1E-5 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1.0 ,UpperCamelCase=0 ,UpperCamelCase=49_406 ,UpperCamelCase=49_407 ,**UpperCamelCase ,) -> List[str]: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE ,bos_token_id=__SCREAMING_SNAKE_CASE ,eos_token_id=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) snake_case__ :Optional[int] = vocab_size snake_case__ :Tuple = hidden_size snake_case__ :Union[str, Any] = intermediate_size snake_case__ :int = num_hidden_layers snake_case__ :Dict = num_attention_heads snake_case__ :Tuple = max_position_embeddings snake_case__ :Any = hidden_act snake_case__ :Optional[Any] = layer_norm_eps snake_case__ :List[Any] = attention_dropout snake_case__ :Optional[int] = initializer_range snake_case__ :str = initializer_factor @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ :Tuple = cls.get_config_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": snake_case__ :Optional[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) class _snake_case ( __UpperCAmelCase ): _A = '''owlvit_vision_model''' def __init__( self ,UpperCamelCase=768 ,UpperCamelCase=3_072 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3 ,UpperCamelCase=768 ,UpperCamelCase=32 ,UpperCamelCase="quick_gelu" ,UpperCamelCase=1E-5 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1.0 ,**UpperCamelCase ,) -> str: super().__init__(**__SCREAMING_SNAKE_CASE ) snake_case__ :Dict = hidden_size snake_case__ :List[str] = intermediate_size snake_case__ :int = num_hidden_layers snake_case__ :Dict = num_attention_heads snake_case__ :Union[str, Any] = num_channels snake_case__ :str = image_size snake_case__ :Union[str, Any] = patch_size snake_case__ :Optional[Any] = hidden_act snake_case__ :int = layer_norm_eps snake_case__ :Tuple = attention_dropout snake_case__ :str = initializer_range snake_case__ :str = initializer_factor @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,**UpperCamelCase ) -> List[Any]: cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ :int = cls.get_config_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": snake_case__ :List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) class _snake_case ( __UpperCAmelCase ): _A = '''owlvit''' _A = True def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=512 ,UpperCamelCase=2.6592 ,UpperCamelCase=True ,**UpperCamelCase ,) -> str: super().__init__(**__SCREAMING_SNAKE_CASE ) if text_config is None: snake_case__ :List[str] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: snake_case__ :Any = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) snake_case__ :int = OwlViTTextConfig(**__SCREAMING_SNAKE_CASE ) snake_case__ :List[str] = OwlViTVisionConfig(**__SCREAMING_SNAKE_CASE ) snake_case__ :Any = projection_dim snake_case__ :List[Any] = logit_scale_init_value snake_case__ :Optional[int] = return_dict snake_case__ :List[Any] = 1.0 @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,**UpperCamelCase ) -> int: cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ :Any = cls.get_config_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ) -> Dict: snake_case__ :Optional[int] = {} snake_case__ :Optional[Any] = text_config snake_case__ :Optional[int] = vision_config return cls.from_dict(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case__ :str = self.text_config.to_dict() snake_case__ :Tuple = self.vision_config.to_dict() snake_case__ :List[str] = self.__class__.model_type return output class _snake_case ( __UpperCAmelCase ): @property def lowerCAmelCase_ ( self ) -> List[str]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowerCAmelCase_ ( self ) -> List[str]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowerCAmelCase_ ( self ) -> str: return 1E-4 def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = -1 ,UpperCamelCase = -1 ,UpperCamelCase = None ,) -> Optional[int]: snake_case__ :str = super().generate_dummy_inputs( processor.tokenizer ,batch_size=__SCREAMING_SNAKE_CASE ,seq_length=__SCREAMING_SNAKE_CASE ,framework=__SCREAMING_SNAKE_CASE ) snake_case__ :str = super().generate_dummy_inputs( processor.image_processor ,batch_size=__SCREAMING_SNAKE_CASE ,framework=__SCREAMING_SNAKE_CASE ) return {**text_input_dict, **image_input_dict} @property def lowerCAmelCase_ ( self ) -> Optional[int]: return 14
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _snake_case : _A = 42 _A = None _A = None def lowercase_ ( ) -> Node | None: '''simple docstring''' snake_case__ :str = Node(1 ) snake_case__ :Tuple = Node(2 ) snake_case__ :Optional[int] = Node(3 ) snake_case__ :List[str] = Node(4 ) snake_case__ :List[str] = Node(5 ) return tree def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase_ ( __snake_case : Node | None ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] if root is None: return output snake_case__ :Optional[int] = deque([root] ) while process_queue: snake_case__ :List[str] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__snake_case , __snake_case ) return output def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__snake_case , __snake_case ) return output def lowercase_ ( __snake_case : Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] snake_case__ :list[Sequence[Node | None]] = [] snake_case__ :List[Any] = 0 snake_case__ :int = height(__snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__snake_case , __snake_case ) ) snake_case__ :int = 1 else: output.append(get_nodes_from_right_to_left(__snake_case , __snake_case ) ) snake_case__ :Tuple = 0 return output def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Optional[int] = make_tree() print(F'In-order Traversal: {inorder(__snake_case )}' ) print(F'Pre-order Traversal: {preorder(__snake_case )}' ) print(F'Post-order Traversal: {postorder(__snake_case )}' , "\n" ) print(F'Height of Tree: {height(__snake_case )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(__snake_case ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(__snake_case ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(__snake_case , level=__snake_case ) ) print("\nZigZag order Traversal: " ) print(zigzag(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=2 ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=10 ,UpperCamelCase=3 ,UpperCamelCase=32 * 4 ,UpperCamelCase=32 * 6 ,UpperCamelCase=4 ,UpperCamelCase=32 ,) -> str: snake_case__ :int = parent snake_case__ :Union[str, Any] = batch_size snake_case__ :Dict = is_training snake_case__ :Optional[Any] = use_auxiliary_loss snake_case__ :Union[str, Any] = num_queries snake_case__ :Dict = num_channels snake_case__ :List[Any] = min_size snake_case__ :int = max_size snake_case__ :Optional[int] = num_labels snake_case__ :Dict = mask_feature_size def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __A ) snake_case__ :int = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=__A ) snake_case__ :Optional[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=__A ) > 0.5 ).float() snake_case__ :Any = (torch.rand((self.batch_size, self.num_labels) ,device=__A ) > 0.5).long() snake_case__ :List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ ( self ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = self.prepare_config_and_inputs() snake_case__ :List[str] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Optional[int] = output.encoder_hidden_states snake_case__ :Tuple = output.pixel_decoder_hidden_states snake_case__ :Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__A ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__A ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__A ) ,config.decoder_config.decoder_layers ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=False ) -> Any: with torch.no_grad(): snake_case__ :List[str] = MaskFormerModel(config=__A ) model.to(__A ) model.eval() snake_case__ :Optional[Any] = model(pixel_values=__A ,pixel_mask=__A ) snake_case__ :Optional[int] = model(__A ,output_hidden_states=__A ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__A ,__A ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :List[Any] = MaskFormerForInstanceSegmentation(config=__A ) model.to(__A ) model.eval() def comm_check_on_output(UpperCamelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case__ :Optional[Any] = model(pixel_values=__A ,pixel_mask=__A ) snake_case__ :List[Any] = model(__A ) comm_check_on_output(__A ) snake_case__ :List[str] = model( pixel_values=__A ,pixel_mask=__A ,mask_labels=__A ,class_labels=__A ) comm_check_on_output(__A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class _snake_case ( _A , _A , unittest.TestCase ): _A = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _A = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Any = MaskFormerModelTester(self ) snake_case__ :Optional[int] = ConfigTester(self ,config_class=__A ,has_text_modality=__A ) def lowerCAmelCase_ ( self ) -> Dict: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> int: snake_case__ , snake_case__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__A ,**__A ,output_hidden_states=__A ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__A ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def lowerCAmelCase_ ( self ) -> Any: pass @unittest.skip(reason="MaskFormer is not a generative model" ) def lowerCAmelCase_ ( self ) -> Optional[int]: pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def lowerCAmelCase_ ( self ) -> List[str]: pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" ) def lowerCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self ) -> Any: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ , snake_case__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Any = model_class(__A ) snake_case__ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Optional[Any] = [*signature.parameters.keys()] snake_case__ :List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__A ) @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: snake_case__ :Tuple = MaskFormerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[str] = (self.model_tester.min_size,) * 2 snake_case__ :int = { "pixel_values": torch.randn((2, 3, *size) ,device=__A ), "mask_labels": torch.randn((2, 10, *size) ,device=__A ), "class_labels": torch.zeros(2 ,10 ,device=__A ).long(), } snake_case__ :Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__A ) snake_case__ :Any = model(**__A ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ , snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__A ,**__A ,output_hidden_states=__A ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ , snake_case__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :int = model_class(__A ).to(__A ) snake_case__ :int = model(**__A ,output_attentions=__A ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss snake_case__ :Optional[int] = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() snake_case__ :Any = model_class(__A ) model.to(__A ) model.train() snake_case__ :Dict = model(__A ,mask_labels=__A ,class_labels=__A ).loss loss.backward() def lowerCAmelCase_ ( self ) -> Optional[Any]: # only MaskFormerForInstanceSegmentation has the loss snake_case__ :Optional[Any] = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :Dict = self.model_tester.prepare_config_and_inputs() snake_case__ :Tuple = True snake_case__ :str = True snake_case__ :int = model_class(__A ) model.to(__A ) model.train() snake_case__ :Tuple = model(__A ,mask_labels=__A ,class_labels=__A ) snake_case__ :Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case__ :int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't snake_case__ :Optional[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case__ :List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCAmelCase : int = 1e-4 def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :int = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(__A ) snake_case__ :List[str] = self.default_image_processor snake_case__ :Dict = prepare_img() snake_case__ :List[Any] = image_processor(__A ,return_tensors="pt" ).to(__A ) snake_case__ :Optional[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A ,(1, 3, 800, 1_088) ) with torch.no_grad(): snake_case__ :List[Any] = model(**__A ) snake_case__ :Tuple = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(__A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,__A ,atol=__A ) ) snake_case__ :str = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(__A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,__A ,atol=__A ) ) snake_case__ :Optional[int] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(__A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,__A ,atol=__A ) ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(__A ) .eval() ) snake_case__ :str = self.default_image_processor snake_case__ :List[Any] = prepare_img() snake_case__ :str = image_processor(__A ,return_tensors="pt" ).to(__A ) snake_case__ :Optional[int] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A ,(1, 3, 800, 1_088) ) with torch.no_grad(): snake_case__ :Union[str, Any] = model(**__A ) # masks_queries_logits snake_case__ :Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) snake_case__ :str = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] snake_case__ :Any = torch.tensor(__A ).to(__A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__A ,atol=__A ) ) # class_queries_logits snake_case__ :Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case__ :List[Any] = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__A ,atol=__A ) ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(__A ) .eval() ) snake_case__ :Union[str, Any] = self.default_image_processor snake_case__ :List[str] = prepare_img() snake_case__ :Dict = image_processor(__A ,return_tensors="pt" ).to(__A ) snake_case__ :List[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A ,(1, 3, 800, 1_088) ) with torch.no_grad(): snake_case__ :Dict = model(**__A ) # masks_queries_logits snake_case__ :int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) snake_case__ :Dict = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] snake_case__ :int = torch.tensor(__A ).to(__A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__A ,atol=__A ) ) # class_queries_logits snake_case__ :int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case__ :Any = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(__A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__A ,atol=__A ) ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(__A ) .eval() ) snake_case__ :Any = self.default_image_processor snake_case__ :str = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="pt" ,) snake_case__ :Optional[int] = inputs["pixel_values"].to(__A ) snake_case__ :List[str] = [el.to(__A ) for el in inputs["mask_labels"]] snake_case__ :Tuple = [el.to(__A ) for el in inputs["class_labels"]] with torch.no_grad(): snake_case__ :Dict = model(**__A ) self.assertTrue(outputs.loss is not None )
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> Optional[Any]: '''simple docstring''' snake_case__ :Optional[int] = tau * frequency / samplerate snake_case__ :Dict = sin(_lowerCamelCase ) snake_case__ :Optional[int] = cos(_lowerCamelCase ) snake_case__ :int = _sin / (2 * q_factor) snake_case__ :List[Any] = (1 - _cos) / 2 snake_case__ :Dict = 1 - _cos snake_case__ :Optional[int] = 1 + alpha snake_case__ :List[str] = -2 * _cos snake_case__ :Optional[Any] = 1 - alpha snake_case__ :Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> List[Any]: '''simple docstring''' snake_case__ :str = tau * frequency / samplerate snake_case__ :Optional[Any] = sin(_lowerCamelCase ) snake_case__ :List[str] = cos(_lowerCamelCase ) snake_case__ :Any = _sin / (2 * q_factor) snake_case__ :Optional[int] = (1 + _cos) / 2 snake_case__ :int = -1 - _cos snake_case__ :Optional[Any] = 1 + alpha snake_case__ :int = -2 * _cos snake_case__ :str = 1 - alpha snake_case__ :Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> List[str]: '''simple docstring''' snake_case__ :Any = tau * frequency / samplerate snake_case__ :List[Any] = sin(_lowerCamelCase ) snake_case__ :Union[str, Any] = cos(_lowerCamelCase ) snake_case__ :List[str] = _sin / (2 * q_factor) snake_case__ :List[str] = _sin / 2 snake_case__ :str = 0 snake_case__ :int = -ba snake_case__ :List[str] = 1 + alpha snake_case__ :Any = -2 * _cos snake_case__ :Optional[Any] = 1 - alpha snake_case__ :List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : float = 1 / sqrt(2 ) ) -> Optional[Any]: '''simple docstring''' snake_case__ :Optional[int] = tau * frequency / samplerate snake_case__ :List[Any] = sin(_lowerCamelCase ) snake_case__ :Dict = cos(_lowerCamelCase ) snake_case__ :Optional[int] = _sin / (2 * q_factor) snake_case__ :List[str] = 1 - alpha snake_case__ :Any = -2 * _cos snake_case__ :Tuple = 1 + alpha snake_case__ :str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : float = 1 / sqrt(2 ) , ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = tau * frequency / samplerate snake_case__ :Optional[Any] = sin(_lowerCamelCase ) snake_case__ :str = cos(_lowerCamelCase ) snake_case__ :Any = _sin / (2 * q_factor) snake_case__ :Any = 10 ** (gain_db / 40) snake_case__ :str = 1 + alpha * big_a snake_case__ :str = -2 * _cos snake_case__ :Optional[int] = 1 - alpha * big_a snake_case__ :Optional[int] = 1 + alpha / big_a snake_case__ :str = -2 * _cos snake_case__ :Tuple = 1 - alpha / big_a snake_case__ :Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : float = 1 / sqrt(2 ) , ) -> Dict: '''simple docstring''' snake_case__ :Union[str, Any] = tau * frequency / samplerate snake_case__ :str = sin(_lowerCamelCase ) snake_case__ :List[Any] = cos(_lowerCamelCase ) snake_case__ :Dict = _sin / (2 * q_factor) snake_case__ :Any = 10 ** (gain_db / 40) snake_case__ :int = (big_a + 1) - (big_a - 1) * _cos snake_case__ :str = (big_a + 1) + (big_a - 1) * _cos snake_case__ :Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos snake_case__ :Dict = (big_a - 1) + (big_a + 1) * _cos snake_case__ :int = 2 * sqrt(_lowerCamelCase ) * alpha snake_case__ :str = big_a * (pmc + aaa) snake_case__ :Optional[int] = 2 * big_a * mpc snake_case__ :Optional[int] = big_a * (pmc - aaa) snake_case__ :Optional[int] = ppmc + aaa snake_case__ :List[Any] = -2 * pmpc snake_case__ :List[str] = ppmc - aaa snake_case__ :Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : float = 1 / sqrt(2 ) , ) -> Any: '''simple docstring''' snake_case__ :str = tau * frequency / samplerate snake_case__ :Dict = sin(_lowerCamelCase ) snake_case__ :List[str] = cos(_lowerCamelCase ) snake_case__ :Tuple = _sin / (2 * q_factor) snake_case__ :Optional[int] = 10 ** (gain_db / 40) snake_case__ :str = (big_a + 1) - (big_a - 1) * _cos snake_case__ :Optional[int] = (big_a + 1) + (big_a - 1) * _cos snake_case__ :Optional[Any] = (big_a - 1) - (big_a + 1) * _cos snake_case__ :Dict = (big_a - 1) + (big_a + 1) * _cos snake_case__ :Optional[Any] = 2 * sqrt(_lowerCamelCase ) * alpha snake_case__ :Union[str, Any] = big_a * (ppmc + aaa) snake_case__ :Tuple = -2 * big_a * pmpc snake_case__ :str = big_a * (ppmc - aaa) snake_case__ :List[str] = pmc + aaa snake_case__ :Tuple = 2 * mpc snake_case__ :List[str] = pmc - aaa snake_case__ :Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) @dataclass class _snake_case ( _A ): _A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self ,**UpperCamelCase ) -> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case__ :List[Any] = deprecated_arg[3:] setattr(self ,A__ ,not kwargs.pop(A__ ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) snake_case__ :Union[str, Any] = kwargs.pop("torchscript" ,self.torchscript ) snake_case__ :Union[str, Any] = kwargs.pop("torch_xla_tpu_print_metrics" ,self.torch_xla_tpu_print_metrics ) snake_case__ :Optional[int] = kwargs.pop("fp16_opt_level" ,self.fpaa_opt_level ) super().__init__(**A__ ) _A = field(default=_A , metadata={'help': 'Trace the models using torchscript'} ) _A = field(default=_A , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) _A = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def lowerCAmelCase_ ( self ) -> List[str]: requires_backends(self ,["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: snake_case__ :int = torch.device("cpu" ) snake_case__ :Dict = 0 elif is_torch_tpu_available(): snake_case__ :Union[str, Any] = xm.xla_device() snake_case__ :str = 0 else: snake_case__ :Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) snake_case__ :str = torch.cuda.device_count() return device, n_gpu @property def lowerCAmelCase_ ( self ) -> str: return is_torch_tpu_available() and self.tpu @property def lowerCAmelCase_ ( self ) -> Dict: requires_backends(self ,["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCAmelCase_ ( self ) -> Optional[Any]: requires_backends(self ,["torch"] ) return self._setup_devices[0] @property def lowerCAmelCase_ ( self ) -> Optional[int]: requires_backends(self ,["torch"] ) return self._setup_devices[1] @property def lowerCAmelCase_ ( self ) -> Any: return self.n_gpu > 0
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str , __snake_case : List[str]=True , __snake_case : str="pt" ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = {"add_prefix_space": True} if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not line.startswith(" " ) else {} snake_case__ :Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCAmelCase__ , padding="max_length" if pad_to_max_length else None , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) def lowercase_ ( __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Optional[int]=None , ) -> Dict: '''simple docstring''' snake_case__ :List[Any] = input_ids.ne(lowerCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase="train" ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="" ,) -> List[Any]: super().__init__() snake_case__ :str = Path(_a ).joinpath(type_path + ".source" ) snake_case__ :Optional[Any] = Path(_a ).joinpath(type_path + ".target" ) snake_case__ :str = self.get_char_lens(self.src_file ) snake_case__ :Any = max_source_length snake_case__ :str = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' snake_case__ :List[Any] = tokenizer snake_case__ :int = prefix if n_obs is not None: snake_case__ :List[Any] = self.src_lens[:n_obs] snake_case__ :int = src_lang snake_case__ :Union[str, Any] = tgt_lang def __len__( self ) -> Dict: return len(self.src_lens ) def __getitem__( self ,UpperCamelCase ) -> List[str]: snake_case__ :int = index + 1 # linecache starts at 1 snake_case__ :Any = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("\n" ) snake_case__ :str = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("\n" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case__ :Optional[int] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) snake_case__ :List[str] = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer snake_case__ :List[Any] = encode_line(_a ,_a ,self.max_source_length ,"right" ) snake_case__ :Optional[Any] = encode_line(_a ,_a ,self.max_target_length ,"right" ) snake_case__ :str = source_inputs["input_ids"].squeeze() snake_case__ :List[str] = target_inputs["input_ids"].squeeze() snake_case__ :int = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> int: return [len(_a ) for x in Path(_a ).open().readlines()] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: snake_case__ :Optional[Any] = torch.stack([x["input_ids"] for x in batch] ) snake_case__ :Tuple = torch.stack([x["attention_mask"] for x in batch] ) snake_case__ :Union[str, Any] = torch.stack([x["decoder_input_ids"] for x in batch] ) snake_case__ :Dict = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) snake_case__ :int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) snake_case__ :Tuple = trim_batch(_a ,_a ) snake_case__ , snake_case__ :Tuple = trim_batch(_a ,_a ,attention_mask=_a ) snake_case__ :Dict = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __UpperCAmelCase : List[str] = getLogger(__name__) def lowercase_ ( __snake_case : List[List] ) -> int: '''simple docstring''' return list(itertools.chain.from_iterable(lowerCAmelCase__ ) ) def lowercase_ ( __snake_case : str ) -> None: '''simple docstring''' snake_case__ :Dict = get_git_info() save_json(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "git_log.json" ) ) def lowercase_ ( __snake_case : List[str] , __snake_case : str , __snake_case : List[str]=4 , **__snake_case : Any ) -> int: '''simple docstring''' with open(lowerCAmelCase__ , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ ( __snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' with open(lowerCAmelCase__ ) as f: return json.load(lowerCAmelCase__ ) def lowercase_ ( ) -> Optional[int]: '''simple docstring''' snake_case__ :Dict = git.Repo(search_parent_directories=lowerCAmelCase__ ) snake_case__ :List[str] = { "repo_id": str(lowerCAmelCase__ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowercase_ ( __snake_case : Callable , __snake_case : Iterable ) -> List: '''simple docstring''' return list(map(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' with open(lowerCAmelCase__ , "wb" ) as f: return pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ ( __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' def remove_articles(__snake_case : Dict ): return re.sub(R"\b(a|an|the)\b" , " " , lowerCAmelCase__ ) def white_space_fix(__snake_case : Tuple ): return " ".join(text.split() ) def remove_punc(__snake_case : Tuple ): snake_case__ :List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase__ ) ) ) ) def lowercase_ ( __snake_case : int , __snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[Any] = normalize_answer(lowerCAmelCase__ ).split() snake_case__ :List[Any] = normalize_answer(lowerCAmelCase__ ).split() snake_case__ :Any = Counter(lowerCAmelCase__ ) & Counter(lowerCAmelCase__ ) snake_case__ :Tuple = sum(common.values() ) if num_same == 0: return 0 snake_case__ :Union[str, Any] = 1.0 * num_same / len(lowerCAmelCase__ ) snake_case__ :int = 1.0 * num_same / len(lowerCAmelCase__ ) snake_case__ :Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Tuple ) -> int: '''simple docstring''' return normalize_answer(lowerCAmelCase__ ) == normalize_answer(lowerCAmelCase__ ) def lowercase_ ( __snake_case : List[str] , __snake_case : List[str] ) -> Dict: '''simple docstring''' assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) snake_case__ :Dict = 0 for hypo, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ): em += exact_match_score(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: em /= len(lowerCAmelCase__ ) return {"em": em} def lowercase_ ( __snake_case : int ) -> Tuple: '''simple docstring''' return model_prefix.startswith("rag" ) def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[Any] ) -> List[str]: '''simple docstring''' snake_case__ :Optional[int] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case__ :List[Any] = "dropout_rate" for p in extra_params: if getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) and not hasattr(lowerCAmelCase__ , equivalent_param[p] ): logger.info("config doesn\'t have a `{}` attribute".format(lowerCAmelCase__ ) ) delattr(lowerCAmelCase__ , lowerCAmelCase__ ) continue snake_case__ :Dict = p if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) else equivalent_param[p] setattr(lowerCAmelCase__ , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) delattr(lowerCAmelCase__ , lowerCAmelCase__ ) return hparams, config
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : int = logging.get_logger(__name__) def lowercase_ ( __snake_case : Tuple ) -> str: '''simple docstring''' snake_case__ :List[str] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) snake_case__ :Optional[int] = DetaConfig( backbone_config=_lowerCamelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=_lowerCamelCase , with_box_refine=_lowerCamelCase , two_stage=_lowerCamelCase , ) # set labels snake_case__ :List[str] = "huggingface/label-files" if "o365" in model_name: snake_case__ :Optional[Any] = 3_66 snake_case__ :List[str] = "object365-id2label.json" else: snake_case__ :List[Any] = 91 snake_case__ :Any = "coco-detection-id2label.json" snake_case__ :Union[str, Any] = num_labels snake_case__ :Tuple = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) snake_case__ :List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} snake_case__ :str = idalabel snake_case__ :Any = {v: k for k, v in idalabel.items()} return config def lowercase_ ( __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :str = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def lowercase_ ( __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = dct.pop(_lowerCamelCase ) snake_case__ :List[Any] = val def lowercase_ ( __snake_case : Dict , __snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case__ :str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case__ :List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ :Optional[Any] = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) snake_case__ :str = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case__ :List[str] = in_proj_weight[:dim, :] snake_case__ :Tuple = in_proj_bias[: dim] snake_case__ :Dict = in_proj_weight[ dim : dim * 2, : ] snake_case__ :Tuple = in_proj_bias[ dim : dim * 2 ] snake_case__ :List[Any] = in_proj_weight[ -dim :, : ] snake_case__ :Dict = in_proj_bias[-dim :] # fmt: on def lowercase_ ( __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Any: '''simple docstring''' snake_case__ :str = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention snake_case__ :Any = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) snake_case__ :Any = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case__ :Any = in_proj_weight[:hidden_size, :] snake_case__ :str = in_proj_bias[:hidden_size] snake_case__ :Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case__ :Dict = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ :Union[str, Any] = in_proj_weight[-hidden_size:, :] snake_case__ :Tuple = in_proj_bias[-hidden_size:] def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :Any = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ :Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : str ) -> Optional[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": snake_case__ :Dict = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": snake_case__ :Union[str, Any] = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F'Model name {model_name} not supported' ) snake_case__ :str = torch.load(_lowerCamelCase , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) # rename keys snake_case__ :Tuple = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case__ :Optional[int] = state_dict.pop(_lowerCamelCase ) snake_case__ :List[Any] = val if "input_proj" in key: snake_case__ :Union[str, Any] = state_dict.pop(_lowerCamelCase ) snake_case__ :Optional[int] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case__ :List[Any] = state_dict.pop(_lowerCamelCase ) snake_case__ :Tuple = val # finally, create HuggingFace model and load state dict snake_case__ :Dict = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() snake_case__ :Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" model.to(_lowerCamelCase ) # load image processor snake_case__ :Dict = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image snake_case__ :List[str] = prepare_img() snake_case__ :List[str] = processor(images=_lowerCamelCase , return_tensors="pt" ) snake_case__ :Dict = encoding["pixel_values"] snake_case__ :str = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": snake_case__ :str = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) snake_case__ :Dict = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": snake_case__ :Union[str, Any] = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) snake_case__ :int = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowerCamelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowerCamelCase ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCAmelCase : Optional[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowercase_ ( __snake_case : Dict ) -> str: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __snake_case : int ) -> str: '''simple docstring''' for char in word: snake_case__ :Dict = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowercase_ ( __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Any = set() for token in tokens: snake_case__ :Any = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) snake_case__ :str = list(__snake_case ) return word_list def lowercase_ ( __snake_case : str , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case__ :List[str] = max([len(__snake_case ) for w in chinese_word_set] ) snake_case__ :Optional[int] = bert_tokens snake_case__ , snake_case__ :Optional[int] = 0, len(__snake_case ) while start < end: snake_case__ :Union[str, Any] = True if is_chinese(bert_word[start] ): snake_case__ :Union[str, Any] = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): snake_case__ :Dict = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case__ :Union[str, Any] = "##" + bert_word[j] snake_case__ :Any = start + i snake_case__ :List[Any] = False break if single_word: start += 1 return bert_word def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Any ) -> Optional[int]: '''simple docstring''' snake_case__ :str = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :Optional[Any] = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["cws"] ).cws snake_case__ :Any = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :Dict = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :Tuple = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :str = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): snake_case__ :Dict = [] for id in input_ids: snake_case__ :Dict = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) snake_case__ :Dict = add_sub_symbol(__snake_case , __snake_case ) snake_case__ :Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": snake_case__ :List[str] = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowercase_ ( __snake_case : List[str] ) -> Dict: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case__ :str = f.readlines() snake_case__ :Any = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case__ :Union[str, Any] = LTP(args.ltp ) # faster in GPU device snake_case__ :int = BertTokenizer.from_pretrained(args.bert ) snake_case__ :List[str] = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case__ :Dict = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __UpperCAmelCase : Dict = parser.parse_args() main(args)
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __UpperCAmelCase : Dict = "bert-base-cased" __UpperCAmelCase : Union[str, Any] = "google/pegasus-xsum" __UpperCAmelCase : List[str] = [" Sam ate lunch today.", "Sams lunch ingredients."] __UpperCAmelCase : Optional[int] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] __UpperCAmelCase : List[Any] = "patrickvonplaten/t5-tiny-random" __UpperCAmelCase : int = "sshleifer/bart-tiny-random" __UpperCAmelCase : Optional[Any] = "sshleifer/tiny-mbart" __UpperCAmelCase : Union[str, Any] = "sshleifer/tiny-marian-en-de" def lowercase_ ( __snake_case : Path , __snake_case : list ) -> Tuple: '''simple docstring''' snake_case__ :List[Any] = "\n".join(SCREAMING_SNAKE_CASE_ ) Path(SCREAMING_SNAKE_CASE_ ).open("w" ).writelines(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( __snake_case : Dict ) -> Optional[Any]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE_ , F'{split}.source' ) , SCREAMING_SNAKE_CASE_ ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE_ , F'{split}.target' ) , SCREAMING_SNAKE_CASE_ ) return tmp_dir class _snake_case ( _UpperCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) @slow def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: snake_case__ :str = AutoTokenizer.from_pretrained(lowercase__ ) snake_case__ :Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case__ :str = max(len(tokenizer.encode(lowercase__ ) ) for a in ARTICLES ) snake_case__ :Optional[int] = max(len(tokenizer.encode(lowercase__ ) ) for a in SUMMARIES ) snake_case__ :Union[str, Any] = 4 snake_case__ :Dict = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated snake_case__ :Tuple = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. snake_case__ :str = SeqaSeqDataset( lowercase__ ,data_dir=lowercase__ ,type_path="train" ,max_source_length=lowercase__ ,max_target_length=lowercase__ ,src_lang=lowercase__ ,tgt_lang=lowercase__ ,) snake_case__ :Optional[Any] = DataLoader(lowercase__ ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase__ ,lowercase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place snake_case__ :str = shift_tokens_right(batch["labels"] ,tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: snake_case__ :Dict = AutoTokenizer.from_pretrained(lowercase__ ) snake_case__ :Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case__ :Dict = max(len(tokenizer.encode(lowercase__ ) ) for a in ARTICLES ) snake_case__ :Any = max(len(tokenizer.encode(lowercase__ ) ) for a in SUMMARIES ) snake_case__ :Union[str, Any] = 4 snake_case__ :Any = LegacySeqaSeqDataset( lowercase__ ,data_dir=lowercase__ ,type_path="train" ,max_source_length=20 ,max_target_length=lowercase__ ,) snake_case__ :Tuple = DataLoader(lowercase__ ,batch_size=2 ,collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[Any] = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) snake_case__ :Dict = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) snake_case__ :Optional[int] = tmp_dir.joinpath("train.source" ).open().readlines() snake_case__ :Optional[int] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase__ ,lowercase__ ,128 ,lowercase__ ) snake_case__ :Union[str, Any] = {x.name for x in tmp_dir.iterdir()} snake_case__ :List[Any] = {x.name for x in save_dir.iterdir()} snake_case__ :str = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase__ ) < len(lowercase__ ) assert len(lowercase__ ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE ,reason="This test requires fairseq" ) def lowerCAmelCase_ ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return snake_case__ :List[Any] = self._get_dataset(max_len=64 ) snake_case__ :Optional[Any] = 64 snake_case__ :Dict = ds.make_dynamic_sampler(lowercase__ ,required_batch_size_multiple=lowercase__ ) snake_case__ :str = [len(lowercase__ ) for x in batch_sampler] assert len(set(lowercase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase__ ) == len(lowercase__ ) # no dropped or added examples snake_case__ :Optional[int] = DataLoader(lowercase__ ,batch_sampler=lowercase__ ,collate_fn=ds.collate_fn ,num_workers=2 ) snake_case__ :Any = [] snake_case__ :List[Any] = [] for batch in data_loader: snake_case__ :List[str] = batch["input_ids"].shape snake_case__ :Union[str, Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple snake_case__ :List[str] = np.product(batch["input_ids"].shape ) num_src_per_batch.append(lowercase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase__ ) assert num_src_per_batch[0] == max(lowercase__ ) if failures: raise AssertionError(f'too many tokens in {len(lowercase__ )} batches' ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = self._get_dataset(max_len=512 ) snake_case__ :str = 2 snake_case__ :Dict = ds.make_sortish_sampler(lowercase__ ,shuffle=lowercase__ ) snake_case__ :Dict = DataLoader(lowercase__ ,batch_size=lowercase__ ,collate_fn=ds.collate_fn ,num_workers=2 ) snake_case__ :str = DataLoader(lowercase__ ,batch_size=lowercase__ ,collate_fn=ds.collate_fn ,num_workers=2 ,sampler=lowercase__ ) snake_case__ :Dict = tokenizer.pad_token_id def count_pad_tokens(UpperCamelCase ,UpperCamelCase="input_ids" ): return [batch[k].eq(lowercase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase__ ,k="labels" ) ) < sum(count_pad_tokens(lowercase__ ,k="labels" ) ) assert sum(count_pad_tokens(lowercase__ ) ) < sum(count_pad_tokens(lowercase__ ) ) assert len(lowercase__ ) == len(lowercase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase=1_000 ,UpperCamelCase=128 ) -> Dict: if os.getenv("USE_REAL_DATA" ,lowercase__ ): snake_case__ :str = "examples/seq2seq/wmt_en_ro" snake_case__ :Union[str, Any] = max_len * 2 * 64 if not Path(lowercase__ ).joinpath("train.len" ).exists(): save_len_file(lowercase__ ,lowercase__ ) else: snake_case__ :Optional[Any] = "examples/seq2seq/test_data/wmt_en_ro" snake_case__ :Tuple = max_len * 4 save_len_file(lowercase__ ,lowercase__ ) snake_case__ :List[str] = AutoTokenizer.from_pretrained(lowercase__ ) snake_case__ :str = SeqaSeqDataset( lowercase__ ,data_dir=lowercase__ ,type_path="train" ,max_source_length=lowercase__ ,max_target_length=lowercase__ ,n_obs=lowercase__ ,) return ds, max_tokens, tokenizer def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = self._get_dataset() snake_case__ :Union[str, Any] = set(DistributedSortishSampler(lowercase__ ,256 ,num_replicas=2 ,rank=0 ,add_extra_examples=lowercase__ ) ) snake_case__ :Any = set(DistributedSortishSampler(lowercase__ ,256 ,num_replicas=2 ,rank=1 ,add_extra_examples=lowercase__ ) ) assert idsa.intersection(lowercase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] ,) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Dict: snake_case__ :Any = AutoTokenizer.from_pretrained(lowercase__ ,use_fast=lowercase__ ) if tok_name == MBART_TINY: snake_case__ :Tuple = SeqaSeqDataset( lowercase__ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path="train" ,max_source_length=4 ,max_target_length=8 ,src_lang="EN" ,tgt_lang="FR" ,) snake_case__ :str = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: snake_case__ :str = SeqaSeqDataset( lowercase__ ,data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ,type_path="train" ,max_source_length=4 ,max_target_length=8 ,) snake_case__ :Tuple = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase__ ) == 1 if tok_name == BART_TINY else len(lowercase__ ) == 0
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _snake_case ( _A ): _A = '' _A = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _A = None # compression type in fsspec. ex: "gzip" _A = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self ,UpperCamelCase = "" ,UpperCamelCase = None ,UpperCamelCase = None ,**UpperCamelCase ) -> Optional[int]: super().__init__(self ,**UpperCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case__ :Tuple = fsspec.open( UpperCamelCase ,mode="rb" ,protocol=UpperCamelCase ,compression=self.compression ,client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) snake_case__ :Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) snake_case__ :Optional[int] = ( self.compressed_name[: self.compressed_name.rindex("." )] if '.' in self.compressed_name else self.compressed_name ) snake_case__ :Optional[int] = None @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ) -> Optional[Any]: return super()._strip_protocol(UpperCamelCase ).lstrip("/" ) def lowerCAmelCase_ ( self ) -> List[Any]: if self.dir_cache is None: snake_case__ :List[str] = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case__ :Optional[int] = {f['name']: f} def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: return self.file.open().read() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = "rb" ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=None ,**UpperCamelCase ,) -> str: snake_case__ :List[str] = self._strip_protocol(UpperCamelCase ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class _snake_case ( _A ): _A = 'bz2' _A = 'bz2' _A = '.bz2' class _snake_case ( _A ): _A = 'gzip' _A = 'gzip' _A = '.gz' class _snake_case ( _A ): _A = 'lz4' _A = 'lz4' _A = '.lz4' class _snake_case ( _A ): _A = 'xz' _A = 'xz' _A = '.xz' class _snake_case ( _A ): _A = 'zstd' _A = 'zstd' _A = '.zst' def __init__( self ,UpperCamelCase ,UpperCamelCase = "rb" ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = DEFAULT_BLOCK_SIZE ,**UpperCamelCase ,) -> List[Any]: super().__init__( fo=UpperCamelCase ,mode=UpperCamelCase ,target_protocol=UpperCamelCase ,target_options=UpperCamelCase ,block_size=UpperCamelCase ,**UpperCamelCase ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case__ :Dict = self.file.__enter__ class _snake_case : def __init__( self ,UpperCamelCase ) -> Tuple: snake_case__ :Union[str, Any] = file_ def __enter__( self ) -> Any: self._file.__enter__() return self def __exit__( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: self._file.__exit__(*UpperCamelCase ,**UpperCamelCase ) def __iter__( self ) -> Optional[int]: return iter(self._file ) def lowerCAmelCase_ ( self ) -> List[str]: return next(self._file ) def __getattr__( self ,UpperCamelCase ) -> List[str]: return getattr(self._file ,UpperCamelCase ) def fixed_enter(*UpperCamelCase ,**UpperCamelCase ): return WrappedFile(_enter(*UpperCamelCase ,**UpperCamelCase ) ) snake_case__ :List[Any] = fixed_enter
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( __A , unittest.TestCase ): _A = BertTokenizer _A = BertTokenizerFast _A = True _A = True _A = filter_non_english def lowerCAmelCase_ ( self ) -> int: super().setUp() snake_case__ :int = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case__ :Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: snake_case__ :int = 'UNwant\u00E9d,running' snake_case__ :Optional[int] = 'unwanted, running' return input_text, output_text def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = self.tokenizer_class(self.vocab_file ) snake_case__ :int = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCamelCase ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,[9, 6, 7, 12, 10, 11] ) def lowerCAmelCase_ ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return snake_case__ :List[str] = self.get_tokenizer() snake_case__ :Optional[Any] = self.get_rust_tokenizer() snake_case__ :Optional[Any] = 'UNwant\u00E9d,running' snake_case__ :str = tokenizer.tokenize(UpperCamelCase ) snake_case__ :Dict = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) snake_case__ :Dict = rust_tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = self.get_rust_tokenizer() snake_case__ :Optional[int] = tokenizer.encode(UpperCamelCase ) snake_case__ :Any = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) # With lower casing snake_case__ :Union[str, Any] = self.get_tokenizer(do_lower_case=UpperCamelCase ) snake_case__ :Tuple = self.get_rust_tokenizer(do_lower_case=UpperCamelCase ) snake_case__ :List[Any] = 'UNwant\u00E9d,running' snake_case__ :Optional[int] = tokenizer.tokenize(UpperCamelCase ) snake_case__ :Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :Optional[int] = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) snake_case__ :List[Any] = rust_tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :str = self.get_rust_tokenizer() snake_case__ :Tuple = tokenizer.encode(UpperCamelCase ) snake_case__ :Union[str, Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) ,["ah", "\u535A", "\u63A8", "zz"] ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Any = BasicTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[Any] = BasicTokenizer(do_lower_case=UpperCamelCase ,strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["h\u00E9llo"] ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = BasicTokenizer(do_lower_case=UpperCamelCase ,strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Optional[int] = BasicTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[Any] = BasicTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = BasicTokenizer(do_lower_case=UpperCamelCase ,strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Dict = BasicTokenizer(do_lower_case=UpperCamelCase ,strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = BasicTokenizer(do_lower_case=UpperCamelCase ,never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) ,["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Any = BasicTokenizer() snake_case__ :int = 'a\n\'ll !!to?\'d of, can\'t.' snake_case__ :Any = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(UpperCamelCase ) ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case__ :Optional[Any] = {} for i, token in enumerate(UpperCamelCase ): snake_case__ :Dict = i snake_case__ :Any = WordpieceTokenizer(vocab=UpperCamelCase ,unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) ,[] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) ,["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) ,["[UNK]", "runn", "##ing"] ) def lowerCAmelCase_ ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowerCAmelCase_ ( self ) -> Optional[int]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[int] = self.get_tokenizer() snake_case__ :Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] ) @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) snake_case__ :Tuple = tokenizer.encode("sequence builders" ,add_special_tokens=UpperCamelCase ) snake_case__ :int = tokenizer.encode("multi-sequence build" ,add_special_tokens=UpperCamelCase ) snake_case__ :Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) snake_case__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ,UpperCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase_ ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case__ :int = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) snake_case__ :Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' snake_case__ :Union[str, Any] = tokenizer_r.encode_plus( UpperCamelCase ,return_attention_mask=UpperCamelCase ,return_token_type_ids=UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ,) snake_case__ :List[Any] = tokenizer_r.do_lower_case if hasattr(UpperCamelCase ,"do_lower_case" ) else False snake_case__ :List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["offset_mapping"] ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = ['的', '人', '有'] snake_case__ :int = ''.join(UpperCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case__ :int = True snake_case__ :List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) snake_case__ :Tuple = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) snake_case__ :Any = tokenizer_p.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) snake_case__ :int = tokenizer_r.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) snake_case__ :Optional[Any] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase ) snake_case__ :Any = tokenizer_p.convert_ids_to_tokens(UpperCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase ,UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :str = False snake_case__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) snake_case__ :List[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) snake_case__ :Union[str, Any] = tokenizer_r.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) snake_case__ :Tuple = tokenizer_p.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) snake_case__ :Any = tokenizer_r.convert_ids_to_tokens(UpperCamelCase ) snake_case__ :Optional[int] = tokenizer_p.convert_ids_to_tokens(UpperCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". snake_case__ :Dict = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(UpperCamelCase ) ] self.assertListEqual(UpperCamelCase ,UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase )
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) # General docstring __UpperCAmelCase : int = "RegNetConfig" # Base docstring __UpperCAmelCase : int = "facebook/regnet-y-040" __UpperCAmelCase : int = [1, 1_0_8_8, 7, 7] # Image classification docstring __UpperCAmelCase : Union[str, Any] = "facebook/regnet-y-040" __UpperCAmelCase : Any = "tabby, tabby cat" __UpperCAmelCase : Optional[Any] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,UpperCamelCase = 3 ,UpperCamelCase = 1 ,UpperCamelCase = 1 ,UpperCamelCase = "relu" ,**UpperCamelCase ,) -> Dict: super().__init__(**_A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb snake_case__ :str = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) snake_case__ :Tuple = tf.keras.layers.ConvaD( filters=_A ,kernel_size=_A ,strides=_A ,padding="VALID" ,groups=_A ,use_bias=_A ,name="convolution" ,) snake_case__ :Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) snake_case__ :Optional[int] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: snake_case__ :Tuple = self.convolution(self.padding(_A ) ) snake_case__ :str = self.normalization(_A ) snake_case__ :Dict = self.activation(_A ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,**UpperCamelCase ) -> Optional[int]: super().__init__(**_A ) snake_case__ :Dict = config.num_channels snake_case__ :str = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: snake_case__ :int = shape_list(_A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) snake_case__ :Tuple = tf.transpose(_A ,perm=(0, 2, 3, 1) ) snake_case__ :str = self.embedder(_A ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,UpperCamelCase = 2 ,**UpperCamelCase ) -> Dict: super().__init__(**_A ) snake_case__ :List[Any] = tf.keras.layers.ConvaD( filters=_A ,kernel_size=1 ,strides=_A ,use_bias=_A ,name="convolution" ) snake_case__ :int = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = False ) -> str: return self.normalization(self.convolution(_A ) ,training=_A ) class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ) -> Tuple: super().__init__(**_A ) snake_case__ :Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_A ,name="pooler" ) snake_case__ :str = [ tf.keras.layers.ConvaD(filters=_A ,kernel_size=1 ,activation="relu" ,name="attention.0" ), tf.keras.layers.ConvaD(filters=_A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ), ] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Any: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] snake_case__ :int = self.pooler(_A ) for layer_module in self.attention: snake_case__ :Tuple = layer_module(_A ) snake_case__ :int = hidden_state * pooled return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 1 ,**UpperCamelCase ) -> List[str]: super().__init__(**_A ) snake_case__ :int = in_channels != out_channels or stride != 1 snake_case__ :Union[str, Any] = max(1 ,out_channels // config.groups_width ) snake_case__ :List[Any] = ( TFRegNetShortCut(_A ,stride=_A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. snake_case__ :Tuple = [ TFRegNetConvLayer(_A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( _A ,stride=_A ,groups=_A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetConvLayer(_A ,kernel_size=1 ,activation=_A ,name="layer.2" ), ] snake_case__ :Tuple = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :List[str] = hidden_state for layer_module in self.layers: snake_case__ :Tuple = layer_module(_A ) snake_case__ :str = self.shortcut(_A ) hidden_state += residual snake_case__ :List[str] = self.activation(_A ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 1 ,**UpperCamelCase ) -> Optional[Any]: super().__init__(**_A ) snake_case__ :int = in_channels != out_channels or stride != 1 snake_case__ :str = max(1 ,out_channels // config.groups_width ) snake_case__ :Union[str, Any] = ( TFRegNetShortCut(_A ,stride=_A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) snake_case__ :int = [ TFRegNetConvLayer(_A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( _A ,stride=_A ,groups=_A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetSELayer(_A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ), TFRegNetConvLayer(_A ,kernel_size=1 ,activation=_A ,name="layer.3" ), ] snake_case__ :Tuple = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :Optional[int] = hidden_state for layer_module in self.layers: snake_case__ :int = layer_module(_A ) snake_case__ :List[Any] = self.shortcut(_A ) hidden_state += residual snake_case__ :List[Any] = self.activation(_A ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 2 ,UpperCamelCase = 2 ,**UpperCamelCase ) -> Union[str, Any]: super().__init__(**_A ) snake_case__ :Optional[Any] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer snake_case__ :Optional[int] = [ # downsampling is done in the first layer with stride of 2 layer(_A ,_A ,_A ,stride=_A ,name="layers.0" ), *[layer(_A ,_A ,_A ,name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: for layer_module in self.layers: snake_case__ :Dict = layer_module(_A ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,**UpperCamelCase ) -> List[str]: super().__init__(**_A ) snake_case__ :Optional[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) ) snake_case__ :Optional[Any] = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_A ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(_A ,_A ,_A ,depth=_A ,name=f'stages.{i+1}' ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = False ,UpperCamelCase = True ) -> Optional[int]: snake_case__ :str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case__ :str = hidden_states + (hidden_state,) snake_case__ :Optional[int] = stage_module(_A ) if output_hidden_states: snake_case__ :int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_A ,hidden_states=_A ) @keras_serializable class _snake_case ( tf.keras.layers.Layer ): _A = RegNetConfig def __init__( self ,UpperCamelCase ,**UpperCamelCase ) -> List[str]: super().__init__(**_A ) snake_case__ :Optional[Any] = config snake_case__ :List[str] = TFRegNetEmbeddings(_A ,name="embedder" ) snake_case__ :List[Any] = TFRegNetEncoder(_A ,name="encoder" ) snake_case__ :Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_A ,name="pooler" ) @unpack_inputs def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = False ,) -> Tuple: snake_case__ :str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ :Tuple = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ :str = self.embedder(_A ,training=_A ) snake_case__ :Dict = self.encoder( _A ,output_hidden_states=_A ,return_dict=_A ,training=_A ) snake_case__ :str = encoder_outputs[0] snake_case__ :Union[str, Any] = self.pooler(_A ) # Change to NCHW output format have uniformity in the modules snake_case__ :List[Any] = tf.transpose(_A ,perm=(0, 3, 1, 2) ) snake_case__ :Tuple = tf.transpose(_A ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: snake_case__ :Union[str, Any] = tuple([tf.transpose(_A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A ,pooler_output=_A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class _snake_case ( __lowercase ): _A = RegNetConfig _A = 'regnet' _A = 'pixel_values' @property def lowerCAmelCase_ ( self ) -> Tuple: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) ,dtype=tf.floataa )} __UpperCAmelCase : int = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : List[Any] = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowercase , ) class _snake_case ( __lowercase ): def __init__( self ,UpperCamelCase ,*UpperCamelCase ,**UpperCamelCase ) -> List[str]: super().__init__(_A ,*_A ,**_A ) snake_case__ :Tuple = TFRegNetMainLayer(_A ,name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase=False ,) -> Dict: snake_case__ :Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ :List[str] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ :str = self.regnet( pixel_values=_A ,output_hidden_states=_A ,return_dict=_A ,training=_A ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowercase , ) class _snake_case ( __lowercase , __lowercase ): def __init__( self ,UpperCamelCase ,*UpperCamelCase ,**UpperCamelCase ) -> Any: super().__init__(_A ,*_A ,**_A ) snake_case__ :Union[str, Any] = config.num_labels snake_case__ :List[Any] = TFRegNetMainLayer(_A ,name="regnet" ) # classification head snake_case__ :int = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def lowerCAmelCase_ ( self ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase=False ,) -> Dict: snake_case__ :Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ :Any = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ :Optional[Any] = self.regnet( _A ,output_hidden_states=_A ,return_dict=_A ,training=_A ) snake_case__ :Optional[int] = outputs.pooler_output if return_dict else outputs[1] snake_case__ :Dict = self.classifier[0](_A ) snake_case__ :List[str] = self.classifier[1](_A ) snake_case__ :Optional[Any] = None if labels is None else self.hf_compute_loss(labels=_A ,logits=_A ) if not return_dict: snake_case__ :List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_A ,logits=_A ,hidden_states=outputs.hidden_states )
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase_ ( __snake_case : Union[str, Any] ) -> int: '''simple docstring''' snake_case__ :List[str] = args.pruning_method snake_case__ :Any = args.threshold snake_case__ :str = args.model_name_or_path.rstrip("/" ) snake_case__ :List[Any] = args.target_model_path print(F'Load fine-pruned model from {model_name_or_path}' ) snake_case__ :Optional[Any] = torch.load(os.path.join(lowerCAmelCase__ , "pytorch_model.bin" ) ) snake_case__ :List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: snake_case__ :Dict = tensor print(F'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: snake_case__ :str = tensor print(F'Copied layer {name}' ) elif "bias" in name: snake_case__ :Tuple = tensor print(F'Copied layer {name}' ) else: if pruning_method == "magnitude": snake_case__ :Dict = MagnitudeBinarizer.apply(inputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ ) snake_case__ :Tuple = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue snake_case__ :Dict = name[:-6] snake_case__ :Union[str, Any] = model[F'{prefix_}mask_scores'] snake_case__ :Any = TopKBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case__ :str = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue snake_case__ :Optional[int] = name[:-6] snake_case__ :Dict = model[F'{prefix_}mask_scores'] snake_case__ :List[str] = ThresholdBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case__ :List[str] = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue snake_case__ :Optional[Any] = name[:-6] snake_case__ :Optional[Any] = model[F'{prefix_}mask_scores'] snake_case__ , snake_case__ :Optional[int] = -0.1, 1.1 snake_case__ :Optional[Any] = torch.sigmoid(lowerCAmelCase__ ) snake_case__ :int = s * (r - l) + l snake_case__ :List[Any] = s_bar.clamp(min=0.0 , max=1.0 ) snake_case__ :str = tensor * mask print(F'Pruned layer {name}' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: snake_case__ :Tuple = os.path.join( os.path.dirname(lowerCAmelCase__ ) , F'bertarized_{os.path.basename(lowerCAmelCase__ )}' ) if not os.path.isdir(lowerCAmelCase__ ): shutil.copytree(lowerCAmelCase__ , lowerCAmelCase__ ) print(F'\nCreated folder {target_model_path}' ) torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __UpperCAmelCase : str = parser.parse_args() main(args)
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( __lowerCamelCase , unittest.TestCase ): _A = AudioLDMPipeline _A = TEXT_TO_AUDIO_PARAMS _A = TEXT_TO_AUDIO_BATCH_PARAMS _A = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def lowerCAmelCase_ ( self ) -> Dict: torch.manual_seed(0 ) snake_case__ :str = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=(32, 64) ,class_embed_type="simple_projection" ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=a_ ,) snake_case__ :Optional[Any] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) torch.manual_seed(0 ) snake_case__ :str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) snake_case__ :Dict = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,projection_dim=32 ,) snake_case__ :str = ClapTextModelWithProjection(a_ ) snake_case__ :Any = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" ,model_max_length=77 ) snake_case__ :Optional[Any] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=16_000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=a_ ,) snake_case__ :str = SpeechTaHifiGan(a_ ) snake_case__ :Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> int: if str(a_ ).startswith("mps" ): snake_case__ :str = torch.manual_seed(a_ ) else: snake_case__ :List[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) snake_case__ :int = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :List[Any] = self.get_dummy_components() snake_case__ :Union[str, Any] = AudioLDMPipeline(**a_ ) snake_case__ :Any = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :Optional[int] = self.get_dummy_inputs(a_ ) snake_case__ :Optional[int] = audioldm_pipe(**a_ ) snake_case__ :List[str] = output.audios[0] assert audio.ndim == 1 assert len(a_ ) == 256 snake_case__ :Union[str, Any] = audio[:10] snake_case__ :Union[str, Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = self.get_dummy_components() snake_case__ :Optional[Any] = AudioLDMPipeline(**a_ ) snake_case__ :List[Any] = audioldm_pipe.to(a_ ) snake_case__ :Dict = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :List[Any] = self.get_dummy_inputs(a_ ) snake_case__ :Tuple = 3 * [inputs["prompt"]] # forward snake_case__ :Tuple = audioldm_pipe(**a_ ) snake_case__ :Optional[int] = output.audios[0] snake_case__ :List[Any] = self.get_dummy_inputs(a_ ) snake_case__ :Optional[Any] = 3 * [inputs.pop("prompt" )] snake_case__ :Optional[Any] = audioldm_pipe.tokenizer( a_ ,padding="max_length" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=a_ ,return_tensors="pt" ,) snake_case__ :Optional[Any] = text_inputs["input_ids"].to(a_ ) snake_case__ :Union[str, Any] = audioldm_pipe.text_encoder( a_ ,) snake_case__ :str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case__ :Optional[Any] = F.normalize(a_ ,dim=-1 ) snake_case__ :Optional[Any] = prompt_embeds # forward snake_case__ :List[Any] = audioldm_pipe(**a_ ) snake_case__ :Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = self.get_dummy_components() snake_case__ :Tuple = AudioLDMPipeline(**a_ ) snake_case__ :Dict = audioldm_pipe.to(a_ ) snake_case__ :Any = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :Union[str, Any] = self.get_dummy_inputs(a_ ) snake_case__ :Dict = 3 * ["this is a negative prompt"] snake_case__ :Optional[int] = negative_prompt snake_case__ :List[str] = 3 * [inputs["prompt"]] # forward snake_case__ :Optional[Any] = audioldm_pipe(**a_ ) snake_case__ :Dict = output.audios[0] snake_case__ :Dict = self.get_dummy_inputs(a_ ) snake_case__ :int = 3 * [inputs.pop("prompt" )] snake_case__ :Dict = [] for p in [prompt, negative_prompt]: snake_case__ :Dict = audioldm_pipe.tokenizer( a_ ,padding="max_length" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=a_ ,return_tensors="pt" ,) snake_case__ :str = text_inputs["input_ids"].to(a_ ) snake_case__ :Optional[Any] = audioldm_pipe.text_encoder( a_ ,) snake_case__ :int = text_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case__ :List[str] = F.normalize(a_ ,dim=-1 ) embeds.append(a_ ) snake_case__ :List[str] = embeds # forward snake_case__ :Dict = audioldm_pipe(**a_ ) snake_case__ :Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :int = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :int = self.get_dummy_components() snake_case__ :Any = PNDMScheduler(skip_prk_steps=a_ ) snake_case__ :List[Any] = AudioLDMPipeline(**a_ ) snake_case__ :Union[str, Any] = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :Union[str, Any] = self.get_dummy_inputs(a_ ) snake_case__ :List[str] = "egg cracking" snake_case__ :Tuple = audioldm_pipe(**a_ ,negative_prompt=a_ ) snake_case__ :Tuple = output.audios[0] assert audio.ndim == 1 assert len(a_ ) == 256 snake_case__ :Optional[Any] = audio[:10] snake_case__ :List[str] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> str: snake_case__ :Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Optional[Any] = self.get_dummy_components() snake_case__ :int = PNDMScheduler(skip_prk_steps=a_ ) snake_case__ :int = AudioLDMPipeline(**a_ ) snake_case__ :Dict = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :List[str] = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) snake_case__ :Any = audioldm_pipe(a_ ,num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts snake_case__ :List[Any] = 2 snake_case__ :Any = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt snake_case__ :List[str] = 2 snake_case__ :Any = audioldm_pipe(a_ ,num_inference_steps=2 ,num_waveforms_per_prompt=a_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts snake_case__ :Any = 2 snake_case__ :Tuple = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=a_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :List[str] = self.get_dummy_components() snake_case__ :Optional[Any] = AudioLDMPipeline(**a_ ) snake_case__ :List[str] = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate snake_case__ :Union[str, Any] = self.get_dummy_inputs(a_ ) snake_case__ :Union[str, Any] = audioldm_pipe(audio_length_in_s=0.016 ,**a_ ) snake_case__ :Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(a_ ) / vocoder_sampling_rate == 0.016 snake_case__ :Dict = audioldm_pipe(audio_length_in_s=0.032 ,**a_ ) snake_case__ :List[Any] = output.audios[0] assert audio.ndim == 1 assert len(a_ ) / vocoder_sampling_rate == 0.032 def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = self.get_dummy_components() snake_case__ :Tuple = AudioLDMPipeline(**a_ ) snake_case__ :Tuple = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :Dict = ["hey"] snake_case__ :int = audioldm_pipe(a_ ,num_inference_steps=1 ) snake_case__ :str = output.audios.shape assert audio_shape == (1, 256) snake_case__ :Optional[int] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 snake_case__ :Tuple = SpeechTaHifiGan(a_ ).to(a_ ) snake_case__ :Optional[int] = audioldm_pipe(a_ ,num_inference_steps=1 ) snake_case__ :Any = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowerCAmelCase_ ( self ) -> str: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=a_ ) def lowerCAmelCase_ ( self ) -> int: self._test_inference_batch_single_identical(test_mean_pixel_difference=a_ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def lowerCAmelCase_ ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a_ ) @slow class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase="cpu" ,UpperCamelCase=torch.floataa ,UpperCamelCase=0 ) -> Dict: snake_case__ :Tuple = torch.Generator(device=a_ ).manual_seed(a_ ) snake_case__ :Optional[Any] = np.random.RandomState(a_ ).standard_normal((1, 8, 128, 16) ) snake_case__ :Dict = torch.from_numpy(a_ ).to(device=a_ ,dtype=a_ ) snake_case__ :Optional[Any] = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def lowerCAmelCase_ ( self ) -> str: snake_case__ :str = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) snake_case__ :Any = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :Tuple = self.get_inputs(a_ ) snake_case__ :Dict = 25 snake_case__ :Optional[Any] = audioldm_pipe(**a_ ).audios[0] assert audio.ndim == 1 assert len(a_ ) == 81_920 snake_case__ :Tuple = audio[77_230:77_240] snake_case__ :str = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) snake_case__ :int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :int = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) snake_case__ :Tuple = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) snake_case__ :List[str] = audioldm_pipe.to(a_ ) audioldm_pipe.set_progress_bar_config(disable=a_ ) snake_case__ :int = self.get_inputs(a_ ) snake_case__ :str = audioldm_pipe(**a_ ).audios[0] assert audio.ndim == 1 assert len(a_ ) == 81_920 snake_case__ :Optional[int] = audio[27_780:27_790] snake_case__ :Union[str, Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) snake_case__ :str = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=_A ): _A = ['transformers', 'torch', 'note_seq'] def __init__( self ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[int]: requires_backends(self ,["transformers", "torch", "note_seq"] ) @classmethod def lowerCAmelCase_ ( cls ,*UpperCamelCase ,**UpperCamelCase ) -> Optional[Any]: requires_backends(cls ,["transformers", "torch", "note_seq"] ) @classmethod def lowerCAmelCase_ ( cls ,*UpperCamelCase ,**UpperCamelCase ) -> Dict: requires_backends(cls ,["transformers", "torch", "note_seq"] )
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __UpperCAmelCase : Dict = { # 1536-bit 5: { 'prime': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=1_6, ), 'generator': 2, }, } class _snake_case : def __init__( self ,UpperCamelCase = 14 ) -> None: if group not in primes: raise ValueError("Unsupported Group" ) snake_case__ :Tuple = primes[group]["prime"] snake_case__ :Union[str, Any] = primes[group]["generator"] snake_case__ :int = int(hexlify(urandom(32 ) ) ,base=16 ) def lowerCAmelCase_ ( self ) -> str: return hex(self.__private_key )[2:] def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[int] = pow(self.generator ,self.__private_key ,self.prime ) return hex(_SCREAMING_SNAKE_CASE )[2:] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_SCREAMING_SNAKE_CASE ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: snake_case__ :List[Any] = int(_SCREAMING_SNAKE_CASE ,base=16 ) if not self.is_valid_public_key(_SCREAMING_SNAKE_CASE ): raise ValueError("Invalid public key" ) snake_case__ :List[Any] = pow(_SCREAMING_SNAKE_CASE ,self.__private_key ,self.prime ) return shaaaa(str(_SCREAMING_SNAKE_CASE ).encode() ).hexdigest() @staticmethod def lowerCAmelCase_ ( UpperCamelCase ,UpperCamelCase ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_SCREAMING_SNAKE_CASE ,(prime - 1) // 2 ,_SCREAMING_SNAKE_CASE ) == 1 ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 14 ) -> str: snake_case__ :List[str] = int(_SCREAMING_SNAKE_CASE ,base=16 ) snake_case__ :Any = int(_SCREAMING_SNAKE_CASE ,base=16 ) snake_case__ :Optional[Any] = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise ValueError("Invalid public key" ) snake_case__ :List[str] = pow(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return shaaaa(str(_SCREAMING_SNAKE_CASE ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
def lowercase_ ( __snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(A_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
def lowercase_ ( __snake_case : int ) -> float: '''simple docstring''' snake_case__ :str = 0 while len(__snake_case ) > 1: snake_case__ :Optional[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): snake_case__ :List[str] = files.index(min(__snake_case ) ) temp += files[min_index] files.pop(__snake_case ) files.append(__snake_case ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( _A , _A , unittest.TestCase ): _A = AutoencoderKL _A = 'sample' _A = 1e-2 @property def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Dict = 4 snake_case__ :List[Any] = 3 snake_case__ :Any = (32, 32) snake_case__ :Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return (3, 32, 32) @property def lowerCAmelCase_ ( self ) -> Optional[int]: return (3, 32, 32) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[int] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } snake_case__ :List[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass def lowerCAmelCase_ ( self ) -> str: pass @unittest.skipIf(torch_device == "mps" ,"Gradient checkpointing skipped on MPS" ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ , snake_case__ :Optional[int] = self.prepare_init_args_and_inputs_for_common() snake_case__ :Optional[Any] = self.model_class(**__a ) model.to(__a ) assert not model.is_gradient_checkpointing and model.training snake_case__ :Tuple = model(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case__ :List[Any] = torch.randn_like(__a ) snake_case__ :Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case__ :List[str] = self.model_class(**__a ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__a ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case__ :Optional[Any] = model_a(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case__ :List[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) snake_case__ :Tuple = dict(model.named_parameters() ) snake_case__ :Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5E-5 ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ , snake_case__ :int = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ,output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(__a ) snake_case__ :Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Union[str, Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) snake_case__ :Optional[int] = model.to(__a ) model.eval() if torch_device == "mps": snake_case__ :Tuple = torch.manual_seed(0 ) else: snake_case__ :Tuple = torch.Generator(device=__a ).manual_seed(0 ) snake_case__ :Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) snake_case__ :List[str] = image.to(__a ) with torch.no_grad(): snake_case__ :Dict = model(__a ,sample_posterior=__a ,generator=__a ).sample snake_case__ :Any = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case__ :Any = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": snake_case__ :Dict = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case__ :List[Any] = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(__a ,__a ,rtol=1E-2 ) ) @slow class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy' def lowerCAmelCase_ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ,UpperCamelCase=0 ,UpperCamelCase=(4, 3, 512, 512) ,UpperCamelCase=False ) -> str: snake_case__ :int = torch.floataa if fpaa else torch.floataa snake_case__ :Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(__a ,__a ) ) ).to(__a ).to(__a ) return image def lowerCAmelCase_ ( self ,UpperCamelCase="CompVis/stable-diffusion-v1-4" ,UpperCamelCase=False ) -> Union[str, Any]: snake_case__ :List[Any] = "fp16" if fpaa else None snake_case__ :int = torch.floataa if fpaa else torch.floataa snake_case__ :Tuple = AutoencoderKL.from_pretrained( __a ,subfolder="vae" ,torch_dtype=__a ,revision=__a ,) model.to(__a ).eval() return model def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> Tuple: if torch_device == "mps": return torch.manual_seed(__a ) return torch.Generator(device=__a ).manual_seed(__a ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: snake_case__ :Dict = self.get_sd_vae_model() snake_case__ :Optional[int] = self.get_sd_image(__a ) snake_case__ :Union[str, Any] = self.get_generator(__a ) with torch.no_grad(): snake_case__ :Optional[Any] = model(__a ,generator=__a ,sample_posterior=__a ).sample assert sample.shape == image.shape snake_case__ :Tuple = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case__ :List[Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__a ,__a ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :str = self.get_sd_vae_model(fpaa=__a ) snake_case__ :Optional[int] = self.get_sd_image(__a ,fpaa=__a ) snake_case__ :Optional[Any] = self.get_generator(__a ) with torch.no_grad(): snake_case__ :Optional[Any] = model(__a ,generator=__a ,sample_posterior=__a ).sample assert sample.shape == image.shape snake_case__ :Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case__ :List[Any] = torch.tensor(__a ) assert torch_all_close(__a ,__a ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :Dict = self.get_sd_vae_model() snake_case__ :Tuple = self.get_sd_image(__a ) with torch.no_grad(): snake_case__ :Optional[int] = model(__a ).sample assert sample.shape == image.shape snake_case__ :str = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case__ :Union[str, Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__a ,__a ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :str = self.get_sd_vae_model() snake_case__ :List[Any] = self.get_sd_image(__a ,shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case__ :Tuple = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case__ :List[Any] = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case__ :int = torch.tensor(__a ) assert torch_all_close(__a ,__a ,atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :str = self.get_sd_vae_model(fpaa=__a ) snake_case__ :Tuple = self.get_sd_image(__a ,shape=(3, 4, 64, 64) ,fpaa=__a ) with torch.no_grad(): snake_case__ :int = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case__ :List[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case__ :Optional[int] = torch.tensor(__a ) assert torch_all_close(__a ,__a ,atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: snake_case__ :Optional[Any] = self.get_sd_vae_model(fpaa=__a ) snake_case__ :str = self.get_sd_image(__a ,shape=(3, 4, 64, 64) ,fpaa=__a ) with torch.no_grad(): snake_case__ :Any = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case__ :Union[str, Any] = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a ,__a ,atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: snake_case__ :List[Any] = self.get_sd_vae_model() snake_case__ :Dict = self.get_sd_image(__a ,shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case__ :int = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case__ :Dict = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a ,__a ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :str = self.get_sd_vae_model() snake_case__ :str = self.get_sd_image(__a ) snake_case__ :Tuple = self.get_generator(__a ) with torch.no_grad(): snake_case__ :str = model.encode(__a ).latent_dist snake_case__ :List[str] = dist.sample(generator=__a ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case__ :List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() snake_case__ :Dict = torch.tensor(__a ) snake_case__ :str = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(__a ,__a ,atol=__a )
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) snake_case__ :List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) snake_case__ :Optional[int] = """xvjiarui/stable-diffusion-2-inpainting""" snake_case__ :Optional[int] = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ ,safety_checker=lowerCamelCase_ ) snake_case__ :str = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case__ :Optional[Any] = jax.random.PRNGKey(0 ) snake_case__ :Union[str, Any] = 50 snake_case__ :int = jax.device_count() snake_case__ :List[Any] = num_samples * [prompt] snake_case__ :str = num_samples * [init_image] snake_case__ :Optional[int] = num_samples * [mask_image] snake_case__ :Any = pipeline.prepare_inputs(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # shard inputs and rng snake_case__ :Optional[int] = replicate(lowerCamelCase_ ) snake_case__ :str = jax.random.split(lowerCamelCase_ ,jax.device_count() ) snake_case__ :Union[str, Any] = shard(lowerCamelCase_ ) snake_case__ :str = shard(lowerCamelCase_ ) snake_case__ :Any = shard(lowerCamelCase_ ) snake_case__ :Optional[int] = pipeline( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,jit=lowerCamelCase_ ) snake_case__ :str = output.images.reshape(lowerCamelCase_ ,512 ,512 ,3 ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :Optional[Any] = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
from itertools import product def lowercase_ ( __snake_case : int , __snake_case : int ) -> Optional[int]: '''simple docstring''' snake_case__ :str = sides_number snake_case__ :Union[str, Any] = max_face_number * dice_number snake_case__ :Any = [0] * (max_total + 1) snake_case__ :Tuple = 1 snake_case__ :Union[str, Any] = range(A__ , max_face_number + 1 ) for dice_numbers in product(A__ , repeat=A__ ): snake_case__ :Tuple = sum(A__ ) totals_frequencies[total] += 1 return totals_frequencies def lowercase_ ( ) -> Optional[int]: '''simple docstring''' snake_case__ :List[str] = total_frequency_distribution( sides_number=4 , dice_number=9 ) snake_case__ :Dict = total_frequency_distribution( sides_number=6 , dice_number=6 ) snake_case__ :int = 0 snake_case__ :Optional[int] = 9 snake_case__ :Optional[Any] = 4 * 9 snake_case__ :int = 6 for peter_total in range(A__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case__ :Tuple = (4**9) * (6**6) snake_case__ :List[Any] = peter_wins_count / total_games_number snake_case__ :Union[str, Any] = round(A__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case__ :str = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) snake_case__ :int = DatasetInfosDict.from_directory(lowerCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def lowercase_ ( __snake_case : str , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Union[str, Any] = str(lowerCamelCase__ ) dataset_info.write_to_directory(lowerCamelCase__ ) snake_case__ :Tuple = DatasetInfo.from_directory(lowerCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase__ , "dataset_info.json" ) ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :Optional[int] = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) snake_case__ :Tuple = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case__ :Union[str, Any] = yaml.safe_dump(lowerCamelCase__ ) snake_case__ :Optional[int] = yaml.safe_load(lowerCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowercase_ ( ) -> List[Any]: '''simple docstring''' snake_case__ :int = DatasetInfo() snake_case__ :List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=13_37 ), } ), ] , ) def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = str(lowerCamelCase__ ) dataset_infos_dict.write_to_directory(lowerCamelCase__ ) snake_case__ :str = DatasetInfosDict.from_directory(lowerCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case__ :str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case__ :List[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase__ , "README.md" ) )
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
import argparse import collections import json import os import re import string import sys import numpy as np __UpperCAmelCase : Optional[int] = re.compile(R"\b(a|an|the)\b", re.UNICODE) __UpperCAmelCase : List[Any] = None def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=a__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=a__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowercase_ ( __snake_case : Optional[Any] ) -> int: '''simple docstring''' snake_case__ :Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case__ :Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' def remove_articles(__snake_case : Optional[int] ): return ARTICLES_REGEX.sub(" " , a__ ) def white_space_fix(__snake_case : List[Any] ): return " ".join(text.split() ) def remove_punc(__snake_case : Union[str, Any] ): snake_case__ :Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def lowercase_ ( __snake_case : Dict ) -> List[Any]: '''simple docstring''' if not s: return [] return normalize_answer(a__ ).split() def lowercase_ ( __snake_case : Optional[int] , __snake_case : int ) -> Union[str, Any]: '''simple docstring''' return int(normalize_answer(a__ ) == normalize_answer(a__ ) ) def lowercase_ ( __snake_case : List[str] , __snake_case : Optional[int] ) -> str: '''simple docstring''' snake_case__ :Dict = get_tokens(a__ ) snake_case__ :Dict = get_tokens(a__ ) snake_case__ :Tuple = collections.Counter(a__ ) & collections.Counter(a__ ) snake_case__ :List[Any] = sum(common.values() ) if len(a__ ) == 0 or len(a__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case__ :Dict = 1.0 * num_same / len(a__ ) snake_case__ :Union[str, Any] = 1.0 * num_same / len(a__ ) snake_case__ :List[Any] = (2 * precision * recall) / (precision + recall) return fa def lowercase_ ( __snake_case : Optional[int] , __snake_case : str ) -> Optional[int]: '''simple docstring''' snake_case__ :int = {} snake_case__ :Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case__ :str = qa["id"] snake_case__ :Tuple = [t for t in qa["answers"]["text"] if normalize_answer(a__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case__ :Dict = [""] if qid not in preds: print(F'Missing prediction for {qid}' ) continue snake_case__ :List[Any] = preds[qid] # Take max over all gold answers snake_case__ :List[Any] = max(compute_exact(a__ , a__ ) for a in gold_answers ) snake_case__ :Any = max(compute_fa(a__ , a__ ) for a in gold_answers ) return exact_scores, fa_scores def lowercase_ ( __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' snake_case__ :List[str] = {} for qid, s in scores.items(): snake_case__ :Tuple = na_probs[qid] > na_prob_thresh if pred_na: snake_case__ :Optional[Any] = float(not qid_to_has_ans[qid] ) else: snake_case__ :int = s return new_scores def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Dict=None ) -> Tuple: '''simple docstring''' if not qid_list: snake_case__ :List[Any] = len(a__ ) return collections.OrderedDict( [ ("exact", 1_0_0.0 * sum(exact_scores.values() ) / total), ("f1", 1_0_0.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: snake_case__ :Optional[int] = len(a__ ) return collections.OrderedDict( [ ("exact", 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def lowercase_ ( __snake_case : str , __snake_case : Any , __snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' for k in new_eval: snake_case__ :Dict = new_eval[k] def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str ) -> str: '''simple docstring''' plt.step(a__ , a__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(a__ , a__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(a__ ) plt.savefig(a__ ) plt.clf() def lowercase_ ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any]=None , __snake_case : Optional[Any]=None ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = sorted(a__ , key=lambda __snake_case : na_probs[k] ) snake_case__ :Optional[Any] = 0.0 snake_case__ :Optional[Any] = 1.0 snake_case__ :List[str] = 0.0 snake_case__ :Optional[Any] = [1.0] snake_case__ :Tuple = [0.0] snake_case__ :Union[str, Any] = 0.0 for i, qid in enumerate(a__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case__ :int = true_pos / float(i + 1 ) snake_case__ :Union[str, Any] = true_pos / float(a__ ) if i == len(a__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(a__ ) recalls.append(a__ ) if out_image: plot_pr_curve(a__ , a__ , a__ , a__ ) return {"ap": 1_0_0.0 * avg_prec} def lowercase_ ( __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] ) -> Any: '''simple docstring''' if out_image_dir and not os.path.exists(a__ ): os.makedirs(a__ ) snake_case__ :int = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case__ :Tuple = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) snake_case__ :Any = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) snake_case__ :Tuple = {k: float(a__ ) for k, v in qid_to_has_ans.items()} snake_case__ :str = make_precision_recall_eval( a__ , a__ , a__ , a__ , out_image=os.path.join(a__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(a__ , a__ , "pr_exact" ) merge_eval(a__ , a__ , "pr_f1" ) merge_eval(a__ , a__ , "pr_oracle" ) def lowercase_ ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Any ) -> Optional[int]: '''simple docstring''' if not qid_list: return snake_case__ :Any = [na_probs[k] for k in qid_list] snake_case__ :int = np.ones_like(a__ ) / float(len(a__ ) ) plt.hist(a__ , weights=a__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(a__ , F'na_prob_hist_{name}.png' ) ) plt.clf() def lowercase_ ( __snake_case : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ :Union[str, Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case__ :Optional[Any] = num_no_ans snake_case__ :Tuple = cur_score snake_case__ :int = 0.0 snake_case__ :List[str] = sorted(a__ , key=lambda __snake_case : na_probs[k] ) for i, qid in enumerate(a__ ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case__ :List[str] = scores[qid] else: if preds[qid]: snake_case__ :Tuple = -1 else: snake_case__ :int = 0 cur_score += diff if cur_score > best_score: snake_case__ :Any = cur_score snake_case__ :str = na_probs[qid] return 1_0_0.0 * best_score / len(a__ ), best_thresh def lowercase_ ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Any ) -> Optional[Any]: '''simple docstring''' snake_case__ , snake_case__ :Optional[Any] = find_best_thresh(a__ , a__ , a__ , a__ ) snake_case__ , snake_case__ :str = find_best_thresh(a__ , a__ , a__ , a__ ) snake_case__ :str = best_exact snake_case__ :Optional[int] = exact_thresh snake_case__ :Tuple = best_fa snake_case__ :Dict = fa_thresh def lowercase_ ( ) -> List[Any]: '''simple docstring''' with open(OPTS.data_file ) as f: snake_case__ :int = json.load(a__ ) snake_case__ :Any = dataset_json["data"] with open(OPTS.pred_file ) as f: snake_case__ :Union[str, Any] = json.load(a__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case__ :Any = json.load(a__ ) else: snake_case__ :int = {k: 0.0 for k in preds} snake_case__ :Tuple = make_qid_to_has_ans(a__ ) # maps qid to True/False snake_case__ :Optional[int] = [k for k, v in qid_to_has_ans.items() if v] snake_case__ :Dict = [k for k, v in qid_to_has_ans.items() if not v] snake_case__ , snake_case__ :int = get_raw_scores(a__ , a__ ) snake_case__ :List[str] = apply_no_ans_threshold(a__ , a__ , a__ , OPTS.na_prob_thresh ) snake_case__ :Union[str, Any] = apply_no_ans_threshold(a__ , a__ , a__ , OPTS.na_prob_thresh ) snake_case__ :Any = make_eval_dict(a__ , a__ ) if has_ans_qids: snake_case__ :List[Any] = make_eval_dict(a__ , a__ , qid_list=a__ ) merge_eval(a__ , a__ , "HasAns" ) if no_ans_qids: snake_case__ :Optional[int] = make_eval_dict(a__ , a__ , qid_list=a__ ) merge_eval(a__ , a__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(a__ , a__ , a__ , a__ , a__ , a__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(a__ , a__ , a__ , a__ , a__ , OPTS.out_image_dir ) histogram_na_prob(a__ , a__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(a__ , a__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(a__ , a__ ) else: print(json.dumps(a__ , indent=2 ) ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
import torch from transformers import AutoModel class _snake_case ( torch.nn.Module ): def __init__( self ,UpperCamelCase="sayef/fsner-bert-base-uncased" ) -> str: super(lowerCAmelCase_ ,self ).__init__() snake_case__ :str = AutoModel.from_pretrained(lowerCAmelCase_ ,return_dict=lowerCAmelCase_ ) snake_case__ :int = torch.nn.CosineSimilarity(3 ,1E-08 ) snake_case__ :Union[str, Any] = torch.nn.Softmax(dim=1 ) def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> Any: return self.bert(**lowerCAmelCase_ ).last_hidden_state def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: return token_embeddings.sum(2 ,keepdim=lowerCAmelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=1 ) -> Union[str, Any]: return self.softmax(T * self.cos(lowerCAmelCase_ ,lowerCAmelCase_ ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[Any] = W_supports["sizes"].tolist() snake_case__ :Union[str, Any] = W_supports["start_token_id"].item() snake_case__ :List[str] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case__ :Dict = self.BERT(**lowerCAmelCase_ ) snake_case__ :Tuple = self.BERT(**lowerCAmelCase_ ) snake_case__ :Any = None snake_case__ :Tuple = None snake_case__ :List[str] = W_supports["input_ids"] == start_token_id snake_case__ :Dict = W_supports["input_ids"] == end_token_id for i, size in enumerate(lowerCAmelCase_ ): if i == 0: snake_case__ :Union[str, Any] = 0 else: snake_case__ :int = support_sizes[i - 1] snake_case__ :List[str] = S[s : s + size][start_token_masks[s : s + size]] snake_case__ :str = S[s : s + size][end_token_masks[s : s + size]] snake_case__ :List[str] = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) snake_case__ :int = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: snake_case__ :Tuple = torch.vstack((p_starts, p_start) ) snake_case__ :Tuple = torch.vstack((p_ends, p_end) ) else: snake_case__ :Optional[Any] = p_start snake_case__ :Any = p_end return p_starts, p_ends
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
def lowercase_ ( __snake_case : Union[str, Any] ) -> int: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) snake_case__ :str = 0 snake_case__ :Any = str(__snake_case ) while len(__snake_case ) != 1: snake_case__ :int = [int(__snake_case ) for i in num_string] snake_case__ :Tuple = 1 for i in range(0 , len(__snake_case ) ): total *= numbers[i] snake_case__ :List[Any] = str(__snake_case ) steps += 1 return steps def lowercase_ ( __snake_case : str ) -> int: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) snake_case__ :str = 0 snake_case__ :Tuple = str(__snake_case ) while len(__snake_case ) != 1: snake_case__ :Any = [int(__snake_case ) for i in num_string] snake_case__ :List[str] = 0 for i in range(0 , len(__snake_case ) ): total += numbers[i] snake_case__ :List[str] = str(__snake_case ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
from __future__ import annotations def lowercase_ ( __snake_case : List[str] , __snake_case : int ) -> bool: '''simple docstring''' snake_case__ :Union[str, Any] = get_failure_array(__snake_case ) # 2) Step through text searching for pattern snake_case__ :Union[str, Any] = 0, 0 # index into text, pattern while i < len(__snake_case ): if pattern[j] == text[i]: if j == (len(__snake_case ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case__ :str = failure[j - 1] continue i += 1 return False def lowercase_ ( __snake_case : int ) -> list[int]: '''simple docstring''' snake_case__ :Tuple = [0] snake_case__ :List[str] = 0 snake_case__ :Optional[int] = 1 while j < len(__snake_case ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case__ :Dict = failure[i - 1] continue j += 1 failure.append(__snake_case ) return failure if __name__ == "__main__": # Test 1) __UpperCAmelCase : Any = """abc1abc12""" __UpperCAmelCase : int = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __UpperCAmelCase : Dict = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __UpperCAmelCase : str = """ABABX""" __UpperCAmelCase : List[str] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) __UpperCAmelCase : Dict = """AAAB""" __UpperCAmelCase : int = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) __UpperCAmelCase : Optional[int] = """abcdabcy""" __UpperCAmelCase : str = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) __UpperCAmelCase : Tuple = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
from typing import List import numpy as np def lowercase_ ( __snake_case : dict ) -> str: '''simple docstring''' snake_case__ :Optional[Any] = {key: len(__a ) for key, value in gen_kwargs.items() if isinstance(__a , __a )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) snake_case__ :Optional[Any] = max(lists_lengths.values() , default=0 ) return max(1 , __a ) def lowercase_ ( __snake_case : int , __snake_case : int ) -> Union[str, Any]: '''simple docstring''' snake_case__ :str = [] for group_idx in range(__a ): snake_case__ :Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break snake_case__ :Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 snake_case__ :List[Any] = range(__a , start + num_shards_to_add ) shards_indices_per_group.append(__a ) return shards_indices_per_group def lowercase_ ( __snake_case : dict , __snake_case : int ) -> List[str]: '''simple docstring''' snake_case__ :Union[str, Any] = _number_of_shards_in_gen_kwargs(__a ) if num_shards == 1: return [dict(__a )] else: snake_case__ :Optional[Any] = _distribute_shards(num_shards=__a , max_num_jobs=__a ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__a , __a ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__a ) ) ] def lowercase_ ( __snake_case : List[dict] ) -> Optional[Any]: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __a ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowercase_ ( __snake_case : np.random.Generator , __snake_case : dict ) -> str: '''simple docstring''' snake_case__ :List[Any] = {len(__a ) for value in gen_kwargs.values() if isinstance(__a , __a )} snake_case__ :Tuple = {} for size in list_sizes: snake_case__ :int = list(range(__a ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes snake_case__ :Dict = dict(__a ) for key, value in shuffled_kwargs.items(): if isinstance(__a , __a ): snake_case__ :Union[str, Any] = [value[i] for i in indices_per_size[len(__a )]] return shuffled_kwargs
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
import math from collections.abc import Iterator from itertools import takewhile def lowercase_ ( __snake_case : int ) -> List[str]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( ) -> Dict: '''simple docstring''' snake_case__ :List[str] = 2 while True: if is_prime(__snake_case ): yield num num += 1 def lowercase_ ( __snake_case : int = 2_00_00_00 ) -> Any: '''simple docstring''' return sum(takewhile(lambda __snake_case : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __UpperCAmelCase : str = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _snake_case ( lowercase__ ): def __init__( self ,*UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,**UpperCamelCase ) -> List[str]: super().__init__(*UpperCAmelCase__ ,**UpperCAmelCase__ ) snake_case__ :Dict = eval_examples snake_case__ :Union[str, Any] = post_process_function snake_case__ :Optional[Any] = quant_trainer_args snake_case__ :Tuple = 128 # default number of calibration samples def lowerCAmelCase_ ( self ,UpperCamelCase=None ) -> List[str]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) snake_case__ :Dict = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case__ :str = self._remove_unused_columns(UpperCAmelCase__ ,description="Calibration" ) return DataLoader( UpperCAmelCase__ ,batch_size=self.args.eval_batch_size ,collate_fn=self.data_collator ,drop_last=self.args.dataloader_drop_last ,num_workers=self.args.dataloader_num_workers ,pin_memory=self.args.dataloader_pin_memory ,shuffle=UpperCAmelCase__ ,) def lowerCAmelCase_ ( self ,UpperCamelCase=None ) -> Union[str, Any]: snake_case__ :int = self.train_dataset if calib_dataset is None else calib_dataset snake_case__ :Any = self.get_calib_dataloader(UpperCAmelCase__ ) snake_case__ :Optional[int] = self.model quant_trainer.configure_model(UpperCAmelCase__ ,self.quant_trainer_args ,calib=UpperCAmelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCAmelCase__ ) logger.info("***** Running calibration *****" ) logger.info(f' Num examples = {self.calib_num}' ) logger.info(f' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(UpperCAmelCase__ ): # Prediction step snake_case__ :Any = self.prediction_step(UpperCAmelCase__ ,UpperCAmelCase__ ,prediction_loss_only=UpperCAmelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCAmelCase__ ,self.quant_trainer_args ) snake_case__ :Union[str, Any] = model def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase = "eval" ) -> str: snake_case__ :str = self.eval_dataset if eval_dataset is None else eval_dataset snake_case__ :List[Any] = self.get_eval_dataloader(UpperCAmelCase__ ) snake_case__ :Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case__ :Optional[int] = self.compute_metrics snake_case__ :Dict = None snake_case__ :int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case__ :List[str] = eval_loop( UpperCAmelCase__ ,description="Evaluation" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=UpperCAmelCase__ ,) finally: snake_case__ :Tuple = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case__ :Tuple = self.post_process_function(UpperCAmelCase__ ,UpperCAmelCase__ ,output.predictions ) snake_case__ :Optional[int] = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): snake_case__ :Optional[int] = metrics.pop(UpperCAmelCase__ ) self.log(UpperCAmelCase__ ) else: snake_case__ :str = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case__ :Any = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,UpperCAmelCase__ ) return metrics def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase = "test" ) -> Any: snake_case__ :Any = self.get_test_dataloader(UpperCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. snake_case__ :List[str] = self.compute_metrics snake_case__ :List[str] = None snake_case__ :Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case__ :List[Any] = eval_loop( UpperCAmelCase__ ,description="Prediction" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=UpperCAmelCase__ ,) finally: snake_case__ :Tuple = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case__ :List[str] = self.post_process_function(UpperCAmelCase__ ,UpperCAmelCase__ ,output.predictions ,"predict" ) snake_case__ :Any = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): snake_case__ :str = metrics.pop(UpperCAmelCase__ ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=UpperCAmelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase="./" ) -> Optional[Any]: snake_case__ :str = self.eval_dataset snake_case__ :List[str] = self.get_eval_dataloader(UpperCAmelCase__ ) snake_case__ :Union[str, Any] = next(iter(UpperCAmelCase__ ) ) # saving device - to make it consistent snake_case__ :Optional[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple snake_case__ :Any = tuple(v.to(UpperCAmelCase__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer snake_case__ :str = True snake_case__ :Optional[int] = self.model.to(UpperCAmelCase__ ) model.eval() model.float() snake_case__ :Optional[int] = model.module if hasattr(UpperCAmelCase__ ,"module" ) else model quant_trainer.configure_model(UpperCAmelCase__ ,self.quant_trainer_args ) snake_case__ :Dict = os.path.join(UpperCAmelCase__ ,"model.onnx" ) logger.info(f'exporting model to {output_model_file}' ) snake_case__ :Any = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,export_params=UpperCAmelCase__ ,opset_version=13 ,do_constant_folding=UpperCAmelCase__ ,input_names=["input_ids", "attention_mask", "token_type_ids"] ,output_names=["output_start_logits", "output_end_logits"] ,dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } ,verbose=UpperCAmelCase__ ,) logger.info("onnx export finished" )
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCAmelCase : Dict = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _snake_case ( lowerCamelCase__ ): _A = 'wavlm' def __init__( self ,UpperCamelCase=32 ,UpperCamelCase=768 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3_072 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=0.0 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-5 ,UpperCamelCase="group" ,UpperCamelCase="gelu" ,UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) ,UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) ,UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) ,UpperCamelCase=False ,UpperCamelCase=128 ,UpperCamelCase=16 ,UpperCamelCase=320 ,UpperCamelCase=800 ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=0.05 ,UpperCamelCase=10 ,UpperCamelCase=2 ,UpperCamelCase=0.0 ,UpperCamelCase=10 ,UpperCamelCase=320 ,UpperCamelCase=2 ,UpperCamelCase=0.1 ,UpperCamelCase=100 ,UpperCamelCase=256 ,UpperCamelCase=256 ,UpperCamelCase=0.1 ,UpperCamelCase="mean" ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=256 ,UpperCamelCase=(512, 512, 512, 512, 1_500) ,UpperCamelCase=(5, 3, 3, 1, 1) ,UpperCamelCase=(1, 2, 3, 1, 1) ,UpperCamelCase=512 ,UpperCamelCase=80 ,UpperCamelCase=0 ,UpperCamelCase=1 ,UpperCamelCase=2 ,UpperCamelCase=False ,UpperCamelCase=3 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=None ,**UpperCamelCase ,) -> Tuple: super().__init__(**__lowerCamelCase ,pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ) snake_case__ :Tuple = hidden_size snake_case__ :Dict = feat_extract_norm snake_case__ :List[Any] = feat_extract_activation snake_case__ :Union[str, Any] = list(__lowerCamelCase ) snake_case__ :Union[str, Any] = list(__lowerCamelCase ) snake_case__ :Tuple = list(__lowerCamelCase ) snake_case__ :int = conv_bias snake_case__ :Optional[int] = num_buckets snake_case__ :Dict = max_bucket_distance snake_case__ :Optional[Any] = num_conv_pos_embeddings snake_case__ :Dict = num_conv_pos_embedding_groups snake_case__ :Union[str, Any] = len(self.conv_dim ) snake_case__ :List[str] = num_hidden_layers snake_case__ :Union[str, Any] = intermediate_size snake_case__ :Optional[Any] = hidden_act snake_case__ :List[Any] = num_attention_heads snake_case__ :Tuple = hidden_dropout snake_case__ :List[Any] = attention_dropout snake_case__ :List[str] = activation_dropout snake_case__ :Any = feat_proj_dropout snake_case__ :int = final_dropout snake_case__ :Optional[Any] = layerdrop snake_case__ :Dict = layer_norm_eps snake_case__ :Optional[int] = initializer_range snake_case__ :int = num_ctc_classes snake_case__ :Tuple = vocab_size snake_case__ :Any = do_stable_layer_norm snake_case__ :List[str] = use_weighted_layer_sum snake_case__ :Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ :Union[str, Any] = apply_spec_augment snake_case__ :List[Any] = mask_time_prob snake_case__ :int = mask_time_length snake_case__ :Union[str, Any] = mask_time_min_masks snake_case__ :List[Any] = mask_feature_prob snake_case__ :List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case__ :List[str] = num_codevectors_per_group snake_case__ :str = num_codevector_groups snake_case__ :Dict = contrastive_logits_temperature snake_case__ :Any = num_negatives snake_case__ :List[str] = codevector_dim snake_case__ :str = proj_codevector_dim snake_case__ :Union[str, Any] = diversity_loss_weight # ctc loss snake_case__ :Any = ctc_loss_reduction snake_case__ :Dict = ctc_zero_infinity # adapter snake_case__ :int = add_adapter snake_case__ :Dict = adapter_kernel_size snake_case__ :Dict = adapter_stride snake_case__ :Dict = num_adapter_layers snake_case__ :str = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ :Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ :Union[str, Any] = list(__lowerCamelCase ) snake_case__ :int = list(__lowerCamelCase ) snake_case__ :List[Any] = list(__lowerCamelCase ) snake_case__ :int = xvector_output_dim @property def lowerCAmelCase_ ( self ) -> List[str]: return functools.reduce(operator.mul ,self.conv_stride ,1 )
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
import baseaa def lowercase_ ( __snake_case : Union[str, Any] ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def lowercase_ ( __snake_case : Optional[int] ) -> str: '''simple docstring''' return baseaa.baadecode(UpperCamelCase__ ).decode("utf-8" ) if __name__ == "__main__": __UpperCAmelCase : Tuple = "Hello World!" __UpperCAmelCase : List[str] = baseaa_encode(test) print(encoded) __UpperCAmelCase : Any = baseaa_decode(encoded) print(decoded)
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' def lowercase_ ( __snake_case : Dict ) -> Tuple: '''simple docstring''' snake_case__ :Tuple = generate_pascal_triangle(__SCREAMING_SNAKE_CASE ) for row_idx in range(__SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def lowercase_ ( __snake_case : List[Any] ) -> int: '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) snake_case__ :list[list[int]] = [] for current_row_idx in range(__SCREAMING_SNAKE_CASE ): snake_case__ :Dict = populate_current_row(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) triangle.append(__SCREAMING_SNAKE_CASE ) return triangle def lowercase_ ( __snake_case : str , __snake_case : Dict ) -> str: '''simple docstring''' snake_case__ :Dict = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case__ :Union[str, Any] = 1, 1 for current_col_idx in range(1 , __SCREAMING_SNAKE_CASE ): calculate_current_element( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return current_row def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Tuple , __snake_case : Dict , ) -> Optional[int]: '''simple docstring''' snake_case__ :Dict = triangle[current_row_idx - 1][current_col_idx - 1] snake_case__ :Optional[Any] = triangle[current_row_idx - 1][current_col_idx] snake_case__ :List[Any] = above_to_left_elt + above_to_right_elt def lowercase_ ( __snake_case : Any ) -> List[Any]: '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) snake_case__ :list[list[int]] = [[1]] for row_index in range(1 , __SCREAMING_SNAKE_CASE ): snake_case__ :Any = [0] + result[-1] + [0] snake_case__ :Dict = row_index + 1 # Calculate the number of distinct elements in a row snake_case__ :Any = sum(divmod(__SCREAMING_SNAKE_CASE , 2 ) ) snake_case__ :Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case__ :Dict = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case__ :Optional[int] = row_first_half + row_second_half result.append(__SCREAMING_SNAKE_CASE ) return result def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__snake_case : str , __snake_case : int ) -> None: snake_case__ :int = F'{func.__name__}({value})' snake_case__ :List[Any] = timeit(F'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCAmelCase : List[str] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :str = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir ,"models/bert/" ) ) snake_case__ :Optional[int] = self.transformer_dir shutil.copy( os.path.join(A_ ,"src/transformers/models/bert/modeling_bert.py" ) ,os.path.join(self.transformer_dir ,"models/bert/modeling_bert.py" ) ,) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = "src/transformers" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> int: snake_case__ :Union[str, Any] = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: snake_case__ :Tuple = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result snake_case__ :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) snake_case__ :List[str] = black.format_str(A_ ,mode=A_ ) snake_case__ :List[str] = os.path.join(self.transformer_dir ,"new_code.py" ) with open(A_ ,"w" ,newline="\n" ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=A_ ) with open(A_ ,"r" ) as f: self.assertTrue(f.read() ,A_ ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :int = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(A_ ,A_ ) def lowerCAmelCase_ ( self ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" ,"BertLMPredictionHead" ,REFERENCE_CODE + "\n" ,) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" ,"BertLMPredictionHead" ,A_ ,) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" ,"TestModelLMPredictionHead" ,re.sub("Bert" ,"TestModel" ,A_ ) ,) # Copy consistency with a really long name snake_case__ :Tuple = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' ,f'{long_class_name}LMPredictionHead' ,re.sub("Bert" ,A_ ,A_ ) ,) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" ,"TestModelLMPredictionHead" ,A_ ,overwrite_result=re.sub("Bert" ,"TestModel" ,A_ ) ,) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[int] = check_copies.LOCALIZED_READMES["README_zh-hans.md"] snake_case__ :Any = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) snake_case__ :Union[str, Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) snake_case__ :Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) snake_case__ , snake_case__ :Optional[Any] = check_copies.convert_to_localized_md( A_ ,A_ ,localized_readme["format_model_list"] ) self.assertFalse(A_ ) self.assertEqual(A_ ,A_ ) snake_case__ , snake_case__ :Tuple = check_copies.convert_to_localized_md( A_ ,A_ ,localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(A_ ) snake_case__ :int = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) snake_case__ :Union[str, Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) snake_case__ :Any = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) snake_case__ , snake_case__ :Dict = check_copies.convert_to_localized_md( A_ ,A_ ,localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(A_ ,A_ )
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
def lowercase_ ( __snake_case : int = 60_08_51_47_51_43 ) -> int: '''simple docstring''' try: snake_case__ :Dict = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) snake_case__ :Tuple = 2 snake_case__ :List[str] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case__ :str = i while n % i == 0: snake_case__ :str = n // i i += 1 return int(_lowerCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase_ ( __snake_case : str , __snake_case : str , __snake_case : str , __snake_case : PreTrainedTokenizer , __snake_case : int , __snake_case : Optional[int] = None , ) -> Union[str, Any]: '''simple docstring''' snake_case__ :str = {} if train_file is not None: snake_case__ :Dict = [train_file] if eval_file is not None: snake_case__ :Union[str, Any] = [eval_file] if test_file is not None: snake_case__ :str = [test_file] snake_case__ :Tuple = datasets.load_dataset("csv" , data_files=_SCREAMING_SNAKE_CASE ) snake_case__ :Any = list(ds[list(files.keys() )[0]].features.keys() ) snake_case__ :Optional[Any] = features_name.pop(_SCREAMING_SNAKE_CASE ) snake_case__ :Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case__ :Optional[Any] = {label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} snake_case__ :Tuple = tokenizer.model_input_names snake_case__ :Optional[Any] = {} if len(_SCREAMING_SNAKE_CASE ) == 1: for k in files.keys(): snake_case__ :Optional[int] = ds[k].map( lambda __snake_case : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" ) , batched=_SCREAMING_SNAKE_CASE , ) elif len(_SCREAMING_SNAKE_CASE ) == 2: for k in files.keys(): snake_case__ :Any = ds[k].map( lambda __snake_case : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding="max_length" , ) , batched=_SCREAMING_SNAKE_CASE , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case__ :int = {k: v for k, v in ex.items() if k in input_names} snake_case__ :Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case__ :Tuple = {k: v for k, v in ex.items() if k in input_names} snake_case__ :Dict = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case__ :str = {k: v for k, v in ex.items() if k in input_names} snake_case__ :Union[str, Any] = labelaid[ex[label_name]] yield (d, label) snake_case__ :int = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case__ :List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case__ :str = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case__ :Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case__ :List[str] = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case__ :Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __UpperCAmelCase : Any = logging.getLogger(__name__) @dataclass class _snake_case : _A = field(metadata={'help': 'Which column contains the label'} ) _A = field(default=_A , metadata={'help': 'The path of the training file'} ) _A = field(default=_A , metadata={'help': 'The path of the development file'} ) _A = field(default=_A , metadata={'help': 'The path of the test file'} ) _A = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _A = field( default=_A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class _snake_case : _A = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _A = field( default=_A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _A = field( default=_A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _A = field(default=_A , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _A = field( default=_A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def lowercase_ ( ) -> int: '''simple docstring''' snake_case__ :Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case__ , snake_case__ , snake_case__ :Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ :int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ :List[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_SCREAMING_SNAKE_CASE , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case__ :Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case__ :Dict = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) def compute_metrics(__snake_case : EvalPrediction ) -> Dict: snake_case__ :Tuple = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case__ :Optional[int] = TFTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ :Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case__ :Optional[int] = trainer.evaluate() snake_case__ :Any = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(_SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": main()
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : str = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _snake_case ( A_ ): _A = '''vit_msn''' def __init__( self ,UpperCamelCase=768 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3_072 ,UpperCamelCase="gelu" ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-06 ,UpperCamelCase=224 ,UpperCamelCase=16 ,UpperCamelCase=3 ,UpperCamelCase=True ,**UpperCamelCase ,) -> Optional[Any]: super().__init__(**UpperCamelCase ) snake_case__ :Optional[int] = hidden_size snake_case__ :Any = num_hidden_layers snake_case__ :Dict = num_attention_heads snake_case__ :List[str] = intermediate_size snake_case__ :Tuple = hidden_act snake_case__ :Optional[int] = hidden_dropout_prob snake_case__ :List[Any] = attention_probs_dropout_prob snake_case__ :Dict = initializer_range snake_case__ :str = layer_norm_eps snake_case__ :Union[str, Any] = image_size snake_case__ :str = patch_size snake_case__ :List[str] = num_channels snake_case__ :List[Any] = qkv_bias
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase : str = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowercase_ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[str]=8 ): '''simple docstring''' snake_case__ :str = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 snake_case__ :int = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _snake_case ( __A ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> int: super().__init__() self.register_modules( text_encoder=UpperCamelCase__ ,tokenizer=UpperCamelCase__ ,unet=UpperCamelCase__ ,scheduler=UpperCamelCase__ ,movq=UpperCamelCase__ ,) snake_case__ :int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: if latents is None: snake_case__ :Optional[int] = randn_tensor(UpperCamelCase__ ,generator=UpperCamelCase__ ,device=UpperCamelCase__ ,dtype=UpperCamelCase__ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) snake_case__ :str = latents.to(UpperCamelCase__ ) snake_case__ :Tuple = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,) -> str: snake_case__ :Dict = len(UpperCamelCase__ ) if isinstance(UpperCamelCase__ ,UpperCamelCase__ ) else 1 # get prompt text embeddings snake_case__ :Union[str, Any] = self.tokenizer( UpperCamelCase__ ,padding="max_length" ,truncation=UpperCamelCase__ ,max_length=77 ,return_attention_mask=UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ,return_tensors="pt" ,) snake_case__ :Optional[Any] = text_inputs.input_ids snake_case__ :int = self.tokenizer(UpperCamelCase__ ,padding="longest" ,return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :List[str] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) snake_case__ :Tuple = text_input_ids.to(UpperCamelCase__ ) snake_case__ :str = text_inputs.attention_mask.to(UpperCamelCase__ ) snake_case__ :Optional[int] = self.text_encoder( input_ids=UpperCamelCase__ ,attention_mask=UpperCamelCase__ ) snake_case__ :List[str] = prompt_embeds.repeat_interleave(UpperCamelCase__ ,dim=0 ) snake_case__ :int = text_encoder_hidden_states.repeat_interleave(UpperCamelCase__ ,dim=0 ) snake_case__ :str = text_mask.repeat_interleave(UpperCamelCase__ ,dim=0 ) if do_classifier_free_guidance: snake_case__ :List[str] if negative_prompt is None: snake_case__ :int = [''] * batch_size elif type(UpperCamelCase__ ) is not type(UpperCamelCase__ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase__ )} !=' f' {type(UpperCamelCase__ )}.' ) elif isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Union[str, Any] = [negative_prompt] elif batch_size != len(UpperCamelCase__ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase__ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: snake_case__ :List[Any] = negative_prompt snake_case__ :Dict = self.tokenizer( UpperCamelCase__ ,padding="max_length" ,max_length=77 ,truncation=UpperCamelCase__ ,return_attention_mask=UpperCamelCase__ ,add_special_tokens=UpperCamelCase__ ,return_tensors="pt" ,) snake_case__ :List[str] = uncond_input.input_ids.to(UpperCamelCase__ ) snake_case__ :Dict = uncond_input.attention_mask.to(UpperCamelCase__ ) snake_case__ :List[Any] = self.text_encoder( input_ids=UpperCamelCase__ ,attention_mask=UpperCamelCase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case__ :List[Any] = negative_prompt_embeds.shape[1] snake_case__ :str = negative_prompt_embeds.repeat(1 ,UpperCamelCase__ ) snake_case__ :str = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,UpperCamelCase__ ) snake_case__ :Any = uncond_text_encoder_hidden_states.shape[1] snake_case__ :Union[str, Any] = uncond_text_encoder_hidden_states.repeat(1 ,UpperCamelCase__ ,1 ) snake_case__ :int = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,UpperCamelCase__ ,-1 ) snake_case__ :str = uncond_text_mask.repeat_interleave(UpperCamelCase__ ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case__ :int = torch.cat([negative_prompt_embeds, prompt_embeds] ) snake_case__ :Any = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) snake_case__ :str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) snake_case__ :Any = torch.device(f'cuda:{gpu_id}' ) snake_case__ :Any = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ ,UpperCamelCase__ ) def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> str: if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) snake_case__ :Optional[Any] = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=UpperCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case__ :Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: snake_case__ :List[Any] = cpu_offload_with_hook(UpperCamelCase__ ,UpperCamelCase__ ,prev_module_hook=UpperCamelCase__ ) if self.safety_checker is not None: snake_case__ :List[Any] = cpu_offload_with_hook(self.safety_checker ,UpperCamelCase__ ,prev_module_hook=UpperCamelCase__ ) # We'll offload the last model manually. snake_case__ :List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ) -> Any: if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase__ ) def __call__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = 512 ,UpperCamelCase = 512 ,UpperCamelCase = 100 ,UpperCamelCase = 4.0 ,UpperCamelCase = 1 ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = "pil" ,UpperCamelCase = True ,) -> int: if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Optional[int] = 1 elif isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Union[str, Any] = len(UpperCamelCase__ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase__ )}' ) snake_case__ :str = self._execution_device snake_case__ :str = batch_size * num_images_per_prompt snake_case__ :int = guidance_scale > 1.0 snake_case__ :int = self._encode_prompt( UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Optional[Any] = torch.cat(UpperCamelCase__ ,dim=0 ) if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): snake_case__ :Optional[Any] = torch.cat(UpperCamelCase__ ,dim=0 ) if do_classifier_free_guidance: snake_case__ :Dict = image_embeds.repeat_interleave(UpperCamelCase__ ,dim=0 ) snake_case__ :Optional[int] = negative_image_embeds.repeat_interleave(UpperCamelCase__ ,dim=0 ) snake_case__ :List[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=UpperCamelCase__ ) self.scheduler.set_timesteps(UpperCamelCase__ ,device=UpperCamelCase__ ) snake_case__ :List[Any] = self.scheduler.timesteps snake_case__ :Any = self.unet.config.in_channels snake_case__ :Optional[Any] = get_new_h_w(UpperCamelCase__ ,UpperCamelCase__ ,self.movq_scale_factor ) # create initial latent snake_case__ :Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,self.scheduler ,) for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance snake_case__ :Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ :List[str] = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} snake_case__ :str = self.unet( sample=UpperCamelCase__ ,timestep=UpperCamelCase__ ,encoder_hidden_states=UpperCamelCase__ ,added_cond_kwargs=UpperCamelCase__ ,return_dict=UpperCamelCase__ ,)[0] if do_classifier_free_guidance: snake_case__ :int = noise_pred.split(latents.shape[1] ,dim=1 ) snake_case__ :Dict = noise_pred.chunk(2 ) snake_case__ :str = variance_pred.chunk(2 ) snake_case__ :Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case__ :Tuple = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case__ :Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case__ :Any = self.scheduler.step( UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,generator=UpperCamelCase__ ,).prev_sample # post-processing snake_case__ :int = self.movq.decode(UpperCamelCase__ ,force_not_quantize=UpperCamelCase__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: snake_case__ :Union[str, Any] = image * 0.5 + 0.5 snake_case__ :Optional[int] = image.clamp(0 ,1 ) snake_case__ :List[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": snake_case__ :Tuple = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Tuple = logging.get_logger(__name__) class _snake_case ( a__ ): _A = ["pixel_values"] def __init__( self ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PIL.Image.BICUBIC ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = 1 / 255 ,UpperCamelCase = True ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = None ,**UpperCamelCase ,) -> None: super().__init__(**lowerCamelCase_ ) snake_case__ :int = size if size is not None else {"height": 256, "width": 256} snake_case__ :Dict = get_size_dict(lowerCamelCase_ ) snake_case__ :Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case__ :Union[str, Any] = get_size_dict(lowerCamelCase_ ,param_name="crop_size" ) snake_case__ :str = do_resize snake_case__ :List[Any] = size snake_case__ :Union[str, Any] = resample snake_case__ :Any = do_center_crop snake_case__ :List[Any] = crop_size snake_case__ :Optional[Any] = do_rescale snake_case__ :Tuple = rescale_factor snake_case__ :Optional[Any] = do_normalize snake_case__ :str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ :str = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PIL.Image.BICUBIC ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :int = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( lowerCamelCase_ ,size=(size["height"], size["width"]) ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :int = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ ,size=(size["height"], size["width"]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> List[Any]: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase=None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Tuple = do_resize if do_resize is not None else self.do_resize snake_case__ :Union[str, Any] = resample if resample is not None else self.resample snake_case__ :Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ :Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case__ :List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ :List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case__ :List[str] = image_std if image_std is not None else self.image_std snake_case__ :Union[str, Any] = size if size is not None else self.size snake_case__ :Optional[int] = get_size_dict(lowerCamelCase_ ) snake_case__ :List[Any] = crop_size if crop_size is not None else self.crop_size snake_case__ :int = get_size_dict(lowerCamelCase_ ,param_name="crop_size" ) snake_case__ :Optional[int] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case__ :str = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: snake_case__ :List[str] = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images] if do_center_crop: snake_case__ :Optional[int] = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images] if do_rescale: snake_case__ :Union[str, Any] = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images] snake_case__ :Any = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] snake_case__ :Dict = {"pixel_values": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
import comet # From: unbabel-comet import torch import datasets __UpperCAmelCase : List[Any] = datasets.logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" __UpperCAmelCase : Union[str, Any] = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" __UpperCAmelCase : List[str] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="https://unbabel.github.io/COMET/html/index.html" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "sources": datasets.Value("string" ,id="sequence" ), "predictions": datasets.Value("string" ,id="sequence" ), "references": datasets.Value("string" ,id="sequence" ), } ) ,codebase_urls=["https://github.com/Unbabel/COMET"] ,reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] ,) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: if self.config_name == "default": snake_case__ :List[Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: snake_case__ :Optional[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=False ) -> Tuple: if gpus is None: snake_case__ :Optional[Any] = 1 if torch.cuda.is_available() else 0 snake_case__ :Optional[int] = {"src": sources, "mt": predictions, "ref": references} snake_case__ :str = [dict(zip(UpperCamelCase__ ,UpperCamelCase__ ) ) for t in zip(*data.values() )] snake_case__ , snake_case__ :Optional[int] = self.scorer.predict(UpperCamelCase__ ,gpus=UpperCamelCase__ ,progress_bar=UpperCamelCase__ ) return {"mean_score": mean_score, "scores": scores}
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
import sys __UpperCAmelCase : Union[str, Any] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase_ ( __snake_case : Dict = N ) -> int: '''simple docstring''' snake_case__ :int = -sys.maxsize - 1 for i in range(len(__lowerCAmelCase ) - 12 ): snake_case__ :Any = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ :Optional[int] = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class _snake_case ( _UpperCamelCase ): _A = 'van' def __init__( self ,UpperCamelCase=224 ,UpperCamelCase=3 ,UpperCamelCase=[7, 3, 3, 3] ,UpperCamelCase=[4, 2, 2, 2] ,UpperCamelCase=[64, 128, 320, 512] ,UpperCamelCase=[3, 3, 12, 3] ,UpperCamelCase=[8, 8, 4, 4] ,UpperCamelCase="gelu" ,UpperCamelCase=0.02 ,UpperCamelCase=1E-6 ,UpperCamelCase=1E-2 ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,**UpperCamelCase ,) -> int: super().__init__(**_UpperCAmelCase ) snake_case__ :Tuple = image_size snake_case__ :Optional[int] = num_channels snake_case__ :int = patch_sizes snake_case__ :int = strides snake_case__ :Tuple = hidden_sizes snake_case__ :Optional[int] = depths snake_case__ :int = mlp_ratios snake_case__ :Optional[int] = hidden_act snake_case__ :Optional[int] = initializer_range snake_case__ :Optional[int] = layer_norm_eps snake_case__ :Any = layer_scale_init_value snake_case__ :Dict = drop_path_rate snake_case__ :Tuple = dropout_rate
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0