code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from itertools import permutations def lowercase_ ( __snake_case : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case__ :int = [7, 11, 13, 17] for i, test in enumerate(__snake_case ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( __snake_case : int = 10 ) -> int: '''simple docstring''' return sum( int("".join(map(__snake_case , __snake_case ) ) ) for num in permutations(range(__snake_case ) ) if is_substring_divisible(__snake_case ) ) if __name__ == "__main__": print(F'''{solution() = }''')
57
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _snake_case ( _A ): _A = 'vivit' def __init__( self ,UpperCamelCase=224 ,UpperCamelCase=32 ,UpperCamelCase=[2, 16, 16] ,UpperCamelCase=3 ,UpperCamelCase=768 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3_072 ,UpperCamelCase="gelu_fast" ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-06 ,UpperCamelCase=True ,**UpperCamelCase ,) -> Optional[int]: snake_case__ :str = hidden_size snake_case__ :Dict = num_hidden_layers snake_case__ :str = num_attention_heads snake_case__ :str = intermediate_size snake_case__ :List[str] = hidden_act snake_case__ :Dict = hidden_dropout_prob snake_case__ :Any = attention_probs_dropout_prob snake_case__ :List[Any] = initializer_range snake_case__ :Optional[Any] = layer_norm_eps snake_case__ :Optional[Any] = image_size snake_case__ :List[str] = num_frames snake_case__ :Optional[Any] = tubelet_size snake_case__ :List[str] = num_channels snake_case__ :List[str] = qkv_bias super().__init__(**UpperCamelCase )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase : List[str] = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def lowerCAmelCase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) snake_case__ :int = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) return model def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = self.dummy_uncond_unet snake_case__ :Optional[Any] = KarrasVeScheduler() snake_case__ :Any = KarrasVePipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :str = torch.manual_seed(0 ) snake_case__ :Dict = pipe(num_inference_steps=2 ,generator=UpperCamelCase ,output_type="numpy" ).images snake_case__ :str = torch.manual_seed(0 ) snake_case__ :Union[str, Any] = pipe(num_inference_steps=2 ,generator=UpperCamelCase ,output_type="numpy" ,return_dict=UpperCamelCase )[0] snake_case__ :List[Any] = image[0, -3:, -3:, -1] snake_case__ :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ :List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = "google/ncsnpp-celebahq-256" snake_case__ :int = UNetaDModel.from_pretrained(UpperCamelCase ) snake_case__ :Tuple = KarrasVeScheduler() snake_case__ :str = KarrasVePipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Optional[Any] = torch.manual_seed(0 ) snake_case__ :Any = pipe(num_inference_steps=20 ,generator=UpperCamelCase ,output_type="numpy" ).images snake_case__ :str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case__ :str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : List[str] = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
57
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : int = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class _snake_case ( _A ): _A = 'xlm' _A = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self ,UpperCamelCase=30_145 ,UpperCamelCase=2_048 ,UpperCamelCase=12 ,UpperCamelCase=16 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=1 ,UpperCamelCase=True ,UpperCamelCase=512 ,UpperCamelCase=2_048**-0.5 ,UpperCamelCase=1E-12 ,UpperCamelCase=0.02 ,UpperCamelCase=0 ,UpperCamelCase=1 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=5 ,UpperCamelCase=True ,UpperCamelCase="first" ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=0.1 ,UpperCamelCase=5 ,UpperCamelCase=5 ,UpperCamelCase=0 ,UpperCamelCase=0 ,UpperCamelCase=2 ,UpperCamelCase=0 ,**UpperCamelCase ,) -> Tuple: snake_case__ :Optional[Any] = vocab_size snake_case__ :Tuple = emb_dim snake_case__ :Optional[int] = n_layers snake_case__ :Optional[int] = n_heads snake_case__ :Optional[int] = dropout snake_case__ :Union[str, Any] = attention_dropout snake_case__ :Dict = gelu_activation snake_case__ :str = sinusoidal_embeddings snake_case__ :Union[str, Any] = causal snake_case__ :List[Any] = asm snake_case__ :List[Any] = n_langs snake_case__ :Dict = use_lang_emb snake_case__ :List[str] = layer_norm_eps snake_case__ :Dict = bos_index snake_case__ :Optional[int] = eos_index snake_case__ :Tuple = pad_index snake_case__ :Union[str, Any] = unk_index snake_case__ :Dict = mask_index snake_case__ :List[Any] = is_encoder snake_case__ :Any = max_position_embeddings snake_case__ :Any = embed_init_std snake_case__ :Tuple = init_std snake_case__ :List[str] = summary_type snake_case__ :List[Any] = summary_use_proj snake_case__ :int = summary_activation snake_case__ :int = summary_proj_to_labels snake_case__ :Tuple = summary_first_dropout snake_case__ :Optional[Any] = start_n_top snake_case__ :int = end_n_top snake_case__ :Optional[int] = mask_token_id snake_case__ :Optional[int] = lang_id if "n_words" in kwargs: snake_case__ :int = kwargs["n_words"] super().__init__(pad_token_id=UpperCamelCase ,bos_token_id=UpperCamelCase ,**UpperCamelCase ) class _snake_case ( _A ): @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ :Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ :Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
57
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( _A , _A , unittest.TestCase ): _A = AutoencoderKL _A = 'sample' _A = 1e-2 @property def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = 4 snake_case__ :str = 3 snake_case__ :Optional[int] = (32, 32) snake_case__ :str = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase ) return {"sample": image} @property def lowerCAmelCase_ ( self ) -> str: return (3, 32, 32) @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return (3, 32, 32) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } snake_case__ :List[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass def lowerCAmelCase_ ( self ) -> List[str]: pass @unittest.skipIf(torch_device == "mps" ,"Gradient checkpointing skipped on MPS" ) def lowerCAmelCase_ ( self ) -> List[str]: # enable deterministic behavior for gradient checkpointing snake_case__ , snake_case__ :Any = self.prepare_init_args_and_inputs_for_common() snake_case__ :Optional[int] = self.model_class(**UpperCamelCase ) model.to(UpperCamelCase ) assert not model.is_gradient_checkpointing and model.training snake_case__ :Union[str, Any] = model(**UpperCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case__ :Optional[int] = torch.randn_like(UpperCamelCase ) snake_case__ :List[str] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case__ :Any = self.model_class(**UpperCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(UpperCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case__ :str = model_a(**UpperCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case__ :List[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) snake_case__ :Optional[int] = dict(model.named_parameters() ) snake_case__ :List[str] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5E-5 ) ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :Optional[int] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ,output_loading_info=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(UpperCamelCase ) snake_case__ :str = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) snake_case__ :str = model.to(UpperCamelCase ) model.eval() if torch_device == "mps": snake_case__ :int = torch.manual_seed(0 ) else: snake_case__ :Tuple = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) snake_case__ :Optional[int] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) snake_case__ :Optional[Any] = image.to(UpperCamelCase ) with torch.no_grad(): snake_case__ :Dict = model(UpperCamelCase ,sample_posterior=UpperCamelCase ,generator=UpperCamelCase ).sample snake_case__ :Tuple = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case__ :Union[str, Any] = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": snake_case__ :str = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case__ :List[str] = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(UpperCamelCase ,UpperCamelCase ,rtol=1E-2 ) ) @slow class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> str: return f'gaussian_noise_s={seed}_shape={"_".join([str(UpperCamelCase ) for s in shape] )}.npy' def lowerCAmelCase_ ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ,UpperCamelCase=0 ,UpperCamelCase=(4, 3, 512, 512) ,UpperCamelCase=False ) -> Optional[int]: snake_case__ :str = torch.floataa if fpaa else torch.floataa snake_case__ :Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(UpperCamelCase ,UpperCamelCase ) ) ).to(UpperCamelCase ).to(UpperCamelCase ) return image def lowerCAmelCase_ ( self ,UpperCamelCase="CompVis/stable-diffusion-v1-4" ,UpperCamelCase=False ) -> Dict: snake_case__ :List[Any] = "fp16" if fpaa else None snake_case__ :Dict = torch.floataa if fpaa else torch.floataa snake_case__ :List[str] = AutoencoderKL.from_pretrained( UpperCamelCase ,subfolder="vae" ,torch_dtype=UpperCamelCase ,revision=UpperCamelCase ,) model.to(UpperCamelCase ).eval() return model def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> List[Any]: if torch_device == "mps": return torch.manual_seed(UpperCamelCase ) return torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :List[Any] = self.get_sd_vae_model() snake_case__ :Tuple = self.get_sd_image(UpperCamelCase ) snake_case__ :Any = self.get_generator(UpperCamelCase ) with torch.no_grad(): snake_case__ :Tuple = model(UpperCamelCase ,generator=UpperCamelCase ,sample_posterior=UpperCamelCase ).sample assert sample.shape == image.shape snake_case__ :Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case__ :str = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.get_sd_vae_model(fpaa=UpperCamelCase ) snake_case__ :str = self.get_sd_image(UpperCamelCase ,fpaa=UpperCamelCase ) snake_case__ :List[Any] = self.get_generator(UpperCamelCase ) with torch.no_grad(): snake_case__ :str = model(UpperCamelCase ,generator=UpperCamelCase ,sample_posterior=UpperCamelCase ).sample assert sample.shape == image.shape snake_case__ :Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case__ :Optional[int] = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :Dict = self.get_sd_vae_model() snake_case__ :List[str] = self.get_sd_image(UpperCamelCase ) with torch.no_grad(): snake_case__ :str = model(UpperCamelCase ).sample assert sample.shape == image.shape snake_case__ :Union[str, Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case__ :List[Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> str: snake_case__ :Optional[Any] = self.get_sd_vae_model() snake_case__ :Union[str, Any] = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case__ :Optional[int] = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case__ :str = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case__ :Optional[int] = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :str = self.get_sd_vae_model(fpaa=UpperCamelCase ) snake_case__ :Union[str, Any] = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ,fpaa=UpperCamelCase ) with torch.no_grad(): snake_case__ :Dict = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case__ :List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case__ :Union[str, Any] = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :Union[str, Any] = self.get_sd_vae_model(fpaa=UpperCamelCase ) snake_case__ :Any = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ,fpaa=UpperCamelCase ) with torch.no_grad(): snake_case__ :str = model.decode(UpperCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case__ :List[Any] = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Any = self.get_sd_vae_model() snake_case__ :int = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case__ :Tuple = model.decode(UpperCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case__ :str = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :Tuple = self.get_sd_vae_model() snake_case__ :Any = self.get_sd_image(UpperCamelCase ) snake_case__ :Optional[int] = self.get_generator(UpperCamelCase ) with torch.no_grad(): snake_case__ :int = model.encode(UpperCamelCase ).latent_dist snake_case__ :Union[str, Any] = dist.sample(generator=UpperCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case__ :List[str] = sample[0, -1, -3:, -3:].flatten().cpu() snake_case__ :Optional[int] = torch.tensor(UpperCamelCase ) snake_case__ :str = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=UpperCamelCase )
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase : List[Any] = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowercase_ ( __snake_case : List[str] ) -> Dict: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: snake_case__ :Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith("encoder" ): snake_case__ :int = k.replace(".attn" , ".self_attn" ) snake_case__ :int = k.replace("norm1" , "self_attn_layer_norm" ) snake_case__ :List[str] = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): snake_case__ :Optional[Any] = k.replace("norm1" , "self_attn_layer_norm" ) snake_case__ :Optional[int] = k.replace("norm2" , "encoder_attn_layer_norm" ) snake_case__ :Dict = k.replace("norm3" , "final_layer_norm" ) return k def lowercase_ ( __snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case__ :str = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: snake_case__ :int = sd.pop(__snake_case ) snake_case__ :int = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd snake_case__ :str = v __UpperCAmelCase : Tuple = ["START"] @torch.no_grad() def lowercase_ ( __snake_case : int , __snake_case : Dict , __snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = torch.load(__snake_case , map_location="cpu" ) snake_case__ :int = model["model"] snake_case__ :List[Any] = BlenderbotConfig.from_json_file(__snake_case ) snake_case__ :Optional[Any] = BlenderbotForConditionalGeneration(__snake_case ) snake_case__ :List[Any] = m.model.state_dict().keys() snake_case__ :int = [] snake_case__ :List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue snake_case__ :Any = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: snake_case__ :List[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCAmelCase : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
57
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _A , unittest.TestCase ): _A = OpenAIGPTTokenizer _A = OpenAIGPTTokenizerFast _A = True _A = False def lowerCAmelCase_ ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ :str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] snake_case__ :Dict = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) snake_case__ :Dict = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] snake_case__ :Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ :Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ) as fp: fp.write(json.dumps(UpperCamelCase ) ) with open(self.merges_file ,"w" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: return "lower newer", "lower newer" def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[int] = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) snake_case__ :Tuple = "lower" snake_case__ :List[Any] = ["low", "er</w>"] snake_case__ :Optional[int] = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :List[Any] = tokens + ["<unk>"] snake_case__ :Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase=15 ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) # Simple input snake_case__ :Optional[int] = "This is a simple input" snake_case__ :Any = ["This is a simple input 1", "This is a simple input 2"] snake_case__ :str = ("This is a simple input", "This is a pair") snake_case__ :Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCamelCase ,tokenizer_r.encode ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Simple input self.assertRaises(UpperCamelCase ,tokenizer_r.encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Simple input self.assertRaises( UpperCamelCase ,tokenizer_r.batch_encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ,) # Pair input self.assertRaises(UpperCamelCase ,tokenizer_r.encode ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Pair input self.assertRaises(UpperCamelCase ,tokenizer_r.encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Pair input self.assertRaises( UpperCamelCase ,tokenizer_r.batch_encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ,) def lowerCAmelCase_ ( self ) -> Tuple: pass @require_ftfy @require_spacy @require_tokenizers class _snake_case ( _A ): pass
57
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
1
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _snake_case : _A = BlenderbotConfig _A = {} _A = 'gelu' def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=20 ,UpperCamelCase=2 ,UpperCamelCase=1 ,UpperCamelCase=0 ,) -> Any: snake_case__ :Tuple = parent snake_case__ :Dict = batch_size snake_case__ :Optional[Any] = seq_length snake_case__ :int = is_training snake_case__ :int = use_labels snake_case__ :int = vocab_size snake_case__ :Any = hidden_size snake_case__ :Union[str, Any] = num_hidden_layers snake_case__ :List[str] = num_attention_heads snake_case__ :Optional[int] = intermediate_size snake_case__ :List[Any] = hidden_dropout_prob snake_case__ :List[str] = attention_probs_dropout_prob snake_case__ :Optional[int] = max_position_embeddings snake_case__ :str = eos_token_id snake_case__ :Any = pad_token_id snake_case__ :Optional[Any] = bos_token_id def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) snake_case__ :Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) snake_case__ :Optional[int] = tf.concat([input_ids, eos_tensor] ,axis=1 ) snake_case__ :List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :Dict = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) snake_case__ :str = prepare_blenderbot_inputs_dict(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) return config, inputs_dict def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :int = TFBlenderbotModel(config=UpperCamelCase ).get_decoder() snake_case__ :Optional[int] = inputs_dict["input_ids"] snake_case__ :List[Any] = input_ids[:1, :] snake_case__ :Union[str, Any] = inputs_dict["attention_mask"][:1, :] snake_case__ :Any = inputs_dict["head_mask"] snake_case__ :List[str] = 1 # first forward pass snake_case__ :Optional[int] = model(UpperCamelCase ,attention_mask=UpperCamelCase ,head_mask=UpperCamelCase ,use_cache=UpperCamelCase ) snake_case__ , snake_case__ :Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ :str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case__ :Dict = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and snake_case__ :str = tf.concat([input_ids, next_tokens] ,axis=-1 ) snake_case__ :Any = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) snake_case__ :Union[str, Any] = model(UpperCamelCase ,attention_mask=UpperCamelCase )[0] snake_case__ :int = model(UpperCamelCase ,attention_mask=UpperCamelCase ,past_key_values=UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice snake_case__ :Optional[Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) snake_case__ :Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] snake_case__ :Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase ,UpperCamelCase ,rtol=1E-3 ) def lowercase_ ( __snake_case : str , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str]=None , __snake_case : List[str]=None , __snake_case : str=None , __snake_case : List[str]=None , __snake_case : Optional[int]=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: snake_case__ :Union[str, Any] = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ :Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ :Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ :int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ :str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _snake_case ( _A , _A , unittest.TestCase ): _A = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _A = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _A = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _A = True _A = False _A = False def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[int] = TFBlenderbotModelTester(self ) snake_case__ :int = ConfigTester(self ,config_class=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> str: snake_case__ :Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase ) @require_tokenizers @require_tf class _snake_case ( unittest.TestCase ): _A = ['My friends are cool but they eat too many carbs.'] _A = 'facebook/blenderbot-400M-distill' @cached_property def lowerCAmelCase_ ( self ) -> List[str]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase_ ( self ) -> str: snake_case__ :Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :int = self.tokenizer(self.src_text ,return_tensors="tf" ) snake_case__ :Optional[int] = self.model.generate( model_inputs.input_ids ,) snake_case__ :Any = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=UpperCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _A , unittest.TestCase ): _A = XLMTokenizer _A = False def lowerCAmelCase_ ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ :str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] snake_case__ :List[Any] = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) snake_case__ :Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] snake_case__ :Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ :Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ) as fp: fp.write(json.dumps(UpperCamelCase ) ) with open(self.merges_file ,"w" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: snake_case__ :Dict = "lower newer" snake_case__ :Optional[int] = "lower newer" return input_text, output_text def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[int] = XLMTokenizer(self.vocab_file ,self.merges_file ) snake_case__ :Tuple = "lower" snake_case__ :List[Any] = ["low", "er</w>"] snake_case__ :Tuple = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :str = tokens + ["<unk>"] snake_case__ :str = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[Any] = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) snake_case__ :Union[str, Any] = tokenizer.encode("sequence builders" ,add_special_tokens=UpperCamelCase ) snake_case__ :Optional[Any] = tokenizer.encode("multi-sequence build" ,add_special_tokens=UpperCamelCase ) snake_case__ :str = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) snake_case__ :Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ,UpperCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
57
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase_ ( __snake_case : BertModel , __snake_case : str , __snake_case : str ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") snake_case__ :List[str] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__snake_case ): os.makedirs(__snake_case ) snake_case__ :Tuple = model.state_dict() def to_tf_var_name(__snake_case : str ): for patt, repl in iter(__snake_case ): snake_case__ :Tuple = name.replace(__snake_case , __snake_case ) return F'bert/{name}' def create_tf_var(__snake_case : np.ndarray , __snake_case : str , __snake_case : tf.Session ): snake_case__ :str = tf.dtypes.as_dtype(tensor.dtype ) snake_case__ :str = tf.get_variable(dtype=__snake_case , shape=tensor.shape , name=__snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: snake_case__ :str = to_tf_var_name(__snake_case ) snake_case__ :Optional[int] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): snake_case__ :Tuple = torch_tensor.T snake_case__ :List[Any] = create_tf_var(tensor=__snake_case , name=__snake_case , session=__snake_case ) tf.keras.backend.set_value(__snake_case , __snake_case ) snake_case__ :Dict = session.run(__snake_case ) print(F'Successfully created {tf_name}: {np.allclose(__snake_case , __snake_case )}' ) snake_case__ :List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(__snake_case , os.path.join(__snake_case , model_name.replace("-" , "_" ) + ".ckpt" ) ) def lowercase_ ( __snake_case : Dict=None ) -> Tuple: '''simple docstring''' snake_case__ :int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__snake_case , required=__snake_case , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__snake_case , default=__snake_case , required=__snake_case , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__snake_case , required=__snake_case , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__snake_case , required=__snake_case , help="Directory in which to save tensorflow model" ) snake_case__ :Optional[int] = parser.parse_args(__snake_case ) snake_case__ :Any = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
57
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCAmelCase : Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowercase_ ( __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Optional[int] = {} with open(__snake_case , "r" ) as file: for line_number, line in enumerate(__snake_case ): snake_case__ :Any = line.strip() if line: snake_case__ :Optional[int] = line.split() snake_case__ :int = line_number snake_case__ :Tuple = words[0] snake_case__ :str = value return result def lowercase_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : List[Any] ) -> int: '''simple docstring''' for attribute in key.split("." ): snake_case__ :Union[str, Any] = getattr(__snake_case , __snake_case ) snake_case__ :int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__snake_case ): snake_case__ :Union[str, Any] = PARAM_MAPPING[full_name.split("." )[-1]] snake_case__ :List[str] = "param" if weight_type is not None and weight_type != "param": snake_case__ :Union[str, Any] = getattr(__snake_case , __snake_case ).shape elif weight_type is not None and weight_type == "param": snake_case__ :Optional[Any] = hf_pointer for attribute in hf_param_name.split("." ): snake_case__ :Any = getattr(__snake_case , __snake_case ) snake_case__ :Tuple = shape_pointer.shape # let's reduce dimension snake_case__ :Tuple = value[0] else: snake_case__ :Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case__ :Tuple = value elif weight_type == "weight_g": snake_case__ :Any = value elif weight_type == "weight_v": snake_case__ :Tuple = value elif weight_type == "bias": snake_case__ :Optional[int] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): snake_case__ :Dict = getattr(__snake_case , __snake_case ) snake_case__ :Tuple = value else: snake_case__ :List[str] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Optional[int] ) -> str: '''simple docstring''' snake_case__ :str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__snake_case ): snake_case__ :Optional[Any] = PARAM_MAPPING[full_name.split("." )[-1]] snake_case__ :Union[str, Any] = "param" if weight_type is not None and weight_type != "param": snake_case__ :List[str] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case__ :Optional[int] = ".".join([key, hf_param_name] ) else: snake_case__ :List[str] = key snake_case__ :Tuple = value if "lm_head" in full_key else value[0] __UpperCAmelCase : List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowercase_ ( __snake_case : str , __snake_case : str , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' snake_case__ :Tuple = False for key, mapped_key in MAPPING.items(): snake_case__ :Optional[int] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case__ :Optional[int] = True if "*" in mapped_key: snake_case__ :Dict = name.split(__snake_case )[0].split("." )[-2] snake_case__ :List[str] = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: snake_case__ :List[Any] = "weight_g" elif "weight_v" in name: snake_case__ :Optional[Any] = "weight_v" elif "bias" in name: snake_case__ :Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ :Optional[int] = "weight" else: snake_case__ :int = None if hf_dict is not None: rename_dict(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) else: set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) return is_used return is_used def lowercase_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Any ) -> int: '''simple docstring''' snake_case__ :Any = [] snake_case__ :Optional[Any] = fairseq_model.state_dict() snake_case__ :List[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case__ :Any = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) snake_case__ :int = True else: snake_case__ :str = load_wavaveca_layer(__snake_case , __snake_case , __snake_case ) if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __snake_case : int , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Dict ) -> str: '''simple docstring''' snake_case__ :Optional[Any] = full_name.split("conv_layers." )[-1] snake_case__ :Union[str, Any] = name.split("." ) snake_case__ :List[str] = int(items[0] ) snake_case__ :Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case__ :Optional[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case__ :Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case__ :Tuple = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case__ :Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase_ ( __snake_case : Dict , __snake_case : int , __snake_case : str=None , __snake_case : List[Any]=None , __snake_case : Dict=True , __snake_case : Tuple=False ) -> Optional[Any]: '''simple docstring''' if config_path is not None: snake_case__ :List[str] = WavaVecaConfig.from_pretrained(__snake_case ) else: snake_case__ :int = WavaVecaConfig() if is_seq_class: snake_case__ :str = read_txt_into_dict(__snake_case ) snake_case__ :Optional[Any] = idalabel snake_case__ :Optional[int] = WavaVecaForSequenceClassification(__snake_case ) snake_case__ :List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) feature_extractor.save_pretrained(__snake_case ) elif is_finetuned: if dict_path: snake_case__ :Tuple = Dictionary.load(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ :str = target_dict.pad_index snake_case__ :Tuple = target_dict.bos_index snake_case__ :Union[str, Any] = target_dict.eos_index snake_case__ :Union[str, Any] = len(target_dict.symbols ) snake_case__ :List[str] = os.path.join(__snake_case , "vocab.json" ) if not os.path.isdir(__snake_case ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) snake_case__ :Any = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ :Optional[Any] = 0 snake_case__ :str = 1 with open(__snake_case , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__snake_case , ) snake_case__ :int = True if config.feat_extract_norm == "layer" else False snake_case__ :Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) snake_case__ :List[Any] = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) snake_case__ :Tuple = WavaVecaForCTC(__snake_case ) else: snake_case__ :List[str] = WavaVecaForPreTraining(__snake_case ) if is_finetuned or is_seq_class: snake_case__ , snake_case__ , snake_case__ :Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: snake_case__ :Optional[Any] = argparse.Namespace(task="audio_pretraining" ) snake_case__ :Optional[Any] = fairseq.tasks.setup_task(__snake_case ) snake_case__ , snake_case__ , snake_case__ :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__snake_case ) snake_case__ :Any = model[0].eval() recursively_load_weights(__snake_case , __snake_case , not is_finetuned ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCAmelCase : Optional[int] = parser.parse_args() __UpperCAmelCase : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : str = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
1
from __future__ import annotations from typing import Any class _snake_case : def __init__( self ,UpperCamelCase = 6 ) -> None: snake_case__ :Node | None = None snake_case__ :Node | None = None self.create_linked_list(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> None: snake_case__ :List[Any] = Node() snake_case__ :Optional[Any] = current_node snake_case__ :Dict = current_node snake_case__ :str = current_node for _ in range(1 ,UpperCamelCase ): snake_case__ :Any = Node() snake_case__ :List[Any] = current_node snake_case__ :List[Any] = previous_node snake_case__ :List[Any] = current_node snake_case__ :Tuple = self.front snake_case__ :Dict = previous_node def lowerCAmelCase_ ( self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCAmelCase_ ( self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def lowerCAmelCase_ ( self ,UpperCamelCase ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): snake_case__ :Union[str, Any] = self.rear.next if self.rear: snake_case__ :int = data def lowerCAmelCase_ ( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: snake_case__ :Tuple = self.front.data snake_case__ :List[str] = None return data snake_case__ :Tuple = self.front snake_case__ :Optional[Any] = old_front.next snake_case__ :str = old_front.data snake_case__ :Dict = None return data def lowerCAmelCase_ ( self ) -> None: if self.is_empty(): raise Exception("Empty Queue" ) def lowerCAmelCase_ ( self ) -> None: if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class _snake_case : def __init__( self ) -> None: snake_case__ :Any | None = None snake_case__ :Node | None = None snake_case__ :Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
57
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase_ ( __snake_case : int ) -> Any: '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(__snake_case , "_dynamo" ): return False return isinstance(__snake_case , torch._dynamo.eval_frame.OptimizedModule ) def lowercase_ ( __snake_case : Optional[Any] , __snake_case : bool = True ) -> Optional[int]: '''simple docstring''' snake_case__ :List[str] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) snake_case__ :List[str] = is_compiled_module(__snake_case ) if is_compiled: snake_case__ :Tuple = model snake_case__ :Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__snake_case , __snake_case ): snake_case__ :List[str] = model.module if not keep_fpaa_wrapper: snake_case__ :Optional[Any] = getattr(__snake_case , "forward" ) snake_case__ :Tuple = model.__dict__.pop("_original_forward" , __snake_case ) if original_forward is not None: while hasattr(__snake_case , "__wrapped__" ): snake_case__ :Tuple = forward.__wrapped__ if forward == original_forward: break snake_case__ :Dict = forward if getattr(__snake_case , "_converted_to_transformer_engine" , __snake_case ): convert_model(__snake_case , to_transformer_engine=__snake_case ) if is_compiled: snake_case__ :Union[str, Any] = model snake_case__ :str = compiled_model return model def lowercase_ ( ) -> Optional[int]: '''simple docstring''' PartialState().wait_for_everyone() def lowercase_ ( __snake_case : List[str] , __snake_case : Tuple ) -> List[str]: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(__snake_case , __snake_case ) elif PartialState().local_process_index == 0: torch.save(__snake_case , __snake_case ) @contextmanager def lowercase_ ( **__snake_case : str ) -> List[Any]: '''simple docstring''' for key, value in kwargs.items(): snake_case__ :Dict = str(__snake_case ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase_ ( __snake_case : Dict ) -> List[str]: '''simple docstring''' if not hasattr(__snake_case , "__qualname__" ) and not hasattr(__snake_case , "__name__" ): snake_case__ :List[Any] = getattr(__snake_case , "__class__" , __snake_case ) if hasattr(__snake_case , "__qualname__" ): return obj.__qualname__ if hasattr(__snake_case , "__name__" ): return obj.__name__ return str(__snake_case ) def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key, value in source.items(): if isinstance(__snake_case , __snake_case ): snake_case__ :str = destination.setdefault(__snake_case , {} ) merge_dicts(__snake_case , __snake_case ) else: snake_case__ :Any = value return destination def lowercase_ ( __snake_case : int = None ) -> bool: '''simple docstring''' if port is None: snake_case__ :Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
57
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowercase_ ( __snake_case : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case__ :str = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def lowercase_ ( __snake_case : Optional[int] ) -> str: '''simple docstring''' snake_case__ , snake_case__ :Optional[int] = emb.weight.shape snake_case__ :Any = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) snake_case__ :Dict = emb.weight.data return lin_layer def lowercase_ ( __snake_case : Optional[int] , __snake_case : Any=None ) -> List[Any]: '''simple docstring''' snake_case__ :Any = {} for old_key in state_dict.keys(): snake_case__ :Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: snake_case__ :Union[str, Any] = key.replace("moe_layer.experts.0" , F'ffn.experts.expert_{expert_idx}' ) else: snake_case__ :Dict = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: snake_case__ :Optional[int] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: snake_case__ :int = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: snake_case__ :Union[str, Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: snake_case__ :List[Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: snake_case__ :Optional[Any] = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: snake_case__ :Optional[int] = key.replace("final_layer_norm" , "ff_layer_norm" ) snake_case__ :Optional[int] = state_dict[old_key] return new_dict def lowercase_ ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : str = WEIGHTS_NAME ) -> List[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = [] snake_case__ :Union[str, Any] = 0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): snake_case__ :Optional[Any] = switch_checkpoint_path + F'-rank-{expert}.pt' if os.path.isfile(__snake_case ): snake_case__ :Optional[int] = torch.load(__snake_case )["model"] remove_ignore_keys_(__snake_case ) snake_case__ :Dict = rename_fairseq_keys(__snake_case , __snake_case ) snake_case__ :Optional[int] = os.path.join( __snake_case , weights_name.replace(".bin" , F'-{len(__snake_case )+1:05d}-of-???.bin' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block snake_case__ :List[Any] = os.path.join(__snake_case , weights_name.replace(".bin" , F'-{len(__snake_case )+1:05d}-of-???.bin' ) ) snake_case__ :List[Any] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__snake_case ) snake_case__ :Optional[Any] = rename_fairseq_keys(__snake_case , __snake_case ) snake_case__ :int = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: snake_case__ :int = os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index snake_case__ :Any = {} for idx, shard in enumerate(__snake_case ): snake_case__ :Optional[Any] = weights_name.replace(".bin" , F'-{idx+1:05d}-of-{len(__snake_case ):05d}.bin' ) snake_case__ :List[Any] = os.path.join(__snake_case , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: snake_case__ :Optional[int] = shard_file # Add the metadata snake_case__ :Tuple = {"total_size": total_size} snake_case__ :Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__snake_case , __snake_case ) , "w" , encoding="utf-8" ) as f: snake_case__ :List[Any] = json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + "\n" f.write(__snake_case ) return metadata, index if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCAmelCase : Optional[int] = parser.parse_args() __UpperCAmelCase , __UpperCAmelCase : Any = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __UpperCAmelCase : int = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCAmelCase : List[Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
57
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( _A , _A , _A , unittest.TestCase ): _A = StableDiffusionInstructPixaPixPipeline _A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} _A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _A = IMAGE_TO_IMAGE_IMAGE_PARAMS _A = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ :Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=8 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) snake_case__ :Union[str, Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase ) torch.manual_seed(0 ) snake_case__ :Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) snake_case__ :Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) snake_case__ :Optional[Any] = CLIPTextModel(UpperCamelCase ) snake_case__ :Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case__ :Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> Optional[int]: snake_case__ :Tuple = floats_tensor((1, 3, 32, 32) ,rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ :Tuple = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ :Union[str, Any] = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ) if str(UpperCamelCase ).startswith("mps" ): snake_case__ :Dict = torch.manual_seed(UpperCamelCase ) else: snake_case__ :List[Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Union[str, Any] = self.get_dummy_components() snake_case__ :List[Any] = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) snake_case__ :int = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Optional[Any] = sd_pipe(**UpperCamelCase ).images snake_case__ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ :Union[str, Any] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Any = self.get_dummy_components() snake_case__ :List[Any] = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) snake_case__ :Optional[Any] = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Optional[int] = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :List[str] = "french fries" snake_case__ :int = sd_pipe(**UpperCamelCase ,negative_prompt=UpperCamelCase ) snake_case__ :Optional[int] = output.images snake_case__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ :Optional[int] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :List[Any] = self.get_dummy_components() snake_case__ :Optional[int] = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) snake_case__ :List[Any] = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Tuple = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :int = [inputs["prompt"]] * 2 snake_case__ :Optional[Any] = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 snake_case__ :Union[str, Any] = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ).to(UpperCamelCase ) snake_case__ :Tuple = image / 2 + 0.5 snake_case__ :Tuple = image.permute(0 ,3 ,1 ,2 ) snake_case__ :Dict = image.repeat(2 ,1 ,1 ,1 ) snake_case__ :List[Any] = sd_pipe(**UpperCamelCase ).images snake_case__ :Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) snake_case__ :str = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Any: snake_case__ :int = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Dict = self.get_dummy_components() snake_case__ :Any = EulerAncestralDiscreteScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ) snake_case__ :Tuple = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) snake_case__ :str = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Dict = sd_pipe(**UpperCamelCase ).images snake_case__ :int = image[0, -3:, -3:, -1] snake_case__ :Optional[int] = [round(UpperCamelCase ,4 ) for x in image_slice.flatten().tolist()] print(",".join([str(UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) snake_case__ :str = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[Any] = self.get_dummy_components() snake_case__ :List[Any] = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) snake_case__ :List[Any] = VaeImageProcessor(do_resize=UpperCamelCase ,do_normalize=UpperCamelCase ) snake_case__ :Any = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase ,input_image_type="pt" ) )[0] snake_case__ :Dict = components["vae"] snake_case__ :Optional[Any] = self.get_dummy_inputs_by_type(UpperCamelCase ,input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ :List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ :Dict = pipe(**UpperCamelCase )[0] snake_case__ :str = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase ,1E-4 ,"passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> Optional[int]: snake_case__ :List[Any] = torch.manual_seed(UpperCamelCase ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) snake_case__ :List[Any] = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" ,safety_checker=UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ :int = self.get_inputs() snake_case__ :List[str] = pipe(**UpperCamelCase ).images snake_case__ :Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ :Dict = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" ,safety_checker=UpperCamelCase ) snake_case__ :List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ :Optional[Any] = self.get_inputs() snake_case__ :Dict = pipe(**UpperCamelCase ).images snake_case__ :Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ :Optional[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :str = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" ,safety_checker=UpperCamelCase ) snake_case__ :Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ :Tuple = self.get_inputs() snake_case__ :str = pipe(**UpperCamelCase ).images snake_case__ :Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) snake_case__ :List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = 0 def callback_fn(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ :Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ :Any = latents[0, -3:, -3:, -1] snake_case__ :Optional[Any] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: snake_case__ :Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) snake_case__ :List[str] = latents[0, -3:, -3:, -1] snake_case__ :Tuple = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 snake_case__ :Any = False snake_case__ :Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" ,safety_checker=UpperCamelCase ,torch_dtype=torch.floataa ) snake_case__ :Optional[Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ :Dict = self.get_inputs() pipe(**UpperCamelCase ,callback=UpperCamelCase ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase_ ( self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ :int = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" ,safety_checker=UpperCamelCase ,torch_dtype=torch.floataa ) snake_case__ :int = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ :Any = self.get_inputs() snake_case__ :int = pipe(**UpperCamelCase ) snake_case__ :Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ :Optional[int] = inputs["image"].resize((504, 504) ) snake_case__ :List[Any] = "timbrooks/instruct-pix2pix" snake_case__ :List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase ,safety_checker=UpperCamelCase ,) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() snake_case__ :Optional[int] = pipe(**UpperCamelCase ) snake_case__ :Any = output.images[0] snake_case__ :Union[str, Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) snake_case__ :Optional[int] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
57
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=[1, 1, 2] ,UpperCamelCase=1 ,UpperCamelCase=32 ,UpperCamelCase=4 ,UpperCamelCase=8 ,UpperCamelCase=37 ,UpperCamelCase="gelu_new" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=0.0 ,UpperCamelCase=512 ,UpperCamelCase=3 ,UpperCamelCase=0.02 ,UpperCamelCase=3 ,UpperCamelCase=4 ,UpperCamelCase=None ,UpperCamelCase=False ,) -> List[Any]: snake_case__ :Optional[Any] = parent snake_case__ :List[str] = batch_size snake_case__ :Optional[int] = seq_length snake_case__ :int = is_training snake_case__ :Union[str, Any] = use_input_mask snake_case__ :Any = use_token_type_ids snake_case__ :int = use_labels snake_case__ :List[Any] = vocab_size snake_case__ :str = block_sizes snake_case__ :Union[str, Any] = num_decoder_layers snake_case__ :str = d_model snake_case__ :str = n_head snake_case__ :Union[str, Any] = d_head snake_case__ :List[Any] = d_inner snake_case__ :Any = hidden_act snake_case__ :Tuple = hidden_dropout snake_case__ :List[Any] = attention_dropout snake_case__ :Any = activation_dropout snake_case__ :Optional[int] = max_position_embeddings snake_case__ :List[str] = type_vocab_size snake_case__ :Tuple = 2 snake_case__ :Any = num_labels snake_case__ :str = num_choices snake_case__ :Union[str, Any] = scope snake_case__ :str = initializer_std # Used in the tests to check the size of the first attention layer snake_case__ :List[str] = n_head # Used in the tests to check the size of the first hidden state snake_case__ :Optional[int] = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case__ :Any = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case__ :Any = self.num_hidden_layers + 2 def lowerCAmelCase_ ( self ) -> str: snake_case__ :Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :Tuple = None if self.use_input_mask: snake_case__ :Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :Any = None if self.use_token_type_ids: snake_case__ :Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ :Dict = None snake_case__ :Union[str, Any] = None snake_case__ :Dict = None if self.use_labels: snake_case__ :Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ :List[str] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ :List[Any] = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> List[Any]: snake_case__ :Any = TFFunnelModel(config=UpperCamelCase ) snake_case__ :List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ :Any = model(UpperCamelCase ) snake_case__ :Optional[Any] = [input_ids, input_mask] snake_case__ :Optional[Any] = model(UpperCamelCase ) snake_case__ :Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) snake_case__ :Dict = False snake_case__ :Optional[Any] = TFFunnelModel(config=UpperCamelCase ) snake_case__ :str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) snake_case__ :List[Any] = False snake_case__ :Optional[Any] = TFFunnelModel(config=UpperCamelCase ) snake_case__ :Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Tuple: snake_case__ :List[Any] = TFFunnelBaseModel(config=UpperCamelCase ) snake_case__ :Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ :Optional[int] = model(UpperCamelCase ) snake_case__ :List[str] = [input_ids, input_mask] snake_case__ :Optional[Any] = model(UpperCamelCase ) snake_case__ :Any = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) snake_case__ :Optional[Any] = False snake_case__ :Optional[int] = TFFunnelBaseModel(config=UpperCamelCase ) snake_case__ :List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) snake_case__ :Dict = False snake_case__ :List[Any] = TFFunnelBaseModel(config=UpperCamelCase ) snake_case__ :Dict = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> List[Any]: snake_case__ :Tuple = TFFunnelForPreTraining(config=UpperCamelCase ) snake_case__ :int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ :Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Any: snake_case__ :List[Any] = TFFunnelForMaskedLM(config=UpperCamelCase ) snake_case__ :List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ :Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> int: snake_case__ :Union[str, Any] = self.num_labels snake_case__ :Tuple = TFFunnelForSequenceClassification(config=UpperCamelCase ) snake_case__ :Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ :List[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> List[str]: snake_case__ :Dict = self.num_choices snake_case__ :List[str] = TFFunnelForMultipleChoice(config=UpperCamelCase ) snake_case__ :Tuple = tf.tile(tf.expand_dims(UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) snake_case__ :str = tf.tile(tf.expand_dims(UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) snake_case__ :Dict = tf.tile(tf.expand_dims(UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) snake_case__ :Tuple = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case__ :Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> int: snake_case__ :Any = self.num_labels snake_case__ :Tuple = TFFunnelForTokenClassification(config=UpperCamelCase ) snake_case__ :int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ :str = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Union[str, Any]: snake_case__ :List[str] = TFFunnelForQuestionAnswering(config=UpperCamelCase ) snake_case__ :Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ :Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :str = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) :str = config_and_inputs snake_case__ :Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _snake_case ( _A , _A , unittest.TestCase ): _A = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _A = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = TFFunnelModelTester(self ) snake_case__ :Optional[Any] = ConfigTester(self ,config_class=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) @require_tf class _snake_case ( _A , unittest.TestCase ): _A = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _A = False _A = False def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[str] = TFFunnelModelTester(self ,base=UpperCamelCase ) snake_case__ :str = ConfigTester(self ,config_class=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase )
57
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __UpperCAmelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase : Tuple = logging.getLogger() def lowercase_ ( ) -> Dict: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) snake_case__ :Tuple = parser.parse_args() return args.f def lowercase_ ( __snake_case : Any , __snake_case : Any="eval" ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Any = os.path.join(__snake_case , F'{split}_results.json' ) if os.path.exists(__snake_case ): with open(__snake_case , "r" ) as f: return json.load(__snake_case ) raise ValueError(F'can\'t find {path}' ) __UpperCAmelCase : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _snake_case ( _A ): def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[int] = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_flax_glue.main() snake_case__ :Optional[int] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) @slow def lowerCAmelCase_ ( self ) -> str: snake_case__ :Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_clm_flax.main() snake_case__ :Tuple = get_results(UpperCamelCase ) self.assertLess(result["eval_perplexity"] ,100 ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[Any] = self.get_auto_remove_tmp_dir() snake_case__ :List[Any] = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_summarization_flax.main() snake_case__ :str = get_results(UpperCamelCase ,split="test" ) self.assertGreaterEqual(result["test_rouge1"] ,10 ) self.assertGreaterEqual(result["test_rouge2"] ,2 ) self.assertGreaterEqual(result["test_rougeL"] ,7 ) self.assertGreaterEqual(result["test_rougeLsum"] ,7 ) @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_mlm_flax.main() snake_case__ :Optional[Any] = get_results(UpperCamelCase ) self.assertLess(result["eval_perplexity"] ,42 ) @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Dict = self.get_auto_remove_tmp_dir() snake_case__ :Any = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_ta_mlm_flax.main() snake_case__ :Union[str, Any] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] ,0.42 ) @slow def lowerCAmelCase_ ( self ) -> Dict: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case__ :Any = 7 if get_gpu_count() > 1 else 2 snake_case__ :Dict = self.get_auto_remove_tmp_dir() snake_case__ :Any = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_flax_ner.main() snake_case__ :List[str] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) self.assertGreaterEqual(result["eval_f1"] ,0.3 ) @slow def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Any = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_qa.main() snake_case__ :Optional[int] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_f1"] ,30 ) self.assertGreaterEqual(result["eval_exact"] ,30 )
57
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=2 ,UpperCamelCase=99 ,UpperCamelCase=0 ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=2 ,UpperCamelCase=0.02 ,UpperCamelCase=2 ,UpperCamelCase=4 ,UpperCamelCase="last" ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=0 ,) -> int: snake_case__ :int = parent snake_case__ :Optional[Any] = batch_size snake_case__ :Union[str, Any] = seq_length snake_case__ :Optional[int] = is_training snake_case__ :Any = use_input_lengths snake_case__ :Any = use_token_type_ids snake_case__ :List[Any] = use_labels snake_case__ :List[Any] = gelu_activation snake_case__ :Union[str, Any] = sinusoidal_embeddings snake_case__ :List[str] = causal snake_case__ :str = asm snake_case__ :Union[str, Any] = n_langs snake_case__ :Union[str, Any] = vocab_size snake_case__ :Optional[Any] = n_special snake_case__ :List[str] = hidden_size snake_case__ :Dict = num_hidden_layers snake_case__ :Tuple = num_attention_heads snake_case__ :Dict = hidden_dropout_prob snake_case__ :List[Any] = attention_probs_dropout_prob snake_case__ :List[Any] = max_position_embeddings snake_case__ :Optional[Any] = type_sequence_label_size snake_case__ :Optional[int] = initializer_range snake_case__ :List[str] = num_labels snake_case__ :str = num_choices snake_case__ :Optional[Any] = summary_type snake_case__ :List[Any] = use_proj snake_case__ :Optional[int] = scope snake_case__ :Any = bos_token_id def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :str = None if self.use_input_lengths: snake_case__ :Dict = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case__ :Union[str, Any] = None if self.use_token_type_ids: snake_case__ :Any = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) snake_case__ :Optional[int] = None snake_case__ :Optional[Any] = None snake_case__ :List[str] = None if self.use_labels: snake_case__ :List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ :Union[str, Any] = ids_tensor([self.batch_size] ,2 ).float() snake_case__ :Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ :Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Any: snake_case__ :Dict = XLMModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Optional[int] = model(UpperCamelCase ,lengths=UpperCamelCase ,langs=UpperCamelCase ) snake_case__ :Any = model(UpperCamelCase ,langs=UpperCamelCase ) snake_case__ :str = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> int: snake_case__ :Dict = XLMWithLMHeadModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[Any] = model(UpperCamelCase ,token_type_ids=UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Tuple: snake_case__ :Any = XLMForQuestionAnsweringSimple(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[Any] = model(UpperCamelCase ) snake_case__ :Any = model(UpperCamelCase ,start_positions=UpperCamelCase ,end_positions=UpperCamelCase ) snake_case__ :List[str] = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Any: snake_case__ :List[str] = XLMForQuestionAnswering(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = model(UpperCamelCase ) snake_case__ :Union[str, Any] = model( UpperCamelCase ,start_positions=UpperCamelCase ,end_positions=UpperCamelCase ,cls_index=UpperCamelCase ,is_impossible=UpperCamelCase ,p_mask=UpperCamelCase ,) snake_case__ :Any = model( UpperCamelCase ,start_positions=UpperCamelCase ,end_positions=UpperCamelCase ,cls_index=UpperCamelCase ,is_impossible=UpperCamelCase ,) ((snake_case__) , ) :str = result_with_labels.to_tuple() snake_case__ :Any = model(UpperCamelCase ,start_positions=UpperCamelCase ,end_positions=UpperCamelCase ) ((snake_case__) , ) :List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Union[str, Any]: snake_case__ :List[str] = XLMForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = model(UpperCamelCase ) snake_case__ :int = model(UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Optional[int]: snake_case__ :Optional[int] = self.num_labels snake_case__ :List[str] = XLMForTokenClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :int = model(UpperCamelCase ,attention_mask=UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> int: snake_case__ :str = self.num_choices snake_case__ :Union[str, Any] = XLMForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ :List[str] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ :List[str] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ :Optional[int] = model( UpperCamelCase ,attention_mask=UpperCamelCase ,token_type_ids=UpperCamelCase ,labels=UpperCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) :int = config_and_inputs snake_case__ :Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class _snake_case ( _A , _A , _A , unittest.TestCase ): _A = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _A = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=False ) -> int: snake_case__ :Tuple = super()._prepare_for_class(UpperCamelCase ,UpperCamelCase ,return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case__ :Optional[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=UpperCamelCase ) snake_case__ :List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=UpperCamelCase ) return inputs_dict def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Any = XLMModelTester(self ) snake_case__ :Union[str, Any] = ConfigTester(self ,config_class=UpperCamelCase ,emb_dim=37 ) def lowerCAmelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> str: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=False ,UpperCamelCase=1 ) -> Tuple: self.assertIsInstance(UpperCamelCase ,UpperCamelCase ) self.assertListEqual( [isinstance(UpperCamelCase ,UpperCamelCase ) for iter_attentions in attentions] ,[True] * len(UpperCamelCase ) ) self.assertEqual(len(UpperCamelCase ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCamelCase ): # adds PAD dummy token snake_case__ :List[str] = min_length + idx + 1 snake_case__ :Dict = min_length + idx + 1 snake_case__ :List[str] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(UpperCamelCase ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=False ,UpperCamelCase=1 ) -> Any: self.assertIsInstance(UpperCamelCase ,UpperCamelCase ) self.assertListEqual( [isinstance(UpperCamelCase ,UpperCamelCase ) for iter_hidden_states in hidden_states] ,[True] * len(UpperCamelCase ) ,) self.assertEqual(len(UpperCamelCase ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCamelCase ): # adds PAD dummy token snake_case__ :Dict = min_length + idx + 1 snake_case__ :str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(UpperCamelCase ) ,) pass @slow def lowerCAmelCase_ ( self ) -> str: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :str = XLMModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_torch class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[int] = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(UpperCamelCase ) snake_case__ :Optional[int] = torch.tensor([[14, 447]] ,dtype=torch.long ,device=UpperCamelCase ) # the president snake_case__ :str = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case__ :Optional[Any] = model.generate(UpperCamelCase ,do_sample=UpperCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,UpperCamelCase )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=100 ,UpperCamelCase=13 ,UpperCamelCase=30 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=10 ,UpperCamelCase=0.02 ,UpperCamelCase=3 ,) -> Optional[int]: snake_case__ :Optional[int] = parent snake_case__ :Any = vocab_size snake_case__ :Any = batch_size snake_case__ :Union[str, Any] = image_size snake_case__ :Dict = patch_size snake_case__ :Optional[Any] = num_channels snake_case__ :Optional[int] = is_training snake_case__ :Optional[Any] = use_labels snake_case__ :Union[str, Any] = hidden_size snake_case__ :Optional[Any] = num_hidden_layers snake_case__ :Optional[int] = num_attention_heads snake_case__ :str = intermediate_size snake_case__ :int = hidden_act snake_case__ :str = hidden_dropout_prob snake_case__ :List[str] = attention_probs_dropout_prob snake_case__ :Optional[Any] = type_sequence_label_size snake_case__ :int = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ :Optional[int] = (image_size // patch_size) ** 2 snake_case__ :int = num_patches + 1 def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :Any = None if self.use_labels: snake_case__ :int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :Tuple = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :Union[str, Any] = FlaxBeitModel(config=UpperCamelCase ) snake_case__ :Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :Optional[Any] = FlaxBeitForMaskedImageModeling(config=UpperCamelCase ) snake_case__ :Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Any = self.type_sequence_label_size snake_case__ :List[Any] = FlaxBeitForImageClassification(config=UpperCamelCase ) snake_case__ :Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ :str = 1 snake_case__ :Optional[Any] = FlaxBeitForImageClassification(UpperCamelCase ) snake_case__ :List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :Optional[Any] = model(UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Any = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) :List[Any] = config_and_inputs snake_case__ :str = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _snake_case ( _A , unittest.TestCase ): _A = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> None: snake_case__ :List[str] = FlaxBeitModelTester(self ) snake_case__ :List[Any] = ConfigTester(self ,config_class=UpperCamelCase ,has_text_modality=UpperCamelCase ,hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Dict: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ , snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Optional[int] = model_class(UpperCamelCase ) snake_case__ :int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Dict = [*signature.parameters.keys()] snake_case__ :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ , snake_case__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ :List[Any] = self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = model_class(UpperCamelCase ) @jax.jit def model_jitted(UpperCamelCase ,**UpperCamelCase ): return model(pixel_values=UpperCamelCase ,**UpperCamelCase ) with self.subTest("JIT Enabled" ): snake_case__ :Optional[Any] = model_jitted(**UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case__ :Optional[int] = model_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase ,UpperCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Dict: for model_class_name in self.all_model_classes: snake_case__ :str = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) snake_case__ :List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCamelCase ) def lowercase_ ( ) -> List[str]: '''simple docstring''' snake_case__ :Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Any: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :int = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) snake_case__ :Any = self.default_image_processor snake_case__ :Union[str, Any] = prepare_img() snake_case__ :Any = image_processor(images=UpperCamelCase ,return_tensors="np" ).pixel_values # prepare bool_masked_pos snake_case__ :Any = np.ones((1, 196) ,dtype=UpperCamelCase ) # forward pass snake_case__ :Optional[int] = model(pixel_values=UpperCamelCase ,bool_masked_pos=UpperCamelCase ) snake_case__ :int = outputs.logits # verify the logits snake_case__ :Optional[Any] = (1, 196, 8_192) self.assertEqual(logits.shape ,UpperCamelCase ) snake_case__ :Any = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,UpperCamelCase ,atol=1E-2 ) ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[int] = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) snake_case__ :Optional[int] = self.default_image_processor snake_case__ :List[str] = prepare_img() snake_case__ :str = image_processor(images=UpperCamelCase ,return_tensors="np" ) # forward pass snake_case__ :Dict = model(**UpperCamelCase ) snake_case__ :Optional[Any] = outputs.logits # verify the logits snake_case__ :List[str] = (1, 1_000) self.assertEqual(logits.shape ,UpperCamelCase ) snake_case__ :Dict = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] ,UpperCamelCase ,atol=1E-4 ) ) snake_case__ :Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Dict = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) snake_case__ :Union[str, Any] = self.default_image_processor snake_case__ :List[Any] = prepare_img() snake_case__ :Dict = image_processor(images=UpperCamelCase ,return_tensors="np" ) # forward pass snake_case__ :Any = model(**UpperCamelCase ) snake_case__ :List[Any] = outputs.logits # verify the logits snake_case__ :int = (1, 21_841) self.assertEqual(logits.shape ,UpperCamelCase ) snake_case__ :List[Any] = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] ,UpperCamelCase ,atol=1E-4 ) ) snake_case__ :Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() ,UpperCamelCase )
57
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _snake_case ( unittest.TestCase ): _A = JukeboxTokenizer _A = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowerCAmelCase_ ( self ) -> str: import torch snake_case__ :Dict = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) snake_case__ :int = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case__ :List[str] = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCAmelCase_ ( self ) -> Dict: import torch snake_case__ :Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) snake_case__ :Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case__ :Optional[int] = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
from collections import defaultdict def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' snake_case__ :List[Any] = 1 snake_case__ :int = True for v in tree[start]: if v not in visited: ret += dfs(__snake_case ) if ret % 2 == 0: cuts.append(__snake_case ) return ret def lowercase_ ( ) -> Optional[int]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase : Tuple = 1_0, 9 __UpperCAmelCase : Tuple = defaultdict(list) __UpperCAmelCase : dict[int, bool] = {} __UpperCAmelCase : list[int] = [] __UpperCAmelCase : int = 0 __UpperCAmelCase : str = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
57
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __UpperCAmelCase : int = datasets.utils.logging.get_logger(__name__) __UpperCAmelCase : List[Any] = ["names", "prefix"] __UpperCAmelCase : Dict = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __UpperCAmelCase : Optional[int] = ["encoding_errors", "on_bad_lines"] __UpperCAmelCase : Optional[int] = ["date_format"] @dataclass class _snake_case ( datasets.BuilderConfig ): _A = "," _A = None _A = "infer" _A = None _A = None _A = None _A = None _A = None _A = True _A = None _A = None _A = None _A = None _A = False _A = None _A = None _A = None _A = True _A = True _A = False _A = True _A = None _A = "." _A = None _A = '"' _A = 0 _A = None _A = None _A = None _A = None _A = True _A = True _A = 0 _A = True _A = False _A = None _A = 10000 _A = None _A = "strict" _A = "error" _A = None def lowerCAmelCase_ ( self ) -> str: if self.delimiter is not None: snake_case__ :str = self.delimiter if self.column_names is not None: snake_case__ :List[str] = self.column_names @property def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,UpperCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _snake_case ( datasets.ArrowBasedBuilder ): _A = CsvConfig def lowerCAmelCase_ ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case__ :Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase ,(str, list, tuple) ): snake_case__ :Dict = data_files if isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :Dict = [files] snake_case__ :Dict = [dl_manager.iter_files(UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"files": files} )] snake_case__ :List[Any] = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :int = [files] snake_case__ :Union[str, Any] = [dl_manager.iter_files(UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase ,gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase_ ( self ,UpperCamelCase ) -> pa.Table: if self.config.features is not None: snake_case__ :str = self.config.features.arrow_schema if all(not require_storage_cast(UpperCamelCase ) for feature in self.config.features.values() ): # cheaper cast snake_case__ :List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=UpperCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case__ :Optional[int] = table_cast(UpperCamelCase ,UpperCamelCase ) return pa_table def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[int]: snake_case__ :Dict = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case__ :str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCamelCase ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase ) ): snake_case__ :Optional[Any] = pd.read_csv(UpperCamelCase ,iterator=UpperCamelCase ,dtype=UpperCamelCase ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCamelCase ): snake_case__ :Union[str, Any] = pa.Table.from_pandas(UpperCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(UpperCamelCase )}: {e}' ) raise
57
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _snake_case : _A = XGLMConfig _A = {} _A = 'gelu' def __init__( self ,UpperCamelCase ,UpperCamelCase=14 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=0.02 ,) -> Optional[int]: snake_case__ :List[str] = parent snake_case__ :List[Any] = batch_size snake_case__ :Optional[Any] = seq_length snake_case__ :Any = is_training snake_case__ :List[str] = use_input_mask snake_case__ :List[Any] = use_labels snake_case__ :str = vocab_size snake_case__ :Dict = d_model snake_case__ :str = num_hidden_layers snake_case__ :Optional[int] = num_attention_heads snake_case__ :List[str] = ffn_dim snake_case__ :Any = activation_function snake_case__ :Union[str, Any] = activation_dropout snake_case__ :List[str] = attention_dropout snake_case__ :Optional[int] = max_position_embeddings snake_case__ :List[str] = initializer_range snake_case__ :Any = None snake_case__ :str = 0 snake_case__ :List[Any] = 2 snake_case__ :List[Any] = 1 def lowerCAmelCase_ ( self ) -> int: return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) snake_case__ :Union[str, Any] = None if self.use_input_mask: snake_case__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :Union[str, Any] = self.get_config() snake_case__ :Tuple = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase_ ( self ) -> Dict: return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=UpperCamelCase ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=UpperCamelCase ,) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Union[str, Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) :List[str] = config_and_inputs snake_case__ :List[Any] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _snake_case ( _A , _A , unittest.TestCase ): _A = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _A = (TFXGLMForCausalLM,) if is_tf_available() else () _A = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[Any] = TFXGLMModelTester(self ) snake_case__ :Optional[int] = ConfigTester(self ,config_class=UpperCamelCase ,n_embd=37 ) def lowerCAmelCase_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @slow def lowerCAmelCase_ ( self ) -> List[Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :List[Any] = TFXGLMModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def lowerCAmelCase_ ( self ) -> List[str]: super().test_resize_token_embeddings() @require_tf class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ,UpperCamelCase=True ) -> str: snake_case__ :str = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) snake_case__ :Optional[Any] = tf.convert_to_tensor([[2, 268, 9_865]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case__ :Any = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on snake_case__ :Dict = model.generate(UpperCamelCase ,do_sample=UpperCamelCase ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) snake_case__ :Tuple = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) snake_case__ :Optional[int] = tokenizer("Today is a nice day and" ,return_tensors="tf" ) snake_case__ :int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): snake_case__ :Tuple = model.generate(UpperCamelCase ,do_sample=UpperCamelCase ,seed=[7, 0] ) snake_case__ :str = tokenizer.decode(output_ids[0] ,skip_special_tokens=UpperCamelCase ) snake_case__ :str = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) snake_case__ :str = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) snake_case__ :Any = "left" # use different length sentences to test batching snake_case__ :List[str] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] snake_case__ :Optional[int] = tokenizer(UpperCamelCase ,return_tensors="tf" ,padding=UpperCamelCase ) snake_case__ :Dict = inputs["input_ids"] snake_case__ :Any = model.generate(input_ids=UpperCamelCase ,attention_mask=inputs["attention_mask"] ,max_new_tokens=12 ) snake_case__ :Any = tokenizer(sentences[0] ,return_tensors="tf" ).input_ids snake_case__ :str = model.generate(input_ids=UpperCamelCase ,max_new_tokens=12 ) snake_case__ :Union[str, Any] = tokenizer(sentences[1] ,return_tensors="tf" ).input_ids snake_case__ :str = model.generate(input_ids=UpperCamelCase ,max_new_tokens=12 ) snake_case__ :List[Any] = tokenizer.batch_decode(UpperCamelCase ,skip_special_tokens=UpperCamelCase ) snake_case__ :Optional[int] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=UpperCamelCase ) snake_case__ :List[str] = tokenizer.decode(output_padded[0] ,skip_special_tokens=UpperCamelCase ) snake_case__ :Any = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCamelCase ,UpperCamelCase ) self.assertListEqual(UpperCamelCase ,[non_padded_sentence, padded_sentence] )
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
import requests from bsa import BeautifulSoup def lowercase_ ( __snake_case : str = "AAPL" ) -> str: '''simple docstring''' snake_case__ :Dict = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' snake_case__ :int = BeautifulSoup(requests.get(__snake_case ).text , "html.parser" ) snake_case__ :int = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
57
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
1
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[Any] = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
1
def lowercase_ ( __snake_case : Tuple ) -> Any: '''simple docstring''' snake_case__ :Dict = 1 snake_case__ :Any = 2 while i * i <= n: snake_case__ :List[str] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowercase_ ( ) -> int: '''simple docstring''' snake_case__ :List[str] = 1 snake_case__ :Optional[int] = 1 while True: i += 1 t_num += i if count_divisors(__snake_case ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): _A = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = 50_257 ,UpperCamelCase = 1_024 ,UpperCamelCase = 768 ,UpperCamelCase = 12 ,UpperCamelCase = 12 ,UpperCamelCase = None ,UpperCamelCase = "gelu_new" ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 1E-5 ,UpperCamelCase = 0.02 ,UpperCamelCase = True ,UpperCamelCase = True ,UpperCamelCase = False ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) snake_case__ :List[str] = prefix_inner_dim snake_case__ :List[Any] = prefix_hidden_dim snake_case__ :List[str] = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ :Union[str, Any] = ( nn.Linear(self.prefix_hidden_dim ,UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ :Tuple = GPTaConfig( vocab_size=UpperCamelCase ,n_positions=UpperCamelCase ,n_embd=UpperCamelCase ,n_layer=UpperCamelCase ,n_head=UpperCamelCase ,n_inner=UpperCamelCase ,activation_function=UpperCamelCase ,resid_pdrop=UpperCamelCase ,embd_pdrop=UpperCamelCase ,attn_pdrop=UpperCamelCase ,layer_norm_epsilon=UpperCamelCase ,initializer_range=UpperCamelCase ,scale_attn_weights=UpperCamelCase ,use_cache=UpperCamelCase ,scale_attn_by_inverse_layer_idx=UpperCamelCase ,reorder_and_upcast_attn=UpperCamelCase ,) snake_case__ :Dict = GPTaLMHeadModel(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,) -> List[str]: snake_case__ :str = self.transformer.transformer.wte(UpperCamelCase ) snake_case__ :Optional[int] = self.encode_prefix(UpperCamelCase ) snake_case__ :Optional[Any] = self.decode_prefix(UpperCamelCase ) snake_case__ :List[Any] = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: snake_case__ :Optional[Any] = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) snake_case__ :Any = torch.cat((dummy_token, input_ids) ,dim=1 ) snake_case__ :Dict = self.transformer(inputs_embeds=UpperCamelCase ,labels=UpperCamelCase ,attention_mask=UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> torch.Tensor: return torch.zeros(UpperCamelCase ,self.prefix_length ,dtype=torch.intaa ,device=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: return self.encode_prefix(UpperCamelCase ) @torch.no_grad() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Optional[Any] = torch.split(UpperCamelCase ,1 ,dim=0 ) snake_case__ :Tuple = [] snake_case__ :int = [] for feature in features: snake_case__ :str = self.decode_prefix(feature.to(UpperCamelCase ) ) # back to the clip feature # Only support beam search for now snake_case__ , snake_case__ :List[Any] = self.generate_beam( input_embeds=UpperCamelCase ,device=UpperCamelCase ,eos_token_id=UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case__ :List[str] = torch.stack(UpperCamelCase ) snake_case__ :Tuple = torch.stack(UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase = 5 ,UpperCamelCase = 67 ,UpperCamelCase = 1.0 ,UpperCamelCase = None ,) -> Any: snake_case__ :str = eos_token_id snake_case__ :Any = None snake_case__ :Optional[Any] = None snake_case__ :str = torch.ones(UpperCamelCase ,device=UpperCamelCase ,dtype=torch.int ) snake_case__ :Dict = torch.zeros(UpperCamelCase ,device=UpperCamelCase ,dtype=torch.bool ) if input_embeds is not None: snake_case__ :List[Any] = input_embeds else: snake_case__ :Union[str, Any] = self.transformer.transformer.wte(UpperCamelCase ) for i in range(UpperCamelCase ): snake_case__ :Tuple = self.transformer(inputs_embeds=UpperCamelCase ) snake_case__ :Tuple = outputs.logits snake_case__ :int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case__ :List[Any] = logits.softmax(-1 ).log() if scores is None: snake_case__ , snake_case__ :str = logits.topk(UpperCamelCase ,-1 ) snake_case__ :List[str] = generated.expand(UpperCamelCase ,*generated.shape[1:] ) snake_case__ , snake_case__ :List[str] = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: snake_case__ :Union[str, Any] = next_tokens else: snake_case__ :List[Any] = tokens.expand(UpperCamelCase ,*tokens.shape[1:] ) snake_case__ :Optional[int] = torch.cat((tokens, next_tokens) ,dim=1 ) else: snake_case__ :Union[str, Any] = -float(np.inf ) snake_case__ :Union[str, Any] = 0 snake_case__ :Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case__ :int = scores_sum / seq_lengths[:, None] snake_case__ , snake_case__ :List[str] = scores_sum_average.view(-1 ).topk(UpperCamelCase ,-1 ) snake_case__ :Tuple = next_tokens // scores_sum.shape[1] snake_case__ :Any = seq_lengths[next_tokens_source] snake_case__ :Optional[int] = next_tokens % scores_sum.shape[1] snake_case__ :Union[str, Any] = next_tokens.unsqueeze(1 ) snake_case__ :Optional[Any] = tokens[next_tokens_source] snake_case__ :List[str] = torch.cat((tokens, next_tokens) ,dim=1 ) snake_case__ :str = generated[next_tokens_source] snake_case__ :Tuple = scores_sum_average * seq_lengths snake_case__ :List[str] = is_stopped[next_tokens_source] snake_case__ :Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) snake_case__ :List[Any] = torch.cat((generated, next_token_embed) ,dim=1 ) snake_case__ :Tuple = is_stopped + next_tokens.eq(UpperCamelCase ).squeeze() if is_stopped.all(): break snake_case__ :List[Any] = scores / seq_lengths snake_case__ :Optional[int] = scores.argsort(descending=UpperCamelCase ) # tokens tensors are already padded to max_seq_length snake_case__ :Optional[int] = [tokens[i] for i in order] snake_case__ :List[Any] = torch.stack(UpperCamelCase ,dim=0 ) snake_case__ :Dict = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
57
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCAmelCase : int = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
1
from math import factorial class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :Any = real if isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :Union[str, Any] = [1] * rank else: snake_case__ :Tuple = rank def __repr__( self ) -> List[str]: return ( f'{self.real}+' f'{"+".join(str(UpperCamelCase )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :str = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,UpperCamelCase ) def __add__( self ,UpperCamelCase ) -> Dict: if not isinstance(UpperCamelCase ,UpperCamelCase ): return Dual(self.real + other ,self.duals ) snake_case__ :Union[str, Any] = self.duals.copy() snake_case__ :Dict = other.duals.copy() if len(UpperCamelCase ) > len(UpperCamelCase ): o_dual.extend([1] * (len(UpperCamelCase ) - len(UpperCamelCase )) ) elif len(UpperCamelCase ) < len(UpperCamelCase ): s_dual.extend([1] * (len(UpperCamelCase ) - len(UpperCamelCase )) ) snake_case__ :Dict = [] for i in range(len(UpperCamelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,UpperCamelCase ) _A = __add__ def __sub__( self ,UpperCamelCase ) -> List[Any]: return self + other * -1 def __mul__( self ,UpperCamelCase ) -> Any: if not isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :Any = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,UpperCamelCase ) snake_case__ :List[str] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,UpperCamelCase ) _A = __mul__ def __truediv__( self ,UpperCamelCase ) -> Optional[int]: if not isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,UpperCamelCase ) raise ValueError def __floordiv__( self ,UpperCamelCase ) -> int: if not isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :int = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,UpperCamelCase ) raise ValueError def __pow__( self ,UpperCamelCase ) -> Dict: if n < 0 or isinstance(UpperCamelCase ,UpperCamelCase ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self snake_case__ :Tuple = self for _ in range(n - 1 ): x *= self return x def lowercase_ ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if not callable(__snake_case ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(__snake_case , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(__snake_case , __snake_case ): raise ValueError("differentiate() requires an int as input for order" ) snake_case__ :str = Dual(__snake_case , 1 ) snake_case__ :Optional[Any] = func(__snake_case ) if order == 0: return result.real return result.duals[order - 1] * factorial(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() def lowercase_ ( __snake_case : str ) -> Optional[int]: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
57
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
1
from random import randint, random def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : bool = False , __snake_case : bool = False , __snake_case : int = 5 , ) -> list: '''simple docstring''' snake_case__ :int = [[-1] * number_of_cells] # Create a highway without any car snake_case__ :List[str] = 0 snake_case__ :Any = max(__snake_case , 0 ) while i < number_of_cells: snake_case__ :Optional[int] = ( randint(0 , __snake_case ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowercase_ ( __snake_case : list , __snake_case : int ) -> int: '''simple docstring''' snake_case__ :Optional[Any] = 0 snake_case__ :Union[str, Any] = highway_now[car_index + 1 :] for cell in range(len(__snake_case ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__snake_case , -1 ) def lowercase_ ( __snake_case : list , __snake_case : float , __snake_case : int ) -> list: '''simple docstring''' snake_case__ :List[str] = len(__snake_case ) # Beforce calculations, the highway is empty snake_case__ :List[Any] = [-1] * number_of_cells for car_index in range(__snake_case ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed snake_case__ :Union[str, Any] = min(highway_now[car_index] + 1 , __snake_case ) # Number of empty cell before the next car snake_case__ :Any = get_distance(__snake_case , __snake_case ) - 1 # We can't have the car causing an accident snake_case__ :Tuple = min(next_highway[car_index] , __snake_case ) if random() < probability: # Randomly, a driver will slow down snake_case__ :Any = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowercase_ ( __snake_case : list , __snake_case : int , __snake_case : float , __snake_case : int ) -> list: '''simple docstring''' snake_case__ :Optional[int] = len(highway[0] ) for i in range(__snake_case ): snake_case__ :List[str] = update(highway[i] , __snake_case , __snake_case ) snake_case__ :int = [-1] * number_of_cells for car_index in range(__snake_case ): snake_case__ :List[str] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) snake_case__ :Dict = (car_index + speed) % number_of_cells # Commit the change of position snake_case__ :int = speed highway.append(__snake_case ) return highway if __name__ == "__main__": import doctest doctest.testmod()
57
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __UpperCAmelCase : Optional[int] = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" __UpperCAmelCase : List[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" __UpperCAmelCase : int = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCAmelCase_ ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) ,homepage="https://github.com/hendrycks/math" ,codebase_urls=["https://github.com/hendrycks/math"] ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :Dict = 0.0 for i, j in zip(UpperCamelCase ,UpperCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase ,UpperCamelCase ) else 0.0 snake_case__ :Dict = n_correct / len(UpperCamelCase ) return { "accuracy": accuracy, }
57
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Any = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
1
def lowercase_ ( __snake_case : int ) -> list: '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence snake_case__ :Dict = gray_code_sequence_string(__snake_case ) # # convert them to integers for i in range(len(__snake_case ) ): snake_case__ :Optional[int] = int(sequence[i] , 2 ) return sequence def lowercase_ ( __snake_case : int ) -> list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case__ :Optional[int] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case__ :Tuple = gray_code_sequence_string(bit_count - 1 ) snake_case__ :int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case__ :List[Any] = "0" + smaller_sequence[i] sequence.append(__snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case__ :str = "1" + smaller_sequence[i] sequence.append(__snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
57
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __UpperCAmelCase : Dict = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) __UpperCAmelCase : Optional[int] = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Dict = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __UpperCAmelCase : str = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Tuple = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) __UpperCAmelCase : Optional[Any] = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : List[Any] = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) __UpperCAmelCase : List[str] = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : List[str] = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." __UpperCAmelCase : Optional[int] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" __UpperCAmelCase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." __UpperCAmelCase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" __UpperCAmelCase : Any = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." __UpperCAmelCase : int = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" __UpperCAmelCase : List[str] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." __UpperCAmelCase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : int = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." __UpperCAmelCase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" __UpperCAmelCase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." __UpperCAmelCase : int = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." __UpperCAmelCase : List[str] = "" __UpperCAmelCase : str = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." __UpperCAmelCase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __UpperCAmelCase : str = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Dict ) -> Tuple: '''simple docstring''' assert ReadMe.from_string(__snake_case , __snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(__snake_case , match=re.escape(expected_error.format(path="root" ) ) ): snake_case__ :Dict = ReadMe.from_string(__snake_case , __snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : List[str] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' with pytest.raises(__snake_case , match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(__snake_case , __snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : Optional[Any] ) -> Dict: '''simple docstring''' ReadMe.from_string(__snake_case , __snake_case , suppress_parsing_errors=__snake_case ) @pytest.mark.parametrize( "readme_md, expected_dict" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowercase_ ( __snake_case : Any , __snake_case : int ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) snake_case__ :Optional[int] = ReadMe.from_readme(__snake_case , __snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Optional[Any] ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :Dict = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) snake_case__ :Tuple = expected_error.format(path=__snake_case ) with pytest.raises(__snake_case , match=re.escape(__snake_case ) ): snake_case__ :List[str] = ReadMe.from_readme(__snake_case , __snake_case ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : Any , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) snake_case__ :Tuple = expected_error.format(path=__snake_case ) with pytest.raises(__snake_case , match=re.escape(__snake_case ) ): ReadMe.from_readme(__snake_case , __snake_case ) @pytest.mark.parametrize( "readme_md," , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowercase_ ( __snake_case : Any ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :Optional[Any] = Path(__snake_case ) / "README.md" with open(__snake_case , "w+" ) as readme_file: readme_file.write(__snake_case ) ReadMe.from_readme(__snake_case , __snake_case , suppress_parsing_errors=__snake_case )
57
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,) -> List[str]: snake_case__ :Optional[Any] = size if size is not None else {"height": 18, "width": 18} snake_case__ :Dict = parent snake_case__ :str = batch_size snake_case__ :int = num_channels snake_case__ :Optional[Any] = image_size snake_case__ :str = min_resolution snake_case__ :Optional[Any] = max_resolution snake_case__ :List[str] = do_resize snake_case__ :Dict = size snake_case__ :List[str] = apply_ocr def lowerCAmelCase_ ( self ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( _A , unittest.TestCase ): _A = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Dict = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"apply_ocr" ) ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 18, "width": 18} ) snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) def lowerCAmelCase_ ( self ) -> int: pass def lowerCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) self.assertIsInstance(encoding.words ,UpperCamelCase ) self.assertIsInstance(encoding.boxes ,UpperCamelCase ) # Test batched snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Tuple: # Initialize image_processing snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :Dict = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :int = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # with apply_OCR = True snake_case__ :str = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case__ :Tuple = load_dataset("hf-internal-testing/fixtures_docvqa" ,split="test" ) snake_case__ :str = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case__ :List[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case__ :str = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 snake_case__ :Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,UpperCamelCase ) self.assertListEqual(encoding.boxes ,UpperCamelCase ) # with apply_OCR = False snake_case__ :Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase ) snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
57
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase_ ( *__snake_case : int ) -> Union[str, Any]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): snake_case__ :List[str] = list(__snake_case ) for i in range(len(__snake_case ) ): snake_case__ :int = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase_ ( __snake_case : Exception ) -> bool: '''simple docstring''' snake_case__ :List[str] = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(__snake_case , __snake_case ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase_ ( __snake_case : callable = None , __snake_case : int = 1_28 ) -> str: '''simple docstring''' if function is None: return functools.partial(__snake_case , starting_batch_size=__snake_case ) snake_case__ :Tuple = starting_batch_size def decorator(*__snake_case : List[Any] , **__snake_case : str ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case__ :List[str] = list(inspect.signature(__snake_case ).parameters.keys() ) # Guard against user error if len(__snake_case ) < (len(__snake_case ) + 1): snake_case__ :Any = ", ".join([F'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__snake_case , *__snake_case , **__snake_case ) except Exception as e: if should_reduce_batch_size(__snake_case ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
57
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : int = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _snake_case ( _A ): _A = 'vit_mae' def __init__( self ,UpperCamelCase=768 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3_072 ,UpperCamelCase="gelu" ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-12 ,UpperCamelCase=224 ,UpperCamelCase=16 ,UpperCamelCase=3 ,UpperCamelCase=True ,UpperCamelCase=16 ,UpperCamelCase=512 ,UpperCamelCase=8 ,UpperCamelCase=2_048 ,UpperCamelCase=0.75 ,UpperCamelCase=False ,**UpperCamelCase ,) -> int: super().__init__(**UpperCamelCase ) snake_case__ :Dict = hidden_size snake_case__ :List[Any] = num_hidden_layers snake_case__ :int = num_attention_heads snake_case__ :Any = intermediate_size snake_case__ :Tuple = hidden_act snake_case__ :List[Any] = hidden_dropout_prob snake_case__ :Any = attention_probs_dropout_prob snake_case__ :List[Any] = initializer_range snake_case__ :Union[str, Any] = layer_norm_eps snake_case__ :Optional[Any] = image_size snake_case__ :Union[str, Any] = patch_size snake_case__ :Dict = num_channels snake_case__ :Optional[int] = qkv_bias snake_case__ :Any = decoder_num_attention_heads snake_case__ :List[str] = decoder_hidden_size snake_case__ :Any = decoder_num_hidden_layers snake_case__ :int = decoder_intermediate_size snake_case__ :List[Any] = mask_ratio snake_case__ :Optional[Any] = norm_pix_loss
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
import numpy # List of input, output pairs __UpperCAmelCase : int = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) __UpperCAmelCase : int = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) __UpperCAmelCase : List[Any] = [2, 4, 1, 5] __UpperCAmelCase : Optional[Any] = len(train_data) __UpperCAmelCase : Tuple = 0.009 def lowercase_ ( __snake_case : int , __snake_case : int="train" ) -> Any: '''simple docstring''' return calculate_hypothesis_value(__snake_case , __snake_case ) - output( __snake_case , __snake_case ) def lowercase_ ( __snake_case : int ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = 0 for i in range(len(__snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowercase_ ( __snake_case : Any , __snake_case : Tuple ) -> str: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowercase_ ( __snake_case : str , __snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=m ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = 0 for i in range(__snake_case ): if index == -1: summation_value += _error(__snake_case ) else: summation_value += _error(__snake_case ) * train_data[i][0][index] return summation_value def lowercase_ ( __snake_case : List[str] ) -> Any: '''simple docstring''' snake_case__ :str = summation_of_cost_derivative(__snake_case , __snake_case ) / m return cost_derivative_value def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output snake_case__ :Dict = 0.0_0_0_0_0_2 snake_case__ :List[str] = 0 snake_case__ :Tuple = 0 while True: j += 1 snake_case__ :str = [0, 0, 0, 0] for i in range(0 , len(__snake_case ) ): snake_case__ :Any = get_cost_derivative(i - 1 ) snake_case__ :str = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __snake_case , __snake_case , atol=__snake_case , rtol=__snake_case , ): break snake_case__ :List[str] = temp_parameter_vector print(("Number of iterations:", j) ) def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' for i in range(len(__snake_case ) ): print(("Actual output value:", output(__snake_case , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__snake_case , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
57
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
1
# using dfs for finding eulerian path traversal def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Tuple=None ) -> Dict: '''simple docstring''' snake_case__ :int = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case__ , snake_case__ :Optional[int] = True, True snake_case__ :List[Any] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) return path def lowercase_ ( __snake_case : Dict , __snake_case : int ) -> Optional[Any]: '''simple docstring''' snake_case__ :Any = 0 snake_case__ :Union[str, Any] = -1 for i in range(__snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case__ :Any = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Any: '''simple docstring''' snake_case__ :str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case__ , snake_case__ :Tuple = check_circuit_or_path(__snake_case , __snake_case ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return snake_case__ :Tuple = 1 if check == 2: snake_case__ :Union[str, Any] = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) snake_case__ :str = dfs(__snake_case , __snake_case , __snake_case ) print(__snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :Tuple = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case__ :Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case__ :Optional[int] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case__ :Union[str, Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case__ :Tuple = { 1: [], 2: [] # all degree is zero } snake_case__ :List[Any] = 10 check_euler(__snake_case , __snake_case ) check_euler(__snake_case , __snake_case ) check_euler(__snake_case , __snake_case ) check_euler(__snake_case , __snake_case ) check_euler(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = "▁" __UpperCAmelCase : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase : str = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } __UpperCAmelCase : Optional[Any] = { "xlm-roberta-base": 5_1_2, "xlm-roberta-large": 5_1_2, "xlm-roberta-large-finetuned-conll02-dutch": 5_1_2, "xlm-roberta-large-finetuned-conll02-spanish": 5_1_2, "xlm-roberta-large-finetuned-conll03-english": 5_1_2, "xlm-roberta-large-finetuned-conll03-german": 5_1_2, } class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self ,UpperCamelCase ,UpperCamelCase="<s>" ,UpperCamelCase="</s>" ,UpperCamelCase="</s>" ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase = None ,**UpperCamelCase ,) -> None: # Mask token behave like a normal word, i.e. include the space before it snake_case__ :Optional[int] = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token snake_case__ :Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase ,eos_token=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,cls_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**UpperCamelCase ,) snake_case__ :Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase ) ) snake_case__ :List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ :List[str] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ :Tuple = 1 snake_case__ :str = len(self.sp_model ) + self.fairseq_offset snake_case__ :Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: snake_case__ :Optional[int] = self.__dict__.copy() snake_case__ :str = None snake_case__ :List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Tuple = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): snake_case__ :str = {} snake_case__ :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ :Dict = [self.cls_token_id] snake_case__ :Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :str = [self.sep_token_id] snake_case__ :List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Dict = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: return self.sp_model.encode(UpperCamelCase ,out_type=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ :List[str] = self.sp_model.PieceToId(UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Dict = "".join(UpperCamelCase ).replace(UpperCamelCase ," " ).strip() return out_string def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case__ :List[Any] = os.path.join( UpperCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase ,"wb" ) as fi: snake_case__ :List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
57
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _snake_case : _A = 42 _A = None _A = None def lowercase_ ( ) -> Node | None: '''simple docstring''' snake_case__ :str = Node(1 ) snake_case__ :Any = Node(2 ) snake_case__ :Any = Node(3 ) snake_case__ :Optional[int] = Node(4 ) snake_case__ :Optional[Any] = Node(5 ) return tree def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase_ ( __snake_case : Node | None ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] if root is None: return output snake_case__ :Tuple = deque([root] ) while process_queue: snake_case__ :int = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__snake_case , __snake_case ) return output def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__snake_case , __snake_case ) return output def lowercase_ ( __snake_case : Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] snake_case__ :list[Sequence[Node | None]] = [] snake_case__ :List[str] = 0 snake_case__ :List[Any] = height(__snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__snake_case , __snake_case ) ) snake_case__ :str = 1 else: output.append(get_nodes_from_right_to_left(__snake_case , __snake_case ) ) snake_case__ :Union[str, Any] = 0 return output def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Optional[Any] = make_tree() print(F'In-order Traversal: {inorder(__snake_case )}' ) print(F'Pre-order Traversal: {preorder(__snake_case )}' ) print(F'Post-order Traversal: {postorder(__snake_case )}' , "\n" ) print(F'Height of Tree: {height(__snake_case )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(__snake_case ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(__snake_case ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(__snake_case , level=__snake_case ) ) print("\nZigZag order Traversal: " ) print(zigzag(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. snake_case__ :Tuple = json.loads(__snake_case ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. snake_case__ :Dict = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". snake_case__ :List[str] = json.loads(__snake_case ) if not mpi_options.get("sagemaker_mpi_enabled" , __snake_case ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _snake_case ( _A ): _A = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def lowerCAmelCase_ ( self ) -> Any: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." ,UpperCamelCase ,) @cached_property def lowerCAmelCase_ ( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: snake_case__ :int = torch.device("cpu" ) snake_case__ :Any = 0 elif is_sagemaker_model_parallel_available(): snake_case__ :str = smp.local_rank() snake_case__ :Dict = torch.device("cuda" ,UpperCamelCase ) snake_case__ :str = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" ,timeout=self.ddp_timeout_delta ) snake_case__ :str = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) snake_case__ :Dict = torch.device("cuda" ,self.local_rank ) snake_case__ :Tuple = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 snake_case__ :Dict = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. snake_case__ :Tuple = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" ,timeout=self.ddp_timeout_delta ) snake_case__ :Optional[int] = torch.device("cuda" ,self.local_rank ) snake_case__ :Optional[Any] = 1 if device.type == "cuda": torch.cuda.set_device(UpperCamelCase ) return device @property def lowerCAmelCase_ ( self ) -> List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowerCAmelCase_ ( self ) -> Tuple: return not is_sagemaker_model_parallel_available() @property def lowerCAmelCase_ ( self ) -> Optional[int]: return False
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
from datetime import datetime import requests def lowercase_ ( __snake_case : str ) -> bytes: '''simple docstring''' snake_case__ :int = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" snake_case__ :List[Any] = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(__snake_case ).content if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = input("Enter Video/IGTV url: ").strip() __UpperCAmelCase : Union[str, Any] = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
57
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
1
from __future__ import annotations def lowercase_ ( __snake_case : Dict , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> int: # noqa: E741 '''simple docstring''' while r - l > 1: snake_case__ :Optional[Any] = (l + r) // 2 if v[m] >= key: snake_case__ :Optional[Any] = m else: snake_case__ :str = m # noqa: E741 return r def lowercase_ ( __snake_case : list[int] ) -> int: '''simple docstring''' if len(__snake_case ) == 0: return 0 snake_case__ :List[str] = [0] * len(__snake_case ) snake_case__ :Optional[int] = 1 snake_case__ :Union[str, Any] = v[0] for i in range(1 , len(__snake_case ) ): if v[i] < tail[0]: snake_case__ :Any = v[i] elif v[i] > tail[length - 1]: snake_case__ :Optional[Any] = v[i] length += 1 else: snake_case__ :Optional[int] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
57
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowercase_ ( __snake_case : str ) -> List[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = os.path.join(args.tf_model_dir , "parameters.json" ) snake_case__ :List[Any] = json.loads(open(__snake_case ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(".pt" ): snake_case__ :Any = args.output + ".pt" snake_case__ :Optional[Any] = OrderedDict() with tf.device("/CPU:0" ): snake_case__ :Union[str, Any] = tf.train.load_checkpoint(args.tf_model_dir ) snake_case__ :List[Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case__ :Tuple = reader.get_tensor(__snake_case ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): snake_case__ :List[str] = int(key_name[9] ) elif key_name.startswith("pasts/out" ): snake_case__ :List[str] = 8 snake_case__ :Union[str, Any] = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case__ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :List[Any] = torch.tensor(__snake_case ) elif key_name.startswith("model/moe" ): snake_case__ :Tuple = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): snake_case__ :List[str] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player snake_case__ :int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :Any = torch.tensor(__snake_case ) elif key_name.endswith("/softmlp/kernel" ): snake_case__ :Tuple = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player snake_case__ :List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :List[str] = torch.tensor(__snake_case ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): snake_case__ :List[str] = key_name[-9:-7] for i in range(16 ): snake_case__ :List[Any] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) snake_case__ :Optional[int] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case__ :Optional[int] = torch.tensor(__snake_case ) elif key_name.startswith("model/mlp" ): snake_case__ :Any = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): snake_case__ :Dict = "model.blocks.%d.feed_forward.mlp.wi.weight" % player snake_case__ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name.endswith("/p1/bias" ): snake_case__ :Dict = "model.blocks.%d.feed_forward.mlp.wi.bias" % player snake_case__ :Any = vnp.copy() # same because it is one dimensional snake_case__ :Union[str, Any] = torch.tensor(__snake_case ) elif key_name.endswith("/p2/kernel" ): snake_case__ :Optional[Any] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player snake_case__ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :str = torch.tensor(__snake_case ) elif key_name.endswith("/p2/bias" ): snake_case__ :Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wo.bias" % player snake_case__ :Optional[Any] = vnp.copy() # same because it is one dimensional snake_case__ :List[str] = torch.tensor(__snake_case ) elif key_name.startswith("model/ln" ): snake_case__ :Optional[Any] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case__ :Tuple = "model.blocks.%d.feed_forward.norm.bias" % player snake_case__ :List[str] = vnp.copy() # same because it is one dimensional snake_case__ :Dict = torch.tensor(__snake_case ) elif key_name.endswith("/g" ): snake_case__ :Optional[int] = "model.blocks.%d.feed_forward.norm.weight" % player snake_case__ :str = vnp.copy() # same because it is one dimensional snake_case__ :Optional[int] = torch.tensor(__snake_case ) elif key_name.startswith("model/att" ): snake_case__ :Tuple = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): snake_case__ :List[str] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case__ :str = state[:, 0, :, :] snake_case__ :Optional[int] = state[:, 1, :, :] snake_case__ :Any = state[:, 2, :, :] snake_case__ :Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :Dict = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :List[str] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :int = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player snake_case__ :List[Any] = torch.tensor(__snake_case ) snake_case__ :Optional[int] = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player snake_case__ :Union[str, Any] = torch.tensor(__snake_case ) snake_case__ :Any = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player snake_case__ :int = torch.tensor(__snake_case ) elif key_name.endswith("/o/kernel" ): snake_case__ :Dict = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player snake_case__ :Union[str, Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name.startswith("model/an" ): snake_case__ :int = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case__ :str = "model.blocks.%d.self_attn.norm.bias" % player snake_case__ :Tuple = vnp.copy() # same because it is one dimensional snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name.endswith("/g" ): snake_case__ :Any = "model.blocks.%d.self_attn.norm.weight" % player snake_case__ :List[str] = vnp.copy() # same because it is one dimensional snake_case__ :Optional[Any] = torch.tensor(__snake_case ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): snake_case__ :List[str] = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] snake_case__ :Optional[Any] = "model.%s.weight" % nlayer snake_case__ :str = vnp.copy() # same in embedded snake_case__ :str = torch.tensor(__snake_case ) if key_name.startswith("model/wte" ): snake_case__ :str = "lm_head.weight" snake_case__ :str = vnp.copy() # same in embedded snake_case__ :Optional[int] = torch.tensor(__snake_case ) elif key_name.startswith("model/wob" ): snake_case__ :List[str] = "final_logits_bias" snake_case__ :Any = vnp.copy() # same in embedded snake_case__ :int = state.reshape((1, -1) ) snake_case__ :List[str] = torch.tensor(__snake_case ) elif key_name == "model/dense/kernel": snake_case__ :Optional[int] = "model.last_project.weight" snake_case__ :Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name == "model/dense_1/bias": snake_case__ :str = "model.last_project.bias" snake_case__ :List[str] = vnp.copy() # same because it is one dimensional snake_case__ :int = torch.tensor(__snake_case ) torch.save(__snake_case , args.output ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_gptsan_to_pt(args)
57
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase : str = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowercase_ ( __snake_case : str ) -> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__snake_case ) def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case__ :Union[str, Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__snake_case , id=__snake_case )
57
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _snake_case : def __init__( self ,UpperCamelCase = "cpu" ,UpperCamelCase = "openai/clip-vit-large-patch14" ) -> None: snake_case__ :str = device snake_case__ :Union[str, Any] = CLIPTokenizerFast.from_pretrained(UpperCamelCase ) snake_case__ :Any = [0.48145466, 0.4578275, 0.40821073] snake_case__ :Any = [0.26862954, 0.26130258, 0.27577711] snake_case__ :Optional[int] = torchvision.transforms.Normalize(self.image_mean ,self.image_std ) snake_case__ :str = torchvision.transforms.Resize(224 ) snake_case__ :Optional[int] = torchvision.transforms.CenterCrop(224 ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Any: snake_case__ :str = self.resize(UpperCamelCase ) snake_case__ :List[str] = self.center_crop(UpperCamelCase ) snake_case__ :List[str] = self.normalize(UpperCamelCase ) return images def __call__( self ,UpperCamelCase=None ,UpperCamelCase=None ,**UpperCamelCase ) -> Union[str, Any]: snake_case__ :Optional[Any] = self.tokenizer(text=UpperCamelCase ,**UpperCamelCase ) snake_case__ :Tuple = self.preprocess_img(UpperCamelCase ) snake_case__ :Optional[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _snake_case ( nn.Module ): def __init__( self ,UpperCamelCase=10 ,UpperCamelCase=0.01 ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase="image" ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=False ,) -> None: super().__init__() snake_case__ :Optional[Any] = None snake_case__ :Any = device if device else get_device() if vqgan: snake_case__ :Tuple = vqgan else: snake_case__ :Optional[Any] = load_vqgan(self.device ,conf_path=UpperCamelCase ,ckpt_path=UpperCamelCase ) self.vqgan.eval() if clip: snake_case__ :List[str] = clip else: snake_case__ :Optional[Any] = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) snake_case__ :Optional[int] = ProcessorGradientFlow(device=self.device ) snake_case__ :Union[str, Any] = iterations snake_case__ :str = lr snake_case__ :List[Any] = log snake_case__ :List[str] = make_grid snake_case__ :List[Any] = return_val snake_case__ :Union[str, Any] = quantize snake_case__ :List[Any] = self.vqgan.decoder.z_shape def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=5 ,UpperCamelCase=True ) -> Union[str, Any]: snake_case__ :Union[str, Any] = [] if output_path is None: snake_case__ :Dict = "./animation.gif" if input_path is None: snake_case__ :Optional[Any] = self.save_path snake_case__ :Union[str, Any] = sorted(glob(input_path + "/*" ) ) if not len(UpperCamelCase ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(UpperCamelCase ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) snake_case__ :List[str] = total_duration / len(UpperCamelCase ) snake_case__ :str = [frame_duration] * len(UpperCamelCase ) if extend_frames: snake_case__ :Dict = 1.5 snake_case__ :List[str] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(UpperCamelCase ) ) imageio.mimsave(UpperCamelCase ,UpperCamelCase ,duration=UpperCamelCase ) print(f'gif saved to {output_path}' ) def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ) -> str: if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError snake_case__ :Dict = preprocess(Image.open(UpperCamelCase ) ,target_image_size=256 ).to(self.device ) snake_case__ :Tuple = preprocess_vqgan(UpperCamelCase ) snake_case__ , *snake_case__ :int = self.vqgan.encode(UpperCamelCase ) return z def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: snake_case__ :Tuple = self.latent.detach().requires_grad_() snake_case__ :Dict = base_latent + transform_vector if self.quantize: snake_case__ , *snake_case__ :str = self.vqgan.quantize(UpperCamelCase ) else: snake_case__ :int = trans_latent return self.vqgan.decode(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> Union[str, Any]: snake_case__ :Tuple = self.clip_preprocessor(text=UpperCamelCase ,images=UpperCamelCase ,return_tensors="pt" ,padding=UpperCamelCase ) snake_case__ :Tuple = self.clip(**UpperCamelCase ) snake_case__ :Optional[Any] = clip_outputs.logits_per_image if weights is not None: snake_case__ :str = similarity_logits * weights return similarity_logits.sum() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :List[str] = self._get_clip_similarity(pos_prompts["prompts"] ,UpperCamelCase ,weights=(1 / pos_prompts["weights"]) ) if neg_prompts: snake_case__ :Tuple = self._get_clip_similarity(neg_prompts["prompts"] ,UpperCamelCase ,weights=neg_prompts["weights"] ) else: snake_case__ :str = torch.tensor([1] ,device=self.device ) snake_case__ :Optional[int] = -torch.log(UpperCamelCase ) + torch.log(UpperCamelCase ) return loss def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: snake_case__ :int = torch.randn_like(self.latent ,requires_grad=UpperCamelCase ,device=self.device ) snake_case__ :Any = torch.optim.Adam([vector] ,lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() snake_case__ :Tuple = self._add_vector(UpperCamelCase ) snake_case__ :Union[str, Any] = loop_post_process(UpperCamelCase ) snake_case__ :Optional[Any] = self._get_CLIP_loss(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) print("CLIP loss" ,UpperCamelCase ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: wandb.init(reinit=UpperCamelCase ,project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: snake_case__ :List[str] = Image.open(UpperCamelCase ) snake_case__ :int = image.resize((256, 256) ) wandb.log("Original Image" ,wandb.Image(UpperCamelCase ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: if not prompts: return [] snake_case__ :int = [] snake_case__ :Any = [] if isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :int = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(UpperCamelCase ,(tuple, list) ): snake_case__ :List[Any] = prompt[0] snake_case__ :List[Any] = float(prompt[1] ) elif ":" in prompt: snake_case__ , snake_case__ :str = prompt.split(":" ) snake_case__ :int = float(UpperCamelCase ) else: snake_case__ :int = prompt snake_case__ :Tuple = 1.0 processed_prompts.append(UpperCamelCase ) weights.append(UpperCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase ,device=self.device ), } def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=None ,) -> Union[str, Any]: if image_path: snake_case__ :Tuple = self._get_latent(UpperCamelCase ) else: snake_case__ :str = torch.randn(self.latent_dim ,device=self.device ) if self.log: self._init_logging(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." snake_case__ :Dict = self.process_prompts(UpperCamelCase ) snake_case__ :Optional[Any] = self.process_prompts(UpperCamelCase ) if save_final and save_path is None: snake_case__ :Any = os.path.join("./outputs/" ,"_".join(pos_prompts["prompts"] ) ) if not os.path.exists(UpperCamelCase ): os.makedirs(UpperCamelCase ) else: snake_case__ :str = save_path + "_" + get_timestamp() os.makedirs(UpperCamelCase ) snake_case__ :Any = save_path snake_case__ :List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(UpperCamelCase ) ) snake_case__ :int = loop_post_process(UpperCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) ): if show_intermediate: show_pil(UpperCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path ,f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"Image": wandb.Image(UpperCamelCase )} ) if show_final: show_pil(UpperCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path ,f'iter_{iter:03d}_final.png' ) )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _A , unittest.TestCase ): _A = ConsistencyModelPipeline _A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _A = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Tuple = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" ,subfolder="test_unet" ,) return unet @property def lowerCAmelCase_ ( self ) -> str: snake_case__ :Tuple = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" ,subfolder="test_unet_class_cond" ,) return unet def lowerCAmelCase_ ( self ,UpperCamelCase=False ) -> Tuple: if class_cond: snake_case__ :Tuple = self.dummy_cond_unet else: snake_case__ :Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler snake_case__ :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Tuple = { "unet": unet, "scheduler": scheduler, } return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> str: if str(UpperCamelCase ).startswith("mps" ): snake_case__ :List[str] = torch.manual_seed(UpperCamelCase ) else: snake_case__ :Any = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :Any = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Optional[Any] = self.get_dummy_components() snake_case__ :List[Any] = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Tuple = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :List[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :Optional[int] = image[0, -3:, -3:, -1] snake_case__ :List[str] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Tuple = self.get_dummy_components(class_cond=UpperCamelCase ) snake_case__ :Tuple = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Dict = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :List[Any] = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Optional[Any] = 0 snake_case__ :int = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :int = image[0, -3:, -3:, -1] snake_case__ :str = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :List[str] = self.get_dummy_components() snake_case__ :Any = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Tuple = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :int = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Optional[Any] = 1 snake_case__ :str = None snake_case__ :Dict = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :Dict = image[0, -3:, -3:, -1] snake_case__ :List[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Union[str, Any] = self.get_dummy_components(class_cond=UpperCamelCase ) snake_case__ :Dict = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Any = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Tuple = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Optional[Any] = 1 snake_case__ :List[Any] = None snake_case__ :Dict = 0 snake_case__ :Dict = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :Any = image[0, -3:, -3:, -1] snake_case__ :Optional[int] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ,UpperCamelCase=0 ,UpperCamelCase=False ,UpperCamelCase="cpu" ,UpperCamelCase=torch.floataa ,UpperCamelCase=(1, 3, 64, 64) ) -> List[Any]: snake_case__ :str = torch.manual_seed(UpperCamelCase ) snake_case__ :str = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: snake_case__ :Any = self.get_fixed_latents(seed=UpperCamelCase ,device=UpperCamelCase ,dtype=UpperCamelCase ,shape=UpperCamelCase ) snake_case__ :Union[str, Any] = latents return inputs def lowerCAmelCase_ ( self ,UpperCamelCase=0 ,UpperCamelCase="cpu" ,UpperCamelCase=torch.floataa ,UpperCamelCase=(1, 3, 64, 64) ) -> Any: if type(UpperCamelCase ) == str: snake_case__ :int = torch.device(UpperCamelCase ) snake_case__ :List[Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :Tuple = randn_tensor(UpperCamelCase ,generator=UpperCamelCase ,device=UpperCamelCase ,dtype=UpperCamelCase ) return latents def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :int = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :List[str] = self.get_inputs() snake_case__ :List[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :Tuple = image[0, -3:, -3:, -1] snake_case__ :List[str] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Union[str, Any] = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Union[str, Any] = self.get_inputs() snake_case__ :str = 1 snake_case__ :Tuple = None snake_case__ :str = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :List[str] = image[0, -3:, -3:, -1] snake_case__ :Union[str, Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Union[str, Any] = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Any = self.get_inputs(get_fixed_latents=UpperCamelCase ,device=UpperCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase ,enable_math=UpperCamelCase ,enable_mem_efficient=UpperCamelCase ): snake_case__ :Any = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :Tuple = image[0, -3:, -3:, -1] snake_case__ :List[str] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :int = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Dict = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :List[Any] = self.get_inputs(get_fixed_latents=UpperCamelCase ,device=UpperCamelCase ) snake_case__ :Tuple = 1 snake_case__ :int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase ,enable_math=UpperCamelCase ,enable_mem_efficient=UpperCamelCase ): snake_case__ :Any = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :Dict = image[0, -3:, -3:, -1] snake_case__ :Tuple = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
57
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __UpperCAmelCase : List[Any] = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): _A = None _A = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): _A = datasets.Audio() _A = 'audio' _A = AudioFolderConfig _A = 42 # definition at the bottom of the script _A = AudioClassification(audio_column='audio' , label_column='label' ) __UpperCAmelCase : Optional[int] = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __UpperCAmelCase : List[str] = AUDIO_EXTENSIONS
57
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase : Dict = random.Random() if is_torch_available(): import torch def lowercase_ ( __snake_case : int , __snake_case : Optional[Any]=1.0 , __snake_case : Optional[int]=None , __snake_case : int=None ) -> Optional[Any]: '''simple docstring''' if rng is None: snake_case__ :List[str] = global_rng snake_case__ :str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=400 ,UpperCamelCase=2_000 ,UpperCamelCase=1 ,UpperCamelCase=0.0 ,UpperCamelCase=16_000 ,UpperCamelCase=True ,UpperCamelCase=True ,) -> Any: snake_case__ :List[str] = parent snake_case__ :Optional[Any] = batch_size snake_case__ :List[str] = min_seq_length snake_case__ :str = max_seq_length snake_case__ :Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ :List[str] = feature_size snake_case__ :Optional[Any] = padding_value snake_case__ :List[Any] = sampling_rate snake_case__ :Optional[Any] = return_attention_mask snake_case__ :List[str] = do_normalize def lowerCAmelCase_ ( self ) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase_ ( self ,UpperCamelCase=False ,UpperCamelCase=False ) -> Optional[Any]: def _flatten(UpperCamelCase ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: snake_case__ :Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case__ :Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: snake_case__ :List[str] = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( _A , unittest.TestCase ): _A = ASTFeatureExtractor def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Optional[int] = ASTFeatureExtractionTester(self ) def lowerCAmelCase_ ( self ) -> int: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ :List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] snake_case__ :Optional[int] = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input snake_case__ :List[str] = feat_extract(speech_inputs[0] ,return_tensors="np" ).input_values snake_case__ :List[str] = feat_extract(np_speech_inputs[0] ,return_tensors="np" ).input_values self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) ) # Test batched snake_case__ :Dict = feat_extract(UpperCamelCase ,padding=UpperCamelCase ,return_tensors="np" ).input_values snake_case__ :List[Any] = feat_extract(UpperCamelCase ,padding=UpperCamelCase ,return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ :Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case__ :Dict = np.asarray(UpperCamelCase ) snake_case__ :Tuple = feat_extract(UpperCamelCase ,return_tensors="np" ).input_values snake_case__ :Optional[Any] = feat_extract(UpperCamelCase ,return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase ,UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) ) @require_torch def lowerCAmelCase_ ( self ) -> Tuple: import torch snake_case__ :Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ :List[Any] = np.random.rand(100 ).astype(np.floataa ) snake_case__ :Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ :List[Any] = feature_extractor.pad([{"input_values": inputs}] ,return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case__ :Union[str, Any] = feature_extractor.pad([{"input_values": inputs}] ,return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: from datasets import load_dataset snake_case__ :Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" ,"clean" ,split="validation" ) # automatic decoding with librispeech snake_case__ :Union[str, Any] = ds.sort("id" ).select(range(UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCAmelCase_ ( self ) -> Union[str, Any]: # fmt: off snake_case__ :Optional[int] = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on snake_case__ :Union[str, Any] = self._load_datasamples(1 ) snake_case__ :Any = ASTFeatureExtractor() snake_case__ :str = feature_extractor(UpperCamelCase ,return_tensors="pt" ).input_values self.assertEquals(input_values.shape ,(1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] ,UpperCamelCase ,atol=1E-4 ) )
57
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=32 ,UpperCamelCase=True ,) -> Union[str, Any]: snake_case__ :Tuple = parent snake_case__ :Dict = batch_size snake_case__ :Any = num_channels snake_case__ :int = image_size snake_case__ :Optional[Any] = min_resolution snake_case__ :Tuple = max_resolution snake_case__ :Optional[int] = do_resize snake_case__ :List[Any] = size_divisor snake_case__ :Optional[int] = do_rescale def lowerCAmelCase_ ( self ) -> Tuple: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _snake_case ( _A , unittest.TestCase ): _A = GLPNImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[Any] = GLPNImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size_divisor" ) ) self.assertTrue(hasattr(UpperCamelCase ,"resample" ) ) self.assertTrue(hasattr(UpperCamelCase ,"do_rescale" ) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass def lowerCAmelCase_ ( self ) -> Tuple: # Initialize image_processing snake_case__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase_ ( self ) -> int: # Initialize image_processing snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ :int = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase_ ( self ) -> str: # Initialize image_processing snake_case__ :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ :List[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
57
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
1
from __future__ import annotations from random import random class _snake_case : def __init__( self ,UpperCamelCase = None ) -> Union[str, Any]: snake_case__ :Optional[Any] = value snake_case__ :Optional[int] = random() snake_case__ :Node | None = None snake_case__ :Node | None = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} ,indent=1 ) def __str__( self ) -> str: snake_case__ :List[Any] = str(self.value ) + " " snake_case__ :List[Any] = str(self.left or "" ) snake_case__ :Dict = str(self.right or "" ) return value + left + right def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: snake_case__ , snake_case__ :Union[str, Any] = split(root.left , __snake_case ) return left, root else: snake_case__ , snake_case__ :int = split(root.right , __snake_case ) return root, right def lowercase_ ( __snake_case : Node | None , __snake_case : Node | None ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: snake_case__ :List[str] = merge(left.right , __snake_case ) return left else: snake_case__ :Dict = merge(__snake_case , right.left ) return right def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Node | None: '''simple docstring''' snake_case__ :Optional[int] = Node(__snake_case ) snake_case__ , snake_case__ :Dict = split(__snake_case , __snake_case ) return merge(merge(__snake_case , __snake_case ) , __snake_case ) def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Node | None: '''simple docstring''' snake_case__ , snake_case__ :List[str] = split(__snake_case , value - 1 ) snake_case__ , snake_case__ :str = split(__snake_case , __snake_case ) return merge(__snake_case , __snake_case ) def lowercase_ ( __snake_case : Node | None ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowercase_ ( __snake_case : Node | None , __snake_case : str ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": snake_case__ :Optional[Any] = insert(__snake_case , int(arg[1:] ) ) elif arg[0] == "-": snake_case__ :List[str] = erase(__snake_case , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :Optional[int] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) snake_case__ :List[Any] = input() while args != "q": snake_case__ :List[str] = interact_treap(__snake_case , __snake_case ) print(__snake_case ) snake_case__ :int = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _snake_case ( _A ): _A = 'umt5' _A = ['past_key_values'] def __init__( self ,UpperCamelCase=250_112 ,UpperCamelCase=512 ,UpperCamelCase=64 ,UpperCamelCase=1_024 ,UpperCamelCase=8 ,UpperCamelCase=None ,UpperCamelCase=6 ,UpperCamelCase=32 ,UpperCamelCase=128 ,UpperCamelCase=0.1 ,UpperCamelCase=1E-6 ,UpperCamelCase=1.0 ,UpperCamelCase="gated-gelu" ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase="T5Tokenizer" ,UpperCamelCase=True ,UpperCamelCase=0 ,UpperCamelCase=1 ,UpperCamelCase=0 ,**UpperCamelCase ,) -> Optional[Any]: super().__init__( is_encoder_decoder=UpperCamelCase ,tokenizer_class=UpperCamelCase ,tie_word_embeddings=UpperCamelCase ,pad_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,decoder_start_token_id=UpperCamelCase ,**UpperCamelCase ,) snake_case__ :str = vocab_size snake_case__ :Any = d_model snake_case__ :Optional[Any] = d_kv snake_case__ :Dict = d_ff snake_case__ :Dict = num_layers snake_case__ :Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case__ :Union[str, Any] = num_heads snake_case__ :Optional[Any] = relative_attention_num_buckets snake_case__ :Any = relative_attention_max_distance snake_case__ :List[Any] = dropout_rate snake_case__ :Optional[int] = layer_norm_epsilon snake_case__ :Optional[int] = initializer_factor snake_case__ :Dict = feed_forward_proj snake_case__ :List[str] = use_cache snake_case__ :Any = self.feed_forward_proj.split("-" ) snake_case__ :Any = act_info[-1] snake_case__ :Optional[int] = act_info[0] == "gated" if len(UpperCamelCase ) > 1 and act_info[0] != "gated" or len(UpperCamelCase ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": snake_case__ :Any = "gelu_new" @property def lowerCAmelCase_ ( self ) -> List[Any]: return self.d_model @property def lowerCAmelCase_ ( self ) -> int: return self.num_heads @property def lowerCAmelCase_ ( self ) -> str: return self.num_layers class _snake_case ( _A ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: snake_case__ :List[str] = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: snake_case__ :Tuple = "past_encoder_sequence + sequence" snake_case__ :str = {0: "batch"} snake_case__ :Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: snake_case__ :List[str] = {0: "batch", 1: "decoder_sequence"} snake_case__ :Optional[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase ,direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCAmelCase_ ( self ) -> int: return 13 @property def lowerCAmelCase_ ( self ) -> float: return 5E-4
57
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
1
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowercase_ ( __snake_case : Tuple ) -> List[str]: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> List[Any]: snake_case__ :Any = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" ,type=UpperCamelCase ,default=UpperCamelCase ,help="Path to location to store the models" ) download_parser.add_argument( "--force" ,action="store_true" ,help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" ,action="store_true" ,help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" ,) download_parser.add_argument("model" ,type=UpperCamelCase ,help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :List[Any] = model snake_case__ :int = cache snake_case__ :Union[str, Any] = force snake_case__ :Dict = trust_remote_code def lowerCAmelCase_ ( self ) -> Tuple: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
57
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Any = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _snake_case ( _A ): _A = 'distilbert' _A = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self ,UpperCamelCase=30_522 ,UpperCamelCase=512 ,UpperCamelCase=False ,UpperCamelCase=6 ,UpperCamelCase=12 ,UpperCamelCase=768 ,UpperCamelCase=4 * 768 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase="gelu" ,UpperCamelCase=0.02 ,UpperCamelCase=0.1 ,UpperCamelCase=0.2 ,UpperCamelCase=0 ,**UpperCamelCase ,) -> List[Any]: snake_case__ :str = vocab_size snake_case__ :Union[str, Any] = max_position_embeddings snake_case__ :List[str] = sinusoidal_pos_embds snake_case__ :Tuple = n_layers snake_case__ :Optional[Any] = n_heads snake_case__ :Dict = dim snake_case__ :List[str] = hidden_dim snake_case__ :str = dropout snake_case__ :int = attention_dropout snake_case__ :Any = activation snake_case__ :List[Any] = initializer_range snake_case__ :Optional[int] = qa_dropout snake_case__ :Union[str, Any] = seq_classif_dropout super().__init__(**UpperCamelCase ,pad_token_id=UpperCamelCase ) class _snake_case ( _A ): @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ :Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ :List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
57
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = 32 ,UpperCamelCase = True ,UpperCamelCase = 1 / 255 ,UpperCamelCase = True ,UpperCamelCase = True ,UpperCamelCase = [0.48145466, 0.4578275, 0.40821073] ,UpperCamelCase = [0.26862954, 0.26130258, 0.27577711] ,UpperCamelCase = True ,UpperCamelCase=7 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=3 ,) -> Any: snake_case__ :Union[str, Any] = parent snake_case__ :str = do_resize snake_case__ :str = size if size is not None else {"shortest_edge": 288} snake_case__ :Tuple = size_divisor snake_case__ :Optional[int] = do_rescale snake_case__ :Tuple = rescale_factor snake_case__ :List[Any] = do_normalize snake_case__ :List[str] = do_center_crop snake_case__ :List[Any] = image_mean snake_case__ :Optional[int] = image_std snake_case__ :Any = do_pad snake_case__ :List[str] = batch_size snake_case__ :Tuple = num_channels snake_case__ :List[str] = min_resolution snake_case__ :Union[str, Any] = max_resolution def lowerCAmelCase_ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=False ) -> Optional[int]: if not batched: snake_case__ :int = self.size["shortest_edge"] snake_case__ :List[str] = image_inputs[0] if isinstance(UpperCamelCase ,Image.Image ): snake_case__ , snake_case__ :Optional[Any] = image.size else: snake_case__ , snake_case__ :Dict = image.shape[1], image.shape[2] snake_case__ :Any = size / min(UpperCamelCase ,UpperCamelCase ) if h < w: snake_case__ , snake_case__ :Union[str, Any] = size, scale * w else: snake_case__ , snake_case__ :Dict = scale * h, size snake_case__ :Union[str, Any] = int((1_333 / 800) * size ) if max(UpperCamelCase ,UpperCamelCase ) > max_size: snake_case__ :int = max_size / max(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = newh * scale snake_case__ :List[Any] = neww * scale snake_case__ , snake_case__ :Optional[int] = int(newh + 0.5 ), int(neww + 0.5 ) snake_case__ , snake_case__ :Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case__ :Union[str, Any] = [] for image in image_inputs: snake_case__ , snake_case__ :Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ :Tuple = max(UpperCamelCase ,key=lambda UpperCamelCase : item[0] )[0] snake_case__ :List[Any] = max(UpperCamelCase ,key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( _A , unittest.TestCase ): _A = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :str = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase ,"image_std" ) ) self.assertTrue(hasattr(UpperCamelCase ,"do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size_divisor" ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass def lowerCAmelCase_ ( self ) -> List[Any]: # Initialize image processor snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values snake_case__ , snake_case__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ :Optional[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values snake_case__ , snake_case__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ,batched=UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image processor snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :str = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values snake_case__ , snake_case__ :int = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ :Optional[int] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values snake_case__ , snake_case__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ,batched=UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image processor snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :List[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values snake_case__ , snake_case__ :List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ :str = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values snake_case__ , snake_case__ :List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase ,batched=UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,)
57
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _A , unittest.TestCase ): _A = CodeGenTokenizer _A = CodeGenTokenizerFast _A = True _A = {'add_prefix_space': True} _A = False def lowerCAmelCase_ ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ :Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] snake_case__ :List[str] = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) snake_case__ :Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case__ :str = {"unk_token": "<unk>"} snake_case__ :Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ :str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase ) ) def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> Any: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: snake_case__ :Any = "lower newer" snake_case__ :Dict = "lower newer" return input_text, output_text def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) snake_case__ :Optional[Any] = "lower newer" snake_case__ :Optional[int] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] snake_case__ :List[str] = tokenizer.tokenize(UpperCamelCase ,add_prefix_space=UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) snake_case__ :List[str] = tokens + [tokenizer.unk_token] snake_case__ :List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Any: if not self.test_rust_tokenizer: return snake_case__ :str = self.get_tokenizer() snake_case__ :List[Any] = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) snake_case__ :Tuple = "lower newer" # Testing tokenization snake_case__ :Optional[Any] = tokenizer.tokenize(UpperCamelCase ,add_prefix_space=UpperCamelCase ) snake_case__ :Optional[int] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) # Testing conversion to ids without special tokens snake_case__ :Dict = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) snake_case__ :List[Any] = rust_tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) # Testing conversion to ids with special tokens snake_case__ :Any = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) snake_case__ :str = tokenizer.encode(UpperCamelCase ,add_prefix_space=UpperCamelCase ) snake_case__ :int = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) # Testing the unknown token snake_case__ :Tuple = tokens + [rust_tokenizer.unk_token] snake_case__ :int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,UpperCamelCase ) def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCAmelCase_ ( self ,UpperCamelCase=15 ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case__ :Dict = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) # Simple input snake_case__ :List[str] = "This is a simple input" snake_case__ :int = ["This is a simple input 1", "This is a simple input 2"] snake_case__ :Dict = ("This is a simple input", "This is a pair") snake_case__ :Dict = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCamelCase ,tokenizer_r.encode ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Simple input self.assertRaises(UpperCamelCase ,tokenizer_r.encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Simple input self.assertRaises( UpperCamelCase ,tokenizer_r.batch_encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ,) # Pair input self.assertRaises(UpperCamelCase ,tokenizer_r.encode ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Pair input self.assertRaises(UpperCamelCase ,tokenizer_r.encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ) # Pair input self.assertRaises( UpperCamelCase ,tokenizer_r.batch_encode_plus ,UpperCamelCase ,max_length=UpperCamelCase ,padding="max_length" ,) def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input snake_case__ :List[Any] = "This is a simple input" snake_case__ :Union[str, Any] = ["This is a simple input looooooooong", "This is a simple input"] snake_case__ :int = ("This is a simple input", "This is a pair") snake_case__ :Union[str, Any] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] snake_case__ :Tuple = tokenizer.pad_token_id snake_case__ :Optional[Any] = tokenizer(UpperCamelCase ,padding="max_length" ,max_length=30 ,return_tensors="np" ) snake_case__ :List[Any] = tokenizer(UpperCamelCase ,padding=UpperCamelCase ,truncate=UpperCamelCase ,return_tensors="np" ) snake_case__ :Any = tokenizer(*UpperCamelCase ,padding="max_length" ,max_length=60 ,return_tensors="np" ) snake_case__ :List[str] = tokenizer(UpperCamelCase ,padding=UpperCamelCase ,truncate=UpperCamelCase ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = "$$$" snake_case__ :Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=UpperCamelCase ,add_bos_token=UpperCamelCase ) snake_case__ :int = "This is a simple input" snake_case__ :Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] snake_case__ :Any = tokenizer.bos_token_id snake_case__ :Optional[Any] = tokenizer(UpperCamelCase ) snake_case__ :int = tokenizer(UpperCamelCase ) self.assertEqual(out_s.input_ids[0] ,UpperCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case__ :int = tokenizer.decode(out_s.input_ids ) snake_case__ :Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,UpperCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) snake_case__ :List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" snake_case__ :str = "\nif len_a > len_b: result = a\nelse: result = b" snake_case__ :str = tokenizer.encode(UpperCamelCase ) snake_case__ :Dict = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] snake_case__ :str = tokenizer.decode(UpperCamelCase ,truncate_before_pattern=UpperCamelCase ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: pass
57
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
1
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Optional[int] = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : int = { "google/realm-cc-news-pretrained-embedder": 5_1_2, "google/realm-cc-news-pretrained-encoder": 5_1_2, "google/realm-cc-news-pretrained-scorer": 5_1_2, "google/realm-cc-news-pretrained-openqa": 5_1_2, "google/realm-orqa-nq-openqa": 5_1_2, "google/realm-orqa-nq-reader": 5_1_2, "google/realm-orqa-wq-openqa": 5_1_2, "google/realm-orqa-wq-reader": 5_1_2, } __UpperCAmelCase : List[Any] = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = RealmTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase="[UNK]" ,UpperCamelCase="[SEP]" ,UpperCamelCase="[PAD]" ,UpperCamelCase="[CLS]" ,UpperCamelCase="[MASK]" ,UpperCamelCase=True ,UpperCamelCase=None ,**UpperCamelCase ,) -> Optional[Any]: super().__init__( UpperCamelCase ,tokenizer_file=UpperCamelCase ,do_lower_case=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,pad_token=UpperCamelCase ,cls_token=UpperCamelCase ,mask_token=UpperCamelCase ,tokenize_chinese_chars=UpperCamelCase ,strip_accents=UpperCamelCase ,**UpperCamelCase ,) snake_case__ :List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" ,UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,UpperCamelCase ) != tokenize_chinese_chars ): snake_case__ :str = getattr(UpperCamelCase ,normalizer_state.pop("type" ) ) snake_case__ :Tuple = do_lower_case snake_case__ :Union[str, Any] = strip_accents snake_case__ :List[Any] = tokenize_chinese_chars snake_case__ :Any = normalizer_class(**UpperCamelCase ) snake_case__ :Any = do_lower_case def lowerCAmelCase_ ( self ,UpperCamelCase ,**UpperCamelCase ) -> List[Any]: snake_case__ :Optional[int] = PaddingStrategy.MAX_LENGTH snake_case__ :Any = text snake_case__ :List[Any] = kwargs.pop("text_pair" ,UpperCamelCase ) snake_case__ :Optional[int] = kwargs.pop("return_tensors" ,UpperCamelCase ) snake_case__ :List[Any] = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: snake_case__ :Tuple = batch_text_pair[idx] else: snake_case__ :str = None snake_case__ :Optional[Any] = super().__call__(UpperCamelCase ,UpperCamelCase ,return_tensors=UpperCamelCase ,**UpperCamelCase ) snake_case__ :Union[str, Any] = encoded_candidates.get("input_ids" ) snake_case__ :Optional[Any] = encoded_candidates.get("attention_mask" ) snake_case__ :int = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) snake_case__ :str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase ,tensor_type=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=None ) -> str: snake_case__ :List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :List[str] = [self.sep_token_id] snake_case__ :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :Tuple = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __UpperCAmelCase : Optional[int] = False try: __UpperCAmelCase : str = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _snake_case : def __init__( self ,UpperCamelCase = None ,UpperCamelCase = [] ) -> Tuple: snake_case__ :Any = 0 snake_case__ :Optional[Any] = choices snake_case__ :Union[str, Any] = prompt if sys.platform == "win32": snake_case__ :Optional[int] = "*" else: snake_case__ :Optional[int] = "➔ " def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = "" ) -> Optional[Any]: if sys.platform != "win32": writeColor(self.choices[index] ,32 ,UpperCamelCase ) else: forceWrite(self.choices[index] ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(UpperCamelCase ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = 1 ) -> Tuple: snake_case__ :Tuple = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase ) move_cursor(UpperCamelCase ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase_ ( self ) -> int: self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase_ ( self ) -> int: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase_ ( self ) -> Any: move_cursor(len(self.choices ) - self.position ,"DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase_ ( self ) -> Any: move_cursor(len(self.choices ) - self.position ,"DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase )] for number in range(10 )] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[Any] = int(chr(self.current_selection ) ) snake_case__ :str = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,UpperCamelCase ) else: return else: return def lowerCAmelCase_ ( self ,UpperCamelCase = 0 ) -> int: if self.prompt: linebreak() forceWrite(self.prompt ,"\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" ,"\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" ,"\n" ) snake_case__ :str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position ,"UP" ) with cursor.hide(): while True: if in_colab: try: snake_case__ :Dict = int(builtins.input() ) except ValueError: snake_case__ :Dict = default_choice else: snake_case__ :List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,"UP" ) clear_line() self.write_choice(UpperCamelCase ,"\n" ) return choice
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="resnet50" ,UpperCamelCase=3 ,UpperCamelCase=32 ,UpperCamelCase=3 ,UpperCamelCase=True ,UpperCamelCase=True ,) -> Optional[Any]: snake_case__ :List[str] = parent snake_case__ :Dict = out_indices if out_indices is not None else [4] snake_case__ :List[str] = stage_names snake_case__ :str = out_features snake_case__ :Union[str, Any] = backbone snake_case__ :int = batch_size snake_case__ :List[str] = image_size snake_case__ :Optional[Any] = num_channels snake_case__ :Any = use_pretrained_backbone snake_case__ :Tuple = is_training def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :List[str] = self.get_config() return config, pixel_values def lowerCAmelCase_ ( self ) -> str: return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Any = TimmBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ :List[str] = model(UpperCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ :List[Any] = config_and_inputs snake_case__ :str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( _A , _A , _A , unittest.TestCase ): _A = (TimmBackbone,) if is_torch_available() else () _A = {'feature-extraction': TimmBackbone} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = TimmBackboneModelTester(self ) snake_case__ :Optional[Any] = ConfigTester(self ,config_class=UpperCamelCase ,has_text_modality=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = "resnet18" snake_case__ :int = "microsoft/resnet-18" snake_case__ :List[Any] = AutoBackbone.from_pretrained(UpperCamelCase ,use_timm_backbone=UpperCamelCase ) snake_case__ :List[Any] = AutoBackbone.from_pretrained(UpperCamelCase ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) snake_case__ :str = AutoBackbone.from_pretrained(UpperCamelCase ,use_timm_backbone=UpperCamelCase ,out_indices=[1, 2, 3] ) snake_case__ :str = AutoBackbone.from_pretrained(UpperCamelCase ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowerCAmelCase_ ( self ) -> Optional[int]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCAmelCase_ ( self ) -> str: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowerCAmelCase_ ( self ) -> Dict: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCAmelCase_ ( self ) -> int: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCAmelCase_ ( self ) -> Dict: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("Safetensors is not supported by timm." ) def lowerCAmelCase_ ( self ) -> str: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass def lowerCAmelCase_ ( self ) -> Dict: snake_case__ , snake_case__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Tuple = model_class(UpperCamelCase ) snake_case__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :List[str] = [*signature.parameters.keys()] snake_case__ :Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ , snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Any = True snake_case__ :str = self.has_attentions # no need to test all models as different heads yield the same functionality snake_case__ :Tuple = self.all_model_classes[0] snake_case__ :str = model_class(UpperCamelCase ) model.to(UpperCamelCase ) snake_case__ :Optional[int] = self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = model(**UpperCamelCase ) snake_case__ :Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models snake_case__ :Dict = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: snake_case__ :Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase_ ( self ) -> int: snake_case__ , snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Tuple = model(**UpperCamelCase ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None snake_case__ :Optional[Any] = copy.deepcopy(UpperCamelCase ) snake_case__ :List[str] = None snake_case__ :List[Any] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[Any] = model(**UpperCamelCase ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights snake_case__ :Tuple = copy.deepcopy(UpperCamelCase ) snake_case__ :Tuple = False snake_case__ :Tuple = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Optional[int] = model(**UpperCamelCase )
57
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
1
from __future__ import annotations def lowercase_ ( __snake_case : int = 4 ) -> list[list[int]]: '''simple docstring''' snake_case__ :Union[str, Any] = abs(__snake_case ) or 4 return [[1 + x + y * row_size for x in range(__snake_case )] for y in range(__snake_case )] def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__snake_case ) ) # OR.. transpose(reverse_column(matrix)) def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__snake_case ) ) # OR.. transpose(reverse_row(matrix)) def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' snake_case__ :int = [list(__snake_case ) for x in zip(*__snake_case )] return matrix def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' snake_case__ :Optional[int] = matrix[::-1] return matrix def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' snake_case__ :Dict = [x[::-1] for x in matrix] return matrix def lowercase_ ( __snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in matrix: print(*__snake_case ) if __name__ == "__main__": __UpperCAmelCase : int = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) __UpperCAmelCase : Optional[int] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) __UpperCAmelCase : List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
57
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __UpperCAmelCase : int = { "n_samples": 6_4, "horizon": 3_2, "num_inference_steps": 2_0, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": __UpperCAmelCase : str = "hopper-medium-v2" __UpperCAmelCase : Optional[int] = gym.make(env_name) __UpperCAmelCase : List[Any] = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) __UpperCAmelCase : List[str] = env.reset() __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : int = 0 __UpperCAmelCase : List[str] = 1_0_0_0 __UpperCAmelCase : str = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __UpperCAmelCase : List[str] = pipeline(obs, planning_horizon=3_2) # execute action in environment __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = env.step(denorm_actions) __UpperCAmelCase : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) __UpperCAmelCase : Union[str, Any] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __UpperCAmelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowercase_ ( __snake_case : int , __snake_case : Any , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for attribute in key.split("." ): snake_case__ :Any = getattr(__snake_case , __snake_case ) if weight_type is not None: snake_case__ :List[Any] = getattr(__snake_case , __snake_case ).shape else: snake_case__ :str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case__ :Tuple = value elif weight_type == "weight_g": snake_case__ :List[str] = value elif weight_type == "weight_v": snake_case__ :Tuple = value elif weight_type == "bias": snake_case__ :Optional[int] = value else: snake_case__ :Optional[Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( __snake_case : str , __snake_case : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case__ :Dict = [] snake_case__ :List[str] = fairseq_model.state_dict() snake_case__ :List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ :str = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) snake_case__ :List[Any] = True else: for key, mapped_key in MAPPING.items(): snake_case__ :Optional[Any] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ :Dict = True if "*" in mapped_key: snake_case__ :int = name.split(__snake_case )[0].split("." )[-2] snake_case__ :Dict = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: snake_case__ :Optional[int] = "weight_g" elif "weight_v" in name: snake_case__ :int = "weight_v" elif "bias" in name: snake_case__ :int = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ :Optional[int] = "weight" else: snake_case__ :List[Any] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Dict ) -> List[str]: '''simple docstring''' snake_case__ :Dict = full_name.split("conv_layers." )[-1] snake_case__ :Union[str, Any] = name.split("." ) snake_case__ :Dict = int(items[0] ) snake_case__ :Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case__ :Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case__ :Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case__ :Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case__ :Optional[int] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=None , __snake_case : List[str]=None , __snake_case : Optional[int]=True ) -> Optional[Any]: '''simple docstring''' if config_path is not None: snake_case__ :int = UniSpeechSatConfig.from_pretrained(__snake_case ) else: snake_case__ :Tuple = UniSpeechSatConfig() snake_case__ :Optional[Any] = "" if is_finetuned: snake_case__ :Optional[Any] = UniSpeechSatForCTC(__snake_case ) else: snake_case__ :Optional[Any] = UniSpeechSatForPreTraining(__snake_case ) snake_case__ , snake_case__ , snake_case__ :Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ :Tuple = model[0].eval() recursively_load_weights(__snake_case , __snake_case ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCAmelCase : Optional[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
57
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _snake_case ( _A ): _A = 'time_series_transformer' _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = "student_t" ,UpperCamelCase = "nll" ,UpperCamelCase = 1 ,UpperCamelCase = [1, 2, 3, 4, 5, 6, 7] ,UpperCamelCase = "mean" ,UpperCamelCase = 0 ,UpperCamelCase = 0 ,UpperCamelCase = 0 ,UpperCamelCase = 0 ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = 32 ,UpperCamelCase = 32 ,UpperCamelCase = 2 ,UpperCamelCase = 2 ,UpperCamelCase = 2 ,UpperCamelCase = 2 ,UpperCamelCase = True ,UpperCamelCase = "gelu" ,UpperCamelCase = 64 ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 0.1 ,UpperCamelCase = 100 ,UpperCamelCase = 0.02 ,UpperCamelCase=True ,**UpperCamelCase ,) -> List[Any]: # time series specific configuration snake_case__ :Optional[Any] = prediction_length snake_case__ :str = context_length or prediction_length snake_case__ :Dict = distribution_output snake_case__ :Tuple = loss snake_case__ :Optional[int] = input_size snake_case__ :Union[str, Any] = num_time_features snake_case__ :List[Any] = lags_sequence snake_case__ :Union[str, Any] = scaling snake_case__ :Union[str, Any] = num_dynamic_real_features snake_case__ :List[str] = num_static_real_features snake_case__ :List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) snake_case__ :Any = cardinality else: snake_case__ :Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) snake_case__ :Optional[Any] = embedding_dimension else: snake_case__ :str = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] snake_case__ :Union[str, Any] = num_parallel_samples # Transformer architecture configuration snake_case__ :int = input_size * len(UpperCamelCase ) + self._number_of_features snake_case__ :List[str] = d_model snake_case__ :Any = encoder_attention_heads snake_case__ :Dict = decoder_attention_heads snake_case__ :Any = encoder_ffn_dim snake_case__ :Tuple = decoder_ffn_dim snake_case__ :str = encoder_layers snake_case__ :int = decoder_layers snake_case__ :Any = dropout snake_case__ :Dict = attention_dropout snake_case__ :Dict = activation_dropout snake_case__ :int = encoder_layerdrop snake_case__ :Union[str, Any] = decoder_layerdrop snake_case__ :Optional[Any] = activation_function snake_case__ :Tuple = init_std snake_case__ :Optional[int] = use_cache super().__init__(is_encoder_decoder=UpperCamelCase ,**UpperCamelCase ) @property def lowerCAmelCase_ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
57
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : str = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class _snake_case ( _A ): _A = 'rwkv' _A = {'max_position_embeddings': 'context_length'} def __init__( self ,UpperCamelCase=50_277 ,UpperCamelCase=1_024 ,UpperCamelCase=4_096 ,UpperCamelCase=32 ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=1E-5 ,UpperCamelCase=0 ,UpperCamelCase=0 ,UpperCamelCase=6 ,UpperCamelCase=False ,UpperCamelCase=True ,**UpperCamelCase ,) -> Dict: snake_case__ :Dict = vocab_size snake_case__ :Optional[int] = context_length snake_case__ :int = hidden_size snake_case__ :Optional[Any] = num_hidden_layers snake_case__ :Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case__ :List[Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case__ :List[str] = layer_norm_epsilon snake_case__ :Tuple = rescale_every snake_case__ :Optional[int] = use_cache snake_case__ :Dict = bos_token_id snake_case__ :List[str] = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase ,bos_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,**UpperCamelCase )
57
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCAmelCase : Optional[int] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __UpperCAmelCase : Tuple = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } @lru_cache() def lowercase_ ( ) -> int: '''simple docstring''' snake_case__ :Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ :Union[str, Any] = bs[:] snake_case__ :Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 snake_case__ :List[str] = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def lowercase_ ( __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = set() snake_case__ :Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ :Tuple = char return pairs class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase="replace" ,UpperCamelCase="<s>" ,UpperCamelCase="</s>" ,UpperCamelCase="</s>" ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase=False ,**UpperCamelCase ,) -> Optional[int]: snake_case__ :str = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else bos_token snake_case__ :int = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else eos_token snake_case__ :Any = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else sep_token snake_case__ :List[str] = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else cls_token snake_case__ :Tuple = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else unk_token snake_case__ :Dict = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ :List[Any] = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token super().__init__( errors=UpperCamelCase ,bos_token=UpperCamelCase ,eos_token=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,cls_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,add_prefix_space=UpperCamelCase ,**UpperCamelCase ,) with open(UpperCamelCase ,encoding="utf-8" ) as vocab_handle: snake_case__ :Optional[int] = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ :Dict = errors # how to handle errors in decoding snake_case__ :int = bytes_to_unicode() snake_case__ :List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase ,encoding="utf-8" ) as merges_handle: snake_case__ :Union[str, Any] = merges_handle.read().split("\n" )[1:-1] snake_case__ :List[str] = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ :Union[str, Any] = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) snake_case__ :Dict = {} snake_case__ :int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ :str = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCAmelCase_ ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase_ ( self ) -> Optional[int]: return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: if token in self.cache: return self.cache[token] snake_case__ :Dict = tuple(UpperCamelCase ) snake_case__ :List[Any] = get_pairs(UpperCamelCase ) if not pairs: return token while True: snake_case__ :List[Any] = min(UpperCamelCase ,key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ :Optional[int] = bigram snake_case__ :List[str] = [] snake_case__ :Tuple = 0 while i < len(UpperCamelCase ): try: snake_case__ :List[str] = word.index(UpperCamelCase ,UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ :List[Any] = j if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ :Any = tuple(UpperCamelCase ) snake_case__ :Any = new_word if len(UpperCamelCase ) == 1: break else: snake_case__ :Union[str, Any] = get_pairs(UpperCamelCase ) snake_case__ :Tuple = " ".join(UpperCamelCase ) snake_case__ :Optional[Any] = word return word def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: snake_case__ :str = [] for token in re.findall(self.pat ,UpperCamelCase ): snake_case__ :Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: return self.encoder.get(UpperCamelCase ,self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: return self.decoder.get(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: snake_case__ :Tuple = "".join(UpperCamelCase ) snake_case__ :Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case__ :List[Any] = os.path.join( UpperCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ :str = os.path.join( UpperCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=UpperCamelCase ,ensure_ascii=UpperCamelCase ) + "\n" ) snake_case__ :int = 0 with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) snake_case__ :Tuple = token_index writer.write(" ".join(UpperCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ :Any = [self.cls_token_id] snake_case__ :Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Union[str, Any] = [self.sep_token_id] snake_case__ :List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=False ,**UpperCamelCase ) -> Optional[Any]: snake_case__ :Tuple = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase ) > 0 and not text[0].isspace()): snake_case__ :Any = " " + text return (text, kwargs)
57
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase : str = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class _snake_case ( _A ): _A = 'facebook/nllb-200-distilled-600M' _A = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) _A = 'translator' _A = AutoTokenizer _A = AutoModelForSeqaSeqLM _A = LANGUAGE_CODES _A = ['text', 'text', 'text'] _A = ['text'] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) snake_case__ :Optional[Any] = self.lang_to_code[src_lang] snake_case__ :Union[str, Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase ,return_tensors="pt" ,src_lang=UpperCamelCase ,tgt_lang=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: return self.model.generate(**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=UpperCamelCase )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowercase_ ( __snake_case : SplitDict ) -> int: '''simple docstring''' snake_case__ :Any = split_dict._to_yaml_list() assert len(__snake_case ) == len(__snake_case ) snake_case__ :int = SplitDict._from_yaml_list(__snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case__ :List[Any] = None # the split name of split_dict takes over the name of the split info object snake_case__ :List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__snake_case ), SplitInfo(dataset_name="my_dataset" )] ) def lowercase_ ( __snake_case : Dict ) -> Any: '''simple docstring''' snake_case__ :Any = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
57
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase_ ( __snake_case : Optional[int] , __snake_case : Tuple=False ) -> List[str]: '''simple docstring''' snake_case__ :List[Any] = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : Tuple=None ) -> Optional[int]: '''simple docstring''' if conf_path is None: snake_case__ :str = "./model_checkpoints/vqgan_only.yaml" snake_case__ :Tuple = load_config(__snake_case , display=__snake_case ) snake_case__ :str = VQModel(**config.model.params ) if ckpt_path is None: snake_case__ :Union[str, Any] = "./model_checkpoints/vqgan_only.pt" snake_case__ :List[Any] = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: snake_case__ :List[Any] = sd["state_dict"] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def lowercase_ ( __snake_case : int , __snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ , snake_case__ , snake_case__ :Union[str, Any] = model.encode(__snake_case ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) snake_case__ :str = model.decode(__snake_case ) return xrec def lowercase_ ( __snake_case : int , __snake_case : Dict=False ) -> Tuple: '''simple docstring''' snake_case__ , snake_case__ :List[Any] = string.rsplit("." , 1 ) if reload: snake_case__ :Optional[Any] = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def lowercase_ ( __snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def lowercase_ ( __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any]=True , __snake_case : Any=True ) -> int: '''simple docstring''' snake_case__ :str = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase_ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' if ckpt: snake_case__ :int = torch.load(__snake_case , map_location="cpu" ) snake_case__ :Optional[int] = pl_sd["global_step"] print(F'loaded model from global step {global_step}.' ) else: snake_case__ :Optional[int] = {"state_dict": None} snake_case__ :Optional[Any] = None snake_case__ :Dict = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__snake_case , eval_mode=__snake_case )["model"] return model, global_step
57
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
1
from collections import namedtuple __UpperCAmelCase : List[str] = namedtuple("from_to", "from_ to") __UpperCAmelCase : int = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 264.172), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.0_0023_6588, 4226.75), } def lowercase_ ( __snake_case : float , __snake_case : str , __snake_case : str ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ", ".join(__snake_case ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ", ".join(__snake_case ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
57
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
1
from __future__ import annotations __UpperCAmelCase : str = "Muhammad Umer Farooq" __UpperCAmelCase : Tuple = "MIT" __UpperCAmelCase : Union[str, Any] = "1.0.0" __UpperCAmelCase : Dict = "Muhammad Umer Farooq" __UpperCAmelCase : List[str] = "contact@muhammadumerfarooq.me" __UpperCAmelCase : Tuple = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class _snake_case ( _A ): def __init__( self ,UpperCamelCase ) -> None: super().__init__() snake_case__ :list[str] = [] snake_case__ :List[Any] = domain def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ :List[str] = parse.urljoin(self.domain ,UpperCamelCase ) self.urls.append(UpperCamelCase ) def lowercase_ ( __snake_case : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__snake_case ).split("." )[-2:] ) def lowercase_ ( __snake_case : str ) -> str: '''simple docstring''' return parse.urlparse(__snake_case ).netloc def lowercase_ ( __snake_case : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ :str = get_domain_name(__snake_case ) # Initialize the parser snake_case__ :str = Parser(__snake_case ) try: # Open URL snake_case__ :Union[str, Any] = requests.get(__snake_case ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ :Optional[Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ :str = requests.get(__snake_case ) # Get the valid email. snake_case__ :List[Any] = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__snake_case ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = emails_from_url("https://github.com") print(F'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
57
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Optional[Any] = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Tuple = { "google/fnet-base": 5_1_2, "google/fnet-large": 5_1_2, } __UpperCAmelCase : int = "▁" class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'token_type_ids'] _A = FNetTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase="<unk>" ,UpperCamelCase="[SEP]" ,UpperCamelCase="<pad>" ,UpperCamelCase="[CLS]" ,UpperCamelCase="[MASK]" ,**UpperCamelCase ,) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case__ :List[str] = ( AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ,normalized=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token ) super().__init__( UpperCamelCase ,tokenizer_file=UpperCamelCase ,do_lower_case=UpperCamelCase ,remove_space=UpperCamelCase ,keep_accents=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,pad_token=UpperCamelCase ,cls_token=UpperCamelCase ,mask_token=UpperCamelCase ,**UpperCamelCase ,) snake_case__ :Optional[Any] = do_lower_case snake_case__ :int = remove_space snake_case__ :Optional[Any] = keep_accents snake_case__ :Any = vocab_file snake_case__ :Optional[int] = False if not self.vocab_file else True def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Tuple = [self.sep_token_id] snake_case__ :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case__ :List[str] = os.path.join( UpperCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file ,UpperCamelCase ) return (out_vocab_file,)
57
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
1
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _snake_case ( _A ): def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase ,"tf_padding" ) ) self.parent.assertTrue(hasattr(UpperCamelCase ,"depth_multiplier" ) ) class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=3 ,UpperCamelCase=32 ,UpperCamelCase=0.25 ,UpperCamelCase=8 ,UpperCamelCase=8 ,UpperCamelCase=6 ,UpperCamelCase=32 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase="relu6" ,UpperCamelCase=1_280 ,UpperCamelCase=0.1 ,UpperCamelCase=0.02 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=10 ,UpperCamelCase=None ,) -> Any: snake_case__ :Tuple = parent snake_case__ :str = batch_size snake_case__ :Union[str, Any] = num_channels snake_case__ :Optional[int] = image_size snake_case__ :str = depth_multiplier snake_case__ :List[Any] = depth_divisible_by snake_case__ :Union[str, Any] = min_depth snake_case__ :Dict = expand_ratio snake_case__ :Any = tf_padding snake_case__ :Optional[Any] = output_stride snake_case__ :Optional[int] = first_layer_is_expansion snake_case__ :List[Any] = finegrained_output snake_case__ :str = hidden_act snake_case__ :List[Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) snake_case__ :Union[str, Any] = classifier_dropout_prob snake_case__ :Optional[Any] = use_labels snake_case__ :Optional[Any] = is_training snake_case__ :Dict = num_labels snake_case__ :Union[str, Any] = initializer_range snake_case__ :Dict = scope def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :List[Any] = None snake_case__ :Dict = None if self.use_labels: snake_case__ :str = ids_tensor([self.batch_size] ,self.num_labels ) snake_case__ :List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) snake_case__ :Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self ) -> List[Any]: return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,depth_divisible_by=self.depth_divisible_by ,min_depth=self.min_depth ,expand_ratio=self.expand_ratio ,output_stride=self.output_stride ,first_layer_is_expansion=self.first_layer_is_expansion ,finegrained_output=self.finegrained_output ,hidden_act=self.hidden_act ,tf_padding=self.tf_padding ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :Dict = MobileNetVaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) self.parent.assertEqual( result.pooler_output.shape ,(self.batch_size, self.last_hidden_size) ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :List[Any] = self.num_labels snake_case__ :Dict = MobileNetVaForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Union[str, Any] = model(UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :str = self.num_labels snake_case__ :List[str] = MobileNetVaForSemanticSegmentation(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Optional[Any] = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) snake_case__ :str = model(UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = config_and_inputs snake_case__ :List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _A , _A , unittest.TestCase ): _A = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = MobileNetVaModelTester(self ) snake_case__ :int = MobileNetVaConfigTester(self ,config_class=UpperCamelCase ,has_text_modality=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def lowerCAmelCase_ ( self ) -> List[Any]: pass def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ , snake_case__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Dict = model_class(UpperCamelCase ) snake_case__ :List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Any = [*signature.parameters.keys()] snake_case__ :Any = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: def check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): snake_case__ :Union[str, Any] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ :str = model(**self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) ) snake_case__ :Dict = outputs.hidden_states snake_case__ :List[Any] = 16 self.assertEqual(len(UpperCamelCase ) ,UpperCamelCase ) snake_case__ , snake_case__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Optional[int] = True check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :str = True check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Tuple: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :str = MobileNetVaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowercase_ ( ) -> Tuple: '''simple docstring''' snake_case__ :Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Any: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Union[str, Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(UpperCamelCase ) snake_case__ :int = self.default_image_processor snake_case__ :Any = prepare_img() snake_case__ :int = image_processor(images=UpperCamelCase ,return_tensors="pt" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ :Union[str, Any] = model(**UpperCamelCase ) # verify the logits snake_case__ :Optional[Any] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape ,UpperCamelCase ) snake_case__ :Any = torch.tensor([0.2445, -1.1993, 0.1905] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCamelCase ,atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) snake_case__ :Dict = model.to(UpperCamelCase ) snake_case__ :List[str] = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) snake_case__ :List[str] = prepare_img() snake_case__ :Optional[Any] = image_processor(images=UpperCamelCase ,return_tensors="pt" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ :Union[str, Any] = model(**UpperCamelCase ) snake_case__ :List[str] = outputs.logits # verify the logits snake_case__ :Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape ,UpperCamelCase ) snake_case__ :Union[str, Any] = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] ,device=UpperCamelCase ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,UpperCamelCase ,atol=1E-4 ) )
57
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _snake_case ( _A , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _snake_case ( unittest.TestCase ): @property def lowerCAmelCase_ ( self ) -> Tuple: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[int] = ort.SessionOptions() snake_case__ :Any = False return options def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) snake_case__ :Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) snake_case__ :List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" ,revision="onnx" ,safety_checker=UpperCamelCase ,feature_extractor=UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Tuple = "A red cat sitting on a park bench" snake_case__ :Optional[Any] = np.random.RandomState(0 ) snake_case__ :List[str] = pipe( prompt=UpperCamelCase ,image=UpperCamelCase ,mask_image=UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=UpperCamelCase ,output_type="np" ,) snake_case__ :int = output.images snake_case__ :Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case__ :Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) snake_case__ :List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) snake_case__ :Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" ,subfolder="scheduler" ,revision="onnx" ) snake_case__ :Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" ,revision="onnx" ,scheduler=UpperCamelCase ,safety_checker=UpperCamelCase ,feature_extractor=UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Tuple = "A red cat sitting on a park bench" snake_case__ :Dict = np.random.RandomState(0 ) snake_case__ :Optional[Any] = pipe( prompt=UpperCamelCase ,image=UpperCamelCase ,mask_image=UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=UpperCamelCase ,output_type="np" ,) snake_case__ :Tuple = output.images snake_case__ :str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case__ :List[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
57
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
1
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[int] = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : List[str] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Tuple ) -> Dict: '''simple docstring''' snake_case__ :Optional[int] = FunnelConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) snake_case__ :Tuple = FunnelBaseModel(__snake_case ) if base_model else FunnelModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __UpperCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : List[str] = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowercase_ ( __snake_case : Any ) -> Any: '''simple docstring''' if isinstance(__snake_case , collections.abc.Iterable ): return x return (x, x) @require_flax class _snake_case : def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> str: pass def lowerCAmelCase_ ( self ) -> str: pass def lowerCAmelCase_ ( self ) -> List[str]: pass def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase ,UpperCamelCase ,f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> Dict: snake_case__ :Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase ,UpperCamelCase ) snake_case__ :List[str] = FlaxVisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :Dict = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> List[Any]: snake_case__ , snake_case__ :Any = self.get_vision_text_model(UpperCamelCase ,UpperCamelCase ) snake_case__ :Optional[int] = {"vision_model": vision_model, "text_model": text_model} snake_case__ :Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) snake_case__ :str = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> Union[str, Any]: snake_case__ , snake_case__ :List[Any] = self.get_vision_text_model(UpperCamelCase ,UpperCamelCase ) snake_case__ :Optional[int] = {"vision_model": vision_model, "text_model": text_model} snake_case__ :Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) snake_case__ :Any = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) snake_case__ :Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) snake_case__ :Any = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) snake_case__ :Any = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) snake_case__ :List[str] = after_output[0] snake_case__ :Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase ,1E-3 ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> int: snake_case__ , snake_case__ :List[Any] = self.get_vision_text_model(UpperCamelCase ,UpperCamelCase ) snake_case__ :Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} snake_case__ :Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) snake_case__ :int = model( input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ,output_attentions=UpperCamelCase ) snake_case__ :Tuple = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ :Optional[Any] = to_atuple(vision_model.config.image_size ) snake_case__ :int = to_atuple(vision_model.config.patch_size ) snake_case__ :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ :List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ :Optional[Any] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: pt_model.to(UpperCamelCase ) pt_model.eval() # prepare inputs snake_case__ :Optional[int] = inputs_dict snake_case__ :List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): snake_case__ :str = pt_model(**UpperCamelCase ).to_tuple() snake_case__ :Optional[Any] = fx_model(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase ,pt_output.numpy() ,4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCamelCase ) snake_case__ :Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ,from_pt=UpperCamelCase ) snake_case__ :str = fx_model_loaded(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase ,pt_output.numpy() ,4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = VisionTextDualEncoderModel.from_pretrained(UpperCamelCase ,from_flax=UpperCamelCase ) pt_model_loaded.to(UpperCamelCase ) pt_model_loaded.eval() with torch.no_grad(): snake_case__ :Tuple = pt_model_loaded(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCamelCase ,pt_output_loaded.numpy() ,4E-2 ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase ,UpperCamelCase ) snake_case__ :str = VisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :int = FlaxVisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,UpperCamelCase ) snake_case__ :int = fx_state self.check_pt_flax_equivalence(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = VisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :Union[str, Any] = FlaxVisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :List[Any] = load_flax_weights_in_pytorch_model(UpperCamelCase ,fx_model.params ) self.check_pt_flax_equivalence(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase ) @is_pt_flax_cross_test def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = self.prepare_config_and_inputs() snake_case__ :Optional[int] = config_inputs_dict.pop("vision_config" ) snake_case__ :Dict = config_inputs_dict.pop("text_config" ) snake_case__ :Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) self.check_equivalence_flax_to_pt(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :Dict = self.get_pretrained_model_and_inputs() snake_case__ :List[Any] = model_a(**UpperCamelCase ) snake_case__ :Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase ) snake_case__ :Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) snake_case__ :List[str] = model_a(**UpperCamelCase ) snake_case__ :Tuple = after_outputs[0] snake_case__ :Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase ,1E-5 ) @require_flax class _snake_case ( _A , unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" ,"hf-internal-testing/tiny-bert" ,vision_from_pt=UpperCamelCase ,text_from_pt=UpperCamelCase ,) snake_case__ :Union[str, Any] = 13 snake_case__ :List[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case__ :Union[str, Any] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) snake_case__ :Optional[int] = random_attention_mask([batch_size, 4] ) snake_case__ :Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :Dict = FlaxViTModel(UpperCamelCase ) snake_case__ :Tuple = FlaxBertModel(UpperCamelCase ) return vision_model, text_model def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[int] = FlaxViTModelTester(self ) snake_case__ :Optional[Any] = FlaxBertModelTester(self ) snake_case__ :Dict = vit_model_tester.prepare_config_and_inputs() snake_case__ :int = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ :int = vision_config_and_inputs snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _snake_case ( _A , unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Any: snake_case__ :int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" ,"hf-internal-testing/tiny-bert" ,vision_from_pt=UpperCamelCase ,text_from_pt=UpperCamelCase ,) snake_case__ :List[Any] = 13 snake_case__ :Dict = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case__ :Union[str, Any] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) snake_case__ :Optional[Any] = random_attention_mask([batch_size, 4] ) snake_case__ :Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Any = FlaxCLIPVisionModel(UpperCamelCase ) snake_case__ :Union[str, Any] = FlaxBertModel(UpperCamelCase ) return vision_model, text_model def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = FlaxCLIPVisionModelTester(self ) snake_case__ :Optional[int] = FlaxBertModelTester(self ) snake_case__ :Tuple = clip_model_tester.prepare_config_and_inputs() snake_case__ :int = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ :Optional[int] = vision_config_and_inputs snake_case__ , snake_case__ , snake_case__ , snake_case__ :Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Dict = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" ,logit_scale_init_value=1.0 ) snake_case__ :Any = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) snake_case__ :Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) snake_case__ :Tuple = processor( text=["una foto di un gatto", "una foto di un cane"] ,images=UpperCamelCase ,padding=UpperCamelCase ,return_tensors="np" ) snake_case__ :List[Any] = model(**UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) snake_case__ :Dict = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,UpperCamelCase ,atol=1E-3 ) )
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __snake_case : int , __snake_case : Tuple , __snake_case : str , __snake_case : int ) -> Dict: '''simple docstring''' snake_case__ :Tuple = BigBirdConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: snake_case__ :Union[str, Any] = BigBirdForQuestionAnswering(__snake_case ) else: snake_case__ :List[str] = BigBirdForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__snake_case , __snake_case , is_trivia_qa=__snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) __UpperCAmelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
57
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
1
from __future__ import annotations def lowercase_ ( __snake_case : list[float] ) -> float: '''simple docstring''' snake_case__ :str = 0.0_0 snake_case__ :int = 0 for resistor in resistors: if resistor <= 0: snake_case__ :int = F'Resistor at index {index} has a negative or zero value!' raise ValueError(__snake_case ) first_sum += 1 / float(__snake_case ) index += 1 return 1 / first_sum def lowercase_ ( __snake_case : list[float] ) -> float: '''simple docstring''' snake_case__ :List[Any] = 0.0_0 snake_case__ :Dict = 0 for resistor in resistors: sum_r += resistor if resistor < 0: snake_case__ :int = F'Resistor at index {index} has a negative value!' raise ValueError(__snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
57
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
1
import logging from transformers import PretrainedConfig __UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) __UpperCAmelCase : List[str] = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class _snake_case ( _A ): _A = 'bertabs' def __init__( self ,UpperCamelCase=30_522 ,UpperCamelCase=512 ,UpperCamelCase=6 ,UpperCamelCase=512 ,UpperCamelCase=8 ,UpperCamelCase=512 ,UpperCamelCase=0.2 ,UpperCamelCase=6 ,UpperCamelCase=768 ,UpperCamelCase=8 ,UpperCamelCase=2_048 ,UpperCamelCase=0.2 ,**UpperCamelCase ,) -> Optional[int]: super().__init__(**UpperCamelCase ) snake_case__ :int = vocab_size snake_case__ :Optional[Any] = max_pos snake_case__ :List[Any] = enc_layers snake_case__ :List[str] = enc_hidden_size snake_case__ :str = enc_heads snake_case__ :Optional[Any] = enc_ff_size snake_case__ :Any = enc_dropout snake_case__ :int = dec_layers snake_case__ :List[str] = dec_hidden_size snake_case__ :Dict = dec_heads snake_case__ :Any = dec_ff_size snake_case__ :str = dec_dropout
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( _A , unittest.TestCase ): _A = KandinskyVaaControlnetImgaImgPipeline _A = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _A = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _A = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _A = False @property def lowerCAmelCase_ ( self ) -> Tuple: return 32 @property def lowerCAmelCase_ ( self ) -> str: return 32 @property def lowerCAmelCase_ ( self ) -> List[str]: return self.time_input_dim @property def lowerCAmelCase_ ( self ) -> List[Any]: return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self ) -> List[Any]: return 100 @property def lowerCAmelCase_ ( self ) -> Dict: torch.manual_seed(0 ) snake_case__ :Optional[Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case__ :List[Any] = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowerCAmelCase_ ( self ) -> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ :Dict = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase_ ( self ) -> Any: snake_case__ :str = self.dummy_unet snake_case__ :List[Any] = self.dummy_movq snake_case__ :List[Any] = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } snake_case__ :List[str] = DDIMScheduler(**UpperCamelCase ) snake_case__ :Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> Optional[int]: snake_case__ :Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ :int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) # create init_image snake_case__ :Optional[int] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ :List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ :Any = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) # create hint snake_case__ :int = floats_tensor((1, 3, 64, 64) ,rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith("mps" ): snake_case__ :int = torch.manual_seed(UpperCamelCase ) else: snake_case__ :Tuple = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :List[Any] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase_ ( self ) -> int: snake_case__ :Dict = "cpu" snake_case__ :Union[str, Any] = self.get_dummy_components() snake_case__ :Dict = self.pipeline_class(**UpperCamelCase ) snake_case__ :Union[str, Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Optional[int] = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) snake_case__ :Dict = output.images snake_case__ :List[Any] = pipe( **self.get_dummy_inputs(UpperCamelCase ) ,return_dict=UpperCamelCase ,)[0] snake_case__ :Union[str, Any] = image[0, -3:, -3:, -1] snake_case__ :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ :Union[str, Any] = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) snake_case__ :str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case__ :Any = init_image.resize((512, 512) ) snake_case__ :int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) snake_case__ :Tuple = torch.from_numpy(np.array(UpperCamelCase ) ).float() / 255.0 snake_case__ :List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) snake_case__ :Dict = "A robot, 4k photo" snake_case__ :Dict = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" ,torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) snake_case__ :Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" ,torch_dtype=torch.floataa ) snake_case__ :Optional[Any] = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case__ , snake_case__ :Dict = pipe_prior( UpperCamelCase ,image=UpperCamelCase ,strength=0.85 ,generator=UpperCamelCase ,negative_prompt="" ,).to_tuple() snake_case__ :Union[str, Any] = pipeline( image=UpperCamelCase ,image_embeds=UpperCamelCase ,negative_image_embeds=UpperCamelCase ,hint=UpperCamelCase ,generator=UpperCamelCase ,num_inference_steps=100 ,height=512 ,width=512 ,strength=0.5 ,output_type="np" ,) snake_case__ :Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCamelCase ,UpperCamelCase )
57
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
1
import inspect import unittest class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def lowerCAmelCase_ ( self ) -> Any: import diffusers from diffusers.dependency_versions_table import deps snake_case__ :int = inspect.getmembers(UpperCamelCase ,inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case__ :Optional[Any] = "k-diffusion" elif backend == "invisible_watermark": snake_case__ :Union[str, Any] = "invisible-watermark" assert backend in deps, f'{backend} is not in the deps table!'
57
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[Any] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) snake_case__ :List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" snake_case__ :Optional[int] = model(UpperCamelCase )["last_hidden_state"] snake_case__ :Optional[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape ,UpperCamelCase ) # compare the actual values for a slice. snake_case__ :Optional[int] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
57
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
1
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _snake_case ( _A ): _A = 42 class _snake_case ( _A , _A ): _A = True @register_to_config def __init__( self ,UpperCamelCase = 3 ,UpperCamelCase = 3 ,UpperCamelCase = ("DownEncoderBlock2D",) ,UpperCamelCase = ("UpDecoderBlock2D",) ,UpperCamelCase = (64,) ,UpperCamelCase = 1 ,UpperCamelCase = "silu" ,UpperCamelCase = 4 ,UpperCamelCase = 32 ,UpperCamelCase = 32 ,UpperCamelCase = 0.18215 ,) -> int: super().__init__() # pass init params to Encoder snake_case__ :Union[str, Any] = Encoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,down_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,double_z=UpperCamelCase ,) # pass init params to Decoder snake_case__ :int = Decoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,up_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,norm_num_groups=UpperCamelCase ,act_fn=UpperCamelCase ,) snake_case__ :Any = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) snake_case__ :List[Any] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) snake_case__ :List[str] = False snake_case__ :List[str] = False # only relevant if vae tiling is enabled snake_case__ :str = self.config.sample_size snake_case__ :Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) snake_case__ :str = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) snake_case__ :int = 0.25 def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=False ) -> str: if isinstance(UpperCamelCase ,(Encoder, Decoder) ): snake_case__ :List[str] = value def lowerCAmelCase_ ( self ,UpperCamelCase = True ) -> List[str]: snake_case__ :Any = use_tiling def lowerCAmelCase_ ( self ) -> List[str]: self.enable_tiling(UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = True def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase_ ( self ) -> Dict[str, AttentionProcessor]: snake_case__ :List[Any] = {} def fn_recursive_add_processors(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): if hasattr(UpperCamelCase ,"set_processor" ): snake_case__ :int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' ,UpperCamelCase ,UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) return processors def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :List[str] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase ,UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): if hasattr(UpperCamelCase ,"set_processor" ): if not isinstance(UpperCamelCase ,UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' ,UpperCamelCase ,UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase ,return_dict=UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: snake_case__ :Optional[int] = [self.encoder(UpperCamelCase ) for x_slice in x.split(1 )] snake_case__ :Union[str, Any] = torch.cat(UpperCamelCase ) else: snake_case__ :Any = self.encoder(UpperCamelCase ) snake_case__ :str = self.quant_conv(UpperCamelCase ) snake_case__ :Dict = DiagonalGaussianDistribution(UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase ,return_dict=UpperCamelCase ) snake_case__ :Dict = self.post_quant_conv(UpperCamelCase ) snake_case__ :List[str] = self.decoder(UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) @apply_forward_hook def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: snake_case__ :str = [self._decode(UpperCamelCase ).sample for z_slice in z.split(1 )] snake_case__ :Any = torch.cat(UpperCamelCase ) else: snake_case__ :List[Any] = self._decode(UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :int = min(a.shape[2] ,b.shape[2] ,UpperCamelCase ) for y in range(UpperCamelCase ): snake_case__ :str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :Union[str, Any] = min(a.shape[3] ,b.shape[3] ,UpperCamelCase ) for x in range(UpperCamelCase ): snake_case__ :int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> AutoencoderKLOutput: snake_case__ :int = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) snake_case__ :Optional[int] = int(self.tile_latent_min_size * self.tile_overlap_factor ) snake_case__ :Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. snake_case__ :List[Any] = [] for i in range(0 ,x.shape[2] ,UpperCamelCase ): snake_case__ :List[str] = [] for j in range(0 ,x.shape[3] ,UpperCamelCase ): snake_case__ :Union[str, Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] snake_case__ :List[Any] = self.encoder(UpperCamelCase ) snake_case__ :Optional[Any] = self.quant_conv(UpperCamelCase ) row.append(UpperCamelCase ) rows.append(UpperCamelCase ) snake_case__ :Tuple = [] for i, row in enumerate(UpperCamelCase ): snake_case__ :Tuple = [] for j, tile in enumerate(UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case__ :List[Any] = self.blend_v(rows[i - 1][j] ,UpperCamelCase ,UpperCamelCase ) if j > 0: snake_case__ :List[str] = self.blend_h(row[j - 1] ,UpperCamelCase ,UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase ,dim=3 ) ) snake_case__ :Tuple = torch.cat(UpperCamelCase ,dim=2 ) snake_case__ :Dict = DiagonalGaussianDistribution(UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case__ :Tuple = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) snake_case__ :Any = int(self.tile_sample_min_size * self.tile_overlap_factor ) snake_case__ :List[str] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. snake_case__ :List[Any] = [] for i in range(0 ,z.shape[2] ,UpperCamelCase ): snake_case__ :Tuple = [] for j in range(0 ,z.shape[3] ,UpperCamelCase ): snake_case__ :Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] snake_case__ :Union[str, Any] = self.post_quant_conv(UpperCamelCase ) snake_case__ :Tuple = self.decoder(UpperCamelCase ) row.append(UpperCamelCase ) rows.append(UpperCamelCase ) snake_case__ :Optional[int] = [] for i, row in enumerate(UpperCamelCase ): snake_case__ :Optional[int] = [] for j, tile in enumerate(UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case__ :List[str] = self.blend_v(rows[i - 1][j] ,UpperCamelCase ,UpperCamelCase ) if j > 0: snake_case__ :str = self.blend_h(row[j - 1] ,UpperCamelCase ,UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase ,dim=3 ) ) snake_case__ :Union[str, Any] = torch.cat(UpperCamelCase ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = False ,UpperCamelCase = True ,UpperCamelCase = None ,) -> Union[DecoderOutput, torch.FloatTensor]: snake_case__ :Any = sample snake_case__ :Optional[Any] = self.encode(UpperCamelCase ).latent_dist if sample_posterior: snake_case__ :Dict = posterior.sample(generator=UpperCamelCase ) else: snake_case__ :int = posterior.mode() snake_case__ :Optional[int] = self.decode(UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1