code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = int(lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple=3_0_0 ): # docstyle-ignore return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowercase = f"{elt:.6f}" if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else str(lowerCamelCase_ ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __lowercase : '''simple docstring''' a : Optional[Any] = 5 a : str = 0.2 def __init__(self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = True ,_lowerCamelCase = None ,_lowerCamelCase = 300 ,) -> List[str]: '''simple docstring''' __lowercase = total __lowercase = '''''' if prefix is None else prefix __lowercase = leave __lowercase = parent __lowercase = width __lowercase = None __lowercase = None __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ,_lowerCamelCase = None ) -> int: '''simple docstring''' __lowercase = value if comment is not None: __lowercase = comment if self.last_value is None: __lowercase = __lowercase = time.time() __lowercase = __lowercase = value __lowercase = __lowercase = None __lowercase = self.warmup __lowercase = 1 self.update_bar(_lowerCamelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for ,self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowercase = time.time() __lowercase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowercase = self.elapsed_time / (value - self.start_value) else: __lowercase = None if value >= self.total: __lowercase = self.total __lowercase = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowercase = self.average_time_per_item * (self.total - value) self.update_bar(_lowerCamelCase ) __lowercase = value __lowercase = current_time if self.average_time_per_item is None: __lowercase = 1 else: __lowercase = max(int(self.update_every / self.average_time_per_item ) ,1 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Dict: '''simple docstring''' __lowercase = ''' ''' * (len(str(self.total ) ) - len(str(_lowerCamelCase ) )) + str(_lowerCamelCase ) if self.elapsed_time is None: __lowercase = f"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: __lowercase = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}" else: __lowercase = ( f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <" f" {format_time(self.predicted_remaining )}" ) self.label += f", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f", {self.comment}]" self.display() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowercase = disp.display(disp.HTML(self.html_code ) ,display_id=_lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Any: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = None if column_names is None else [column_names] __lowercase = None def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowercase = disp.display(disp.HTML(self.html_code ) ,display_id=_lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if self.inner_table is None: __lowercase = [list(values.keys() ), list(values.values() )] else: __lowercase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_lowerCamelCase ) __lowercase = columns self.inner_table.append([values[c] for c in columns] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ,_lowerCamelCase=300 ) -> int: '''simple docstring''' __lowercase = NotebookProgressBar(_lowerCamelCase ,prefix=_lowerCamelCase ,parent=self ,width=_lowerCamelCase ) return self.child_bar def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = None self.display() class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ) -> List[Any]: '''simple docstring''' __lowercase = None __lowercase = None __lowercase = False def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __lowercase = 0 __lowercase = 0 __lowercase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) __lowercase = NotebookTrainingTracker(state.max_steps ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 ,comment=f"Epoch {epoch}/{state.num_train_epochs}" ,force_update=self._force_next_update ,) __lowercase = False def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if not has_length(_lowerCamelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowercase = self.training_tracker.add_child(len(_lowerCamelCase ) ) else: __lowercase = NotebookProgressBar(len(_lowerCamelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowercase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __lowercase = state.global_step self.training_tracker.write_line(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Any: '''simple docstring''' if self.training_tracker is not None: __lowercase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: __lowercase = log['''loss'''] break if self.first_column == "Epoch": __lowercase = int(state.epoch ) else: __lowercase = state.global_step __lowercase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): __lowercase = re.sub(R'''\_loss$''' ,'''''' ,_lowerCamelCase ) __lowercase = metrics.pop('''total_flos''' ,_lowerCamelCase ) __lowercase = metrics.pop('''epoch''' ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_runtime" ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_samples_per_second" ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_steps_per_second" ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_jit_compilation_time" ,_lowerCamelCase ) for k, v in metrics.items(): if k == f"{metric_key_prefix}_loss": __lowercase = v else: __lowercase = k.split('''_''' ) __lowercase = ''' '''.join([part.capitalize() for part in splits[1:]] ) __lowercase = v self.training_tracker.write_line(_lowerCamelCase ) self.training_tracker.remove_child() __lowercase = None # Evaluation takes a long time so we should force the next update. __lowercase = True def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' self.training_tracker.update( state.global_step ,comment=f"Epoch {int(state.epoch )}/{state.num_train_epochs}" ,force_update=_lowerCamelCase ) __lowercase = None
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
0
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _SCREAMING_SNAKE_CASE = '''scheduler_config.json''' class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = 1 a : Dict = 2 a : Optional[Any] = 3 a : List[str] = 4 a : Any = 5 @dataclass class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : jnp.ndarray class __lowercase : '''simple docstring''' a : str = SCHEDULER_CONFIG_NAME a : Union[str, Any] = ["dtype"] a : str = [] a : List[Any] = True @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase , __lowercase = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase ,subfolder=_lowerCamelCase ,return_unused_kwargs=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase , __lowercase = cls.from_config(_lowerCamelCase ,return_unused_kwargs=_lowerCamelCase ,**_lowerCamelCase ) if hasattr(_lowerCamelCase ,'''create_state''' ) and getattr(_lowerCamelCase ,'''has_state''' ,_lowerCamelCase ): __lowercase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ,**_lowerCamelCase ) -> str: '''simple docstring''' self.save_config(save_directory=_lowerCamelCase ,push_to_hub=_lowerCamelCase ,**_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return self._get_compatibles() @classmethod def _UpperCAmelCase (cls ) -> int: '''simple docstring''' __lowercase = list(set([cls.__name__] + cls._compatibles ) ) __lowercase = importlib.import_module(__name__.split('''.''' )[0] ) __lowercase = [ getattr(_lowerCamelCase ,_lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase ,_lowerCamelCase ) ] return compatible_classes def _lowerCAmelCase ( lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : Tuple[int] ): assert len(lowerCamelCase_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCamelCase_ ) - x.ndim) ) , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any]=0.9_99 , lowerCamelCase_ : Union[str, Any]=jnp.floataa ): def alpha_bar(lowerCamelCase_ : Any ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 __lowercase = [] for i in range(lowerCamelCase_ ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCamelCase_ ) / alpha_bar(lowerCamelCase_ ) , lowerCamelCase_ ) ) return jnp.array(lowerCamelCase_ , dtype=lowerCamelCase_ ) @flax.struct.dataclass class __lowercase : '''simple docstring''' a : jnp.ndarray a : jnp.ndarray a : jnp.ndarray @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = scheduler.config if config.trained_betas is not None: __lowercase = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowercase = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) __lowercase = 1.0 - betas __lowercase = jnp.cumprod(_lowerCamelCase ,axis=0 ) return cls( alphas=_lowerCamelCase ,betas=_lowerCamelCase ,alphas_cumprod=_lowerCamelCase ,) def _lowerCAmelCase ( lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): __lowercase = state.alphas_cumprod __lowercase = alphas_cumprod[timesteps] ** 0.5 __lowercase = sqrt_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) __lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowercase = sqrt_one_minus_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _lowerCAmelCase ( lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): __lowercase , __lowercase = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _lowerCAmelCase ( lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): __lowercase , __lowercase = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
710
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def _lowerCAmelCase ( ): __lowercase = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] ): __lowercase = '''imagenet-1k-id2label.json''' __lowercase = 1_0_0_0 __lowercase = '''huggingface/label-files''' __lowercase = num_labels __lowercase = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) ) , '''r''' ) ) __lowercase = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = __lowercase = CvtConfig(num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __lowercase = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __lowercase = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __lowercase = [2, 2, 2_0] __lowercase = [3, 1_2, 1_6] __lowercase = [1_9_2, 7_6_8, 1_0_2_4] __lowercase = CvtForImageClassification(lowerCamelCase_ ) __lowercase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __lowercase = image_size __lowercase = torch.load(lowerCamelCase_ , map_location=torch.device('''cpu''' ) ) __lowercase = OrderedDict() __lowercase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __lowercase = list_of_state_dict + cls_token(lowerCamelCase_ ) __lowercase = list_of_state_dict + embeddings(lowerCamelCase_ ) for cnt in range(config.depth[idx] ): __lowercase = list_of_state_dict + attention(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = list_of_state_dict + final() for gg in list_of_state_dict: print(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): __lowercase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) image_processor.save_pretrained(lowerCamelCase_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
711
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowercase = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" __lowercase = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" __lowercase = max(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ) , b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
0
'''simple docstring''' from typing import Any def _lowerCAmelCase ( lowerCamelCase_ : list , lowerCamelCase_ : list , lowerCamelCase_ : dict , lowerCamelCase_ : dict , lowerCamelCase_ : dict , ): _validation( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # Creates data structures and fill initial step __lowercase = {} __lowercase = {} for state in states_space: __lowercase = observations_space[0] __lowercase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __lowercase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCamelCase_ ) ): __lowercase = observations_space[o] __lowercase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __lowercase = '''''' __lowercase = -1 for k_state in states_space: __lowercase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __lowercase = probability __lowercase = k_state # Update probabilities and pointers dicts __lowercase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __lowercase = arg_max # The final observation __lowercase = observations_space[len(lowerCamelCase_ ) - 1] # argmax for given final observation __lowercase = '''''' __lowercase = -1 for k_state in states_space: __lowercase = probabilities[(k_state, final_observation)] if probability > max_probability: __lowercase = probability __lowercase = k_state __lowercase = arg_max # Process pointers backwards __lowercase = last_state __lowercase = [] for o in range(len(lowerCamelCase_ ) - 1 , -1 , -1 ): result.append(lowerCamelCase_ ) __lowercase = pointers[previous, observations_space[o]] result.reverse() return result def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , ): _validate_not_empty( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) _validate_lists(lowerCamelCase_ , lowerCamelCase_ ) _validate_dicts( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ): _validate_list(lowerCamelCase_ , '''observations_space''' ) _validate_list(lowerCamelCase_ , '''states_space''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : str ): if not isinstance(_object , lowerCamelCase_ ): __lowercase = f"{var_name} must be a list" raise ValueError(lowerCamelCase_ ) else: for x in _object: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = f"{var_name} must be a list of strings" raise ValueError(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , ): _validate_dict(lowerCamelCase_ , '''initial_probabilities''' , lowerCamelCase_ ) _validate_nested_dict(lowerCamelCase_ , '''transition_probabilities''' ) _validate_nested_dict(lowerCamelCase_ , '''emission_probabilities''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : str ): _validate_dict(_object , lowerCamelCase_ , lowerCamelCase_ ) for x in _object.values(): _validate_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : type , lowerCamelCase_ : bool = False ): if not isinstance(_object , lowerCamelCase_ ): __lowercase = f"{var_name} must be a dict" raise ValueError(lowerCamelCase_ ) if not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for x in _object ): __lowercase = f"{var_name} all keys must be strings" raise ValueError(lowerCamelCase_ ) if not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for x in _object.values() ): __lowercase = '''nested dictionary ''' if nested else '''''' __lowercase = f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(lowerCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
713
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
715
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = 0 for ch in input_str: __lowercase = ord(lowerCamelCase_ ) __lowercase = pow(2 , lowerCamelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCamelCase_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
717
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : torch.FloatTensor a : torch.FloatTensor class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' a : Any = 1 @register_to_config def __init__(self ,_lowerCamelCase = 2000 ,_lowerCamelCase = 0.1_5 ,_lowerCamelCase = 0.0_1 ,_lowerCamelCase = 1348.0 ,_lowerCamelCase = 1E-5 ,_lowerCamelCase = 1 ,) -> List[str]: '''simple docstring''' __lowercase = sigma_max # setable values __lowercase = None self.set_sigmas(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ) -> List[str]: '''simple docstring''' __lowercase = sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase = torch.linspace(1 ,_lowerCamelCase ,_lowerCamelCase ,device=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ) -> List[Any]: '''simple docstring''' __lowercase = sigma_min if sigma_min is not None else self.config.sigma_min __lowercase = sigma_max if sigma_max is not None else self.config.sigma_max __lowercase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_lowerCamelCase ,_lowerCamelCase ) __lowercase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase = torch.exp(torch.linspace(math.log(_lowerCamelCase ) ,math.log(_lowerCamelCase ) ,_lowerCamelCase ) ) __lowercase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device ) ) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device ) ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = True ,) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) __lowercase = timestep * torch.ones( sample.shape[0] ,device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase = timesteps.to(self.discrete_sigmas.device ) __lowercase = self.discrete_sigmas[timesteps].to(sample.device ) __lowercase = self.get_adjacent_sigma(_lowerCamelCase ,_lowerCamelCase ).to(sample.device ) __lowercase = torch.zeros_like(_lowerCamelCase ) __lowercase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase = diffusion.unsqueeze(-1 ) __lowercase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase = randn_tensor( sample.shape ,layout=sample.layout ,generator=_lowerCamelCase ,device=sample.device ,dtype=sample.dtype ) __lowercase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_lowerCamelCase ,prev_sample_mean=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = True ,) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase = randn_tensor(sample.shape ,layout=sample.layout ,generator=_lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase = torch.norm(model_output.reshape(model_output.shape[0] ,-1 ) ,dim=-1 ).mean() __lowercase = torch.norm(noise.reshape(noise.shape[0] ,-1 ) ,dim=-1 ).mean() __lowercase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase = step_size.unsqueeze(-1 ) __lowercase = sample + step_size * model_output __lowercase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> torch.FloatTensor: '''simple docstring''' __lowercase = timesteps.to(original_samples.device ) __lowercase = self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_lowerCamelCase ) * sigmas[:, None, None, None] ) __lowercase = noise + original_samples return noisy_samples def __len__(self ) -> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
718
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
0
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( lowerCamelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _SCREAMING_SNAKE_CASE = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def _lowerCAmelCase ( lowerCamelCase_ : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __lowercase = [] for num in range(len(lowerCamelCase_ ) ): __lowercase = 0 while 2 * i * i <= odd_composites[num]: __lowercase = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase_ ) == n: return list_nums return [] def _lowerCAmelCase ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
719
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
0
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm _SCREAMING_SNAKE_CASE = 2_0_4_8 _SCREAMING_SNAKE_CASE = 4_0_9_6 _SCREAMING_SNAKE_CASE = 4_2 _SCREAMING_SNAKE_CASE = os.environ.pop('''PROCESS_TRAIN''', '''false''') _SCREAMING_SNAKE_CASE = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): def choose_first(lowerCamelCase_ : Dict , lowerCamelCase_ : str=False ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) == 1: __lowercase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __lowercase = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a __lowercase = {'''id''': example['''id''']} __lowercase = example['''annotations'''] __lowercase = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: __lowercase = ['''yes'''] if 1 in yes_no_answer else ['''no'''] __lowercase = __lowercase = [] __lowercase = __lowercase = [] __lowercase = ['''<cls>'''] else: __lowercase = ['''short'''] __lowercase = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available __lowercase = ['''long'''] __lowercase = choose_first(annotation['''long_answer'''] , is_long_answer=lowerCamelCase_ ) __lowercase = [] answer.update(lowerCamelCase_ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: __lowercase = True else: __lowercase = False __lowercase = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , lowerCamelCase_ ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int]=False ): __lowercase = _get_single_answer(lowerCamelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase = example['''document''']['''tokens'''] __lowercase = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __lowercase = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __lowercase = example['''document''']['''tokens'''] __lowercase = answer['''start_token'''] __lowercase = answer['''end_token'''] __lowercase = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __lowercase = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: __lowercase = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] __lowercase = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] __lowercase = ''' '''.join([old[i] for i in range(len(lowerCamelCase_ ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , lowerCamelCase_ , end='''\n''' ) print('''Old:''' , lowerCamelCase_ , end='''\n\n''' ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=2_0_4_8 , lowerCamelCase_ : str=4_0_9_6 , lowerCamelCase_ : Union[str, Any]=True ): # overlap will be of doc_stride - q_len __lowercase = get_context_and_ans(lowerCamelCase_ , assertion=lowerCamelCase_ ) __lowercase = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __lowercase = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids __lowercase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase = [] __lowercase = [] __lowercase = input_ids[:q_len] __lowercase = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) for i in doc_start_indices: __lowercase = i + max_length - q_len __lowercase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowerCamelCase_ ), "end_token": [-1_0_0] * len(lowerCamelCase_ ), "category": category, }, } __lowercase = out['''context'''].split() __lowercase = splitted_context[answer['''end_token''']] __lowercase = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=lowerCamelCase_ , ).input_ids ) __lowercase = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=lowerCamelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __lowercase = len(tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __lowercase = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive __lowercase = answer['''start_token'''] __lowercase = answer['''end_token'''] if assertion: __lowercase = tokenizer.decode(lowerCamelCase_ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , lowerCamelCase_ , end='''\n\n''' ) if len(lowerCamelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __lowercase = input_ids[:q_len] __lowercase = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) __lowercase = [] __lowercase = [] __lowercase = [] __lowercase = [] # null, yes, no, long, short for i in doc_start_indices: __lowercase = i + max_length - q_len __lowercase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __lowercase = start_token - i + q_len __lowercase = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: __lowercase = -1_0_0 __lowercase = -1_0_0 answers_category.append('''null''' ) __lowercase = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase_ ) answers_end_token.append(lowerCamelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(lowerCamelCase_ ) ) print('''Old:''' , tokenizer.decode(lowerCamelCase_ ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[str]=2_0_4_8 , lowerCamelCase_ : Optional[int]=4_0_9_6 , lowerCamelCase_ : Tuple=False ): __lowercase = get_strided_contexts_and_ans( lowerCamelCase_ , lowerCamelCase_ , doc_stride=lowerCamelCase_ , max_length=lowerCamelCase_ , assertion=lowerCamelCase_ , ) return example def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict ): with jsonlines.open(lowerCamelCase_ , '''a''' ) as writer: for example in tqdm(lowerCamelCase_ , total=len(lowerCamelCase_ ) , desc='''Saving samples ... ''' ): __lowercase = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _SCREAMING_SNAKE_CASE = load_dataset('''natural_questions''') _SCREAMING_SNAKE_CASE = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _SCREAMING_SNAKE_CASE = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] _SCREAMING_SNAKE_CASE = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } _SCREAMING_SNAKE_CASE = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _SCREAMING_SNAKE_CASE = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) _SCREAMING_SNAKE_CASE = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
720
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=sys.maxsize ) -> str: '''simple docstring''' __lowercase = '''bilinear''' __lowercase = max_size __lowercase = short_edge_length def __call__(self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = [] for img in imgs: __lowercase , __lowercase = img.shape[:2] # later: provide list and randomly choose index for resize __lowercase = np.random.randint(self.short_edge_length[0] ,self.short_edge_length[1] + 1 ) if size == 0: return img __lowercase = size * 1.0 / min(_lowerCamelCase ,_lowerCamelCase ) if h < w: __lowercase , __lowercase = size, scale * w else: __lowercase , __lowercase = scale * h, size if max(_lowerCamelCase ,_lowerCamelCase ) > self.max_size: __lowercase = self.max_size * 1.0 / max(_lowerCamelCase ,_lowerCamelCase ) __lowercase = newh * scale __lowercase = neww * scale __lowercase = int(neww + 0.5 ) __lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: __lowercase = Image.fromarray(_lowerCamelCase ) __lowercase = pil_image.resize((neww, newh) ,PILImageResampling.BILINEAR ) __lowercase = np.asarray(_lowerCamelCase ) else: __lowercase = img.permute(2 ,0 ,1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __lowercase = nn.functional.interpolate( _lowerCamelCase ,(newh, neww) ,mode=self.interp_method ,align_corners=_lowerCamelCase ).squeeze(0 ) img_augs.append(_lowerCamelCase ) return img_augs class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] ,cfg.INPUT.MAX_SIZE_TEST ) __lowercase = cfg.INPUT.FORMAT __lowercase = cfg.SIZE_DIVISIBILITY __lowercase = cfg.PAD_VALUE __lowercase = cfg.INPUT.MAX_SIZE_TEST __lowercase = cfg.MODEL.DEVICE __lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = lambda _lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = tuple(max(_lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) __lowercase = [im.shape[-2:] for im in images] __lowercase = [ nn.functional.pad( _lowerCamelCase ,[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] ,value=self.pad_value ,) for size, im in zip(_lowerCamelCase ,_lowerCamelCase ) ] return torch.stack(_lowerCamelCase ), torch.tensor(_lowerCamelCase ) def __call__(self ,_lowerCamelCase ,_lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [images] if single_image: assert len(_lowerCamelCase ) == 1 for i in range(len(_lowerCamelCase ) ): if isinstance(images[i] ,torch.Tensor ): images.insert(_lowerCamelCase ,images.pop(_lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] ,torch.Tensor ): images.insert( _lowerCamelCase ,torch.as_tensor(img_tensorize(images.pop(_lowerCamelCase ) ,input_format=self.input_format ) ) .to(self.device ) .float() ,) # resize smallest edge __lowercase = torch.tensor([im.shape[:2] for im in images] ) __lowercase = self.aug(_lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowercase = [self.normalizer(_lowerCamelCase ) for x in images] # now pad them to do the following operations __lowercase , __lowercase = self.pad(_lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowercase = torch.true_divide(_lowerCamelCase ,_lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple[int, int] ): assert torch.isfinite(lowerCamelCase_ ).all(), "Box tensor contains infinite or NaN!" __lowercase , __lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCamelCase_ )
721
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
0
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
700
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = None ,_lowerCamelCase = PILImageResampling.BICUBIC ,_lowerCamelCase = True ,_lowerCamelCase = True ,_lowerCamelCase = 1 / 255 ,_lowerCamelCase = None ,_lowerCamelCase = True ,_lowerCamelCase = None ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = size if size is not None else {'''height''': 224, '''width''': 224} __lowercase = get_size_dict(_lowerCamelCase ) __lowercase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowercase = get_size_dict(_lowerCamelCase ,default_to_square=_lowerCamelCase ,param_name='''crop_size''' ) __lowercase = do_resize __lowercase = do_rescale __lowercase = do_normalize __lowercase = do_center_crop __lowercase = crop_size __lowercase = size __lowercase = resample __lowercase = rescale_factor __lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = PILImageResampling.BILINEAR ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> np.ndarray: '''simple docstring''' __lowercase = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: __lowercase = get_resize_output_image_size(_lowerCamelCase ,size=size['''shortest_edge'''] ,default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __lowercase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(_lowerCamelCase ,size=_lowerCamelCase ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> np.ndarray: '''simple docstring''' __lowercase = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_lowerCamelCase ,size=(size['''height'''], size['''width''']) ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(_lowerCamelCase ,mean=_lowerCamelCase ,std=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(_lowerCamelCase ,param_name='''crop_size''' ,default_to_square=_lowerCamelCase ) __lowercase = resample if resample is not None else self.resample __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): __lowercase = [images] if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_lowerCamelCase ,size=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=_lowerCamelCase ,size=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_lowerCamelCase ,mean=_lowerCamelCase ,std=_lowerCamelCase ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
701
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } _SCREAMING_SNAKE_CASE = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ): for attribute in key.split('''.''' ): __lowercase = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: __lowercase = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Dict ): __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase = True else: for key, mapped_key in MAPPING.items(): __lowercase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowercase = True if "*" in mapped_key: __lowercase = name.split(lowerCamelCase_ )[0].split('''.''' )[-2] __lowercase = mapped_key.replace('''*''' , lowerCamelCase_ ) if "weight_g" in name: __lowercase = '''weight_g''' elif "weight_v" in name: __lowercase = '''weight_v''' elif "bias" in name: __lowercase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = '''weight''' else: __lowercase = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): __lowercase = full_name.split('''conv_layers.''' )[-1] __lowercase = name.split('''.''' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : str=True ): if config_path is not None: __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = UniSpeechSatConfig() __lowercase = '''''' if is_finetuned: __lowercase = UniSpeechSatForCTC(lowerCamelCase_ ) else: __lowercase = UniSpeechSatForPreTraining(lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowercase = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : list[str] ): __lowercase = '''''' for word_or_phrase in separated: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
703
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
0
import os from datetime import datetime as dt from github import Github _SCREAMING_SNAKE_CASE = [ '''good first issue''', '''feature request''', '''wip''', ] def _lowerCAmelCase ( ): __lowercase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowercase = g.get_repo('''huggingface/accelerate''' ) __lowercase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowercase = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) __lowercase = comments[0] if len(lowerCamelCase_ ) > 0 else None __lowercase = dt.utcnow() __lowercase = (current_time - issue.updated_at).days __lowercase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
704
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
0
from math import sqrt def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( lowerCamelCase_ : int ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(lowerCamelCase_ ) __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( lowerCamelCase_ : str ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] ): assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
705
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _SCREAMING_SNAKE_CASE = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = True ,) -> Optional[int]: '''simple docstring''' __lowercase = [file for file in os.listdir(_lowerCamelCase ) if os.path.isfile(os.path.join(_lowerCamelCase ,_lowerCamelCase ) )] if identifier is not None: __lowercase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCamelCase ,_lowerCamelCase ): for n_ in n_identifier: __lowercase = [file for file in files if n_ not in file] else: __lowercase = [file for file in files if n_identifier not in file] __lowercase = ignore_files or [] ignore_files.append('''__init__.py''' ) __lowercase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' ,_lowerCamelCase ) if only_modules: __lowercase = file.split('''.''' )[0] try: __lowercase = getattr(_lowerCamelCase ,_lowerCamelCase ) __lowercase = doctest.DocTestSuite(_lowerCamelCase ) __lowercase = unittest.TextTestRunner().run(_lowerCamelCase ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(f"{module_identifier} is not a module." ) else: __lowercase = doctest.testfile(str('''..''' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = '''modeling''' __lowercase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(_lowerCamelCase ,identifier=_lowerCamelCase ,ignore_files=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = '''tokenization''' self.analyze_directory(_lowerCamelCase ,identifier=_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = '''configuration''' self.analyze_directory(_lowerCamelCase ,identifier=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(_lowerCamelCase ,n_identifier=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = Path('''docs/source''' ) __lowercase = ['''favicon.ico'''] self.analyze_directory(_lowerCamelCase ,ignore_files=_lowerCamelCase ,only_modules=_lowerCamelCase )
706
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
0
def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __lowercase = set(range(3 , lowerCamelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCamelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCamelCase_ , lowerCamelCase_ ) ) ) __lowercase = [float(lowerCamelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
708
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _SCREAMING_SNAKE_CASE = TypeVar('''T''') _SCREAMING_SNAKE_CASE = Union[List[T], Tuple[T, ...]] _SCREAMING_SNAKE_CASE = Union[T, List[T], Dict[str, T]] _SCREAMING_SNAKE_CASE = Union[str, bytes, os.PathLike]
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
0
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = "masked_bert" def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=0 ,_lowerCamelCase="topK" ,_lowerCamelCase="constant" ,_lowerCamelCase=0.0 ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = pruning_method __lowercase = mask_init __lowercase = mask_scale
710
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
0
def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = [int(lowerCamelCase_ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowerCamelCase_ ) == 4 and all(0 <= int(lowerCamelCase_ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input().strip() _SCREAMING_SNAKE_CASE = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
711
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): '''simple docstring''' __lowercase = len(lowerCamelCase_ ) for i in range(length - 1 ): __lowercase = i for k in range(i + 1 , lowerCamelCase_ ): if collection[k] < collection[least]: __lowercase = k if least != i: __lowercase , __lowercase = (collection[i], collection[least]) return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input('''Enter numbers separated by a comma:\n''').strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
712
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
713
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Dict = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Tuple = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Dict = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : List[str] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Tuple = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] )
714
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
715
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( lowerCamelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , lowerCamelCase_ , ) if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): __lowercase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowercase , __lowercase = image[0].size __lowercase , __lowercase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] __lowercase = np.concatenate(lowerCamelCase_ , axis=0 ) __lowercase = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_5_5.0 __lowercase = image.transpose(0 , 3 , 1 , 2 ) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): __lowercase = torch.cat(lowerCamelCase_ , dim=0 ) return image def _lowerCAmelCase ( lowerCamelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(lowerCamelCase_ , torch.Tensor ): return mask elif isinstance(lowerCamelCase_ , PIL.Image.Image ): __lowercase = [mask] if isinstance(mask[0] , PIL.Image.Image ): __lowercase , __lowercase = mask[0].size __lowercase , __lowercase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __lowercase = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] __lowercase = np.concatenate(lowerCamelCase_ , axis=0 ) __lowercase = mask.astype(np.floataa ) / 2_5_5.0 __lowercase = 0 __lowercase = 1 __lowercase = torch.from_numpy(lowerCamelCase_ ) elif isinstance(mask[0] , torch.Tensor ): __lowercase = torch.cat(lowerCamelCase_ , dim=0 ) return mask class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : UNetaDModel a : RePaintScheduler def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ) @torch.no_grad() def __call__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 250 ,_lowerCamelCase = 0.0 ,_lowerCamelCase = 10 ,_lowerCamelCase = 10 ,_lowerCamelCase = None ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __lowercase = image __lowercase = _preprocess_image(_lowerCamelCase ) __lowercase = original_image.to(device=self.device ,dtype=self.unet.dtype ) __lowercase = _preprocess_mask(_lowerCamelCase ) __lowercase = mask_image.to(device=self.device ,dtype=self.unet.dtype ) __lowercase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_lowerCamelCase ,_lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowercase = original_image.shape __lowercase = randn_tensor(_lowerCamelCase ,generator=_lowerCamelCase ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,self.device ) __lowercase = eta __lowercase = self.scheduler.timesteps[0] + 1 __lowercase = generator[0] if isinstance(_lowerCamelCase ,_lowerCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample # compute previous image: x_t -> x_t-1 __lowercase = self.scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowercase = self.scheduler.undo_step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = t __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
716
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "open-llama" def __init__(self ,_lowerCamelCase=100000 ,_lowerCamelCase=4096 ,_lowerCamelCase=11008 ,_lowerCamelCase=32 ,_lowerCamelCase=32 ,_lowerCamelCase="silu" ,_lowerCamelCase=2048 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-6 ,_lowerCamelCase=True ,_lowerCamelCase=0 ,_lowerCamelCase=1 ,_lowerCamelCase=2 ,_lowerCamelCase=False ,_lowerCamelCase=True ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> int: '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_range __lowercase = rms_norm_eps __lowercase = use_cache __lowercase = kwargs.pop( '''use_memorry_efficient_attention''' ,_lowerCamelCase ) __lowercase = hidden_dropout_prob __lowercase = attention_dropout_prob __lowercase = use_stable_embedding __lowercase = shared_input_output_embedding __lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,tie_word_embeddings=_lowerCamelCase ,**_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) __lowercase = self.rope_scaling.get('''type''' ,_lowerCamelCase ) __lowercase = self.rope_scaling.get('''factor''' ,_lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase ,_lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
717
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
0
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = OpenAIGPTTokenizer a : int = OpenAIGPTTokenizerFast a : Tuple = True a : Any = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file ,'''w''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return "lower newer", "lower newer" def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) __lowercase = '''lower''' __lowercase = ['''low''', '''er</w>'''] __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = tokens + ['''<unk>'''] __lowercase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_lowerCamelCase ,tokenizer_r.encode ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Simple input self.assertRaises(_lowerCamelCase ,tokenizer_r.encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Simple input self.assertRaises( _lowerCamelCase ,tokenizer_r.batch_encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ,) # Pair input self.assertRaises(_lowerCamelCase ,tokenizer_r.encode ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Pair input self.assertRaises(_lowerCamelCase ,tokenizer_r.encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Pair input self.assertRaises( _lowerCamelCase ,tokenizer_r.batch_encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ,) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' pass
718
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): __lowercase = 1_0 __lowercase = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) __lowercase = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [9_7], '''text''': ['''1976''']}] * 1_0, '''id''': list(range(lowerCamelCase_ ) ), } , features=lowerCamelCase_ , ) return dataset @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=lowerCamelCase_ ) return filename # FILE_CONTENT + files _SCREAMING_SNAKE_CASE = '''\ Text data. Second line of data.''' @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' __lowercase = FILE_CONTENT with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return filename @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict ): import bza __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with bza.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): import gzip __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with gzip.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict ): if datasets.config.LZ4_AVAILABLE: import lza.frame __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with lza.frame.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(lowerCamelCase_ , '''w''' ) as archive: archive.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ): import tarfile __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): import lzma __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with lzma.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ): import zipfile __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with zstd.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' __lowercase = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return filename _SCREAMING_SNAKE_CASE = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] _SCREAMING_SNAKE_CASE = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] _SCREAMING_SNAKE_CASE = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } _SCREAMING_SNAKE_CASE = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] _SCREAMING_SNAKE_CASE = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = datasets.Dataset.from_dict(lowerCamelCase_ ) __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(lowerCamelCase_ ) ) as con: __lowercase = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(lowerCamelCase_ , '''w''' , newline='''''' ) as f: __lowercase = csv.DictWriter(lowerCamelCase_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(lowerCamelCase_ , '''w''' , newline='''''' ) as f: __lowercase = csv.DictWriter(lowerCamelCase_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): import bza __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(lowerCamelCase_ , '''rb''' ) as f: __lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) __lowercase = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(lowerCamelCase_ , '''wb''' ) as f: __lowercase = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_ ) __lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase_ ) )] for k in DATA[0]} , schema=lowerCamelCase_ ) writer.write_table(lowerCamelCase_ ) writer.close() return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __lowercase = {'''data''': DATA} with open(lowerCamelCase_ , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __lowercase = {'''data''': DATA_DICT_OF_LISTS} with open(lowerCamelCase_ , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): import gzip __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(lowerCamelCase_ , '''rb''' ) as orig_file: with gzip.open(lowerCamelCase_ , '''wb''' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ): import gzip __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(lowerCamelCase_ , '''rb''' ) as orig_file: with gzip.open(lowerCamelCase_ , '''wb''' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''nested''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Any ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('''nested''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = ['''0''', '''1''', '''2''', '''3'''] __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = ['''0''', '''1''', '''2''', '''3'''] __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = ['''0''', '''1''', '''2''', '''3'''] __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(lowerCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Any ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(lowerCamelCase_ , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) return data_dir
719
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = ["vqvae"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ,mel=_lowerCamelCase ,vqvae=_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler ,_lowerCamelCase ) else 1000 @torch.no_grad() def __call__(self ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = 0 ,_lowerCamelCase = 0 ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = 0 ,_lowerCamelCase = 0 ,_lowerCamelCase = None ,_lowerCamelCase = 0 ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=True ,) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_lowerCamelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_lowerCamelCase ,device=self.device ,) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowerCamelCase ,_lowerCamelCase ) __lowercase = self.mel.audio_slice_to_image(_lowerCamelCase ) __lowercase = np.frombuffer(input_image.tobytes() ,dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 255) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_lowerCamelCase ,0 ) ).latent_dist.sample( generator=_lowerCamelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_lowerCamelCase ,_lowerCamelCase ,self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_lowerCamelCase ,_lowerCamelCase ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_lowerCamelCase ): __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )['''sample'''] else: __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase )['''sample'''] if isinstance(self.scheduler ,_lowerCamelCase ): __lowercase = self.scheduler.step( model_output=_lowerCamelCase ,timestep=_lowerCamelCase ,sample=_lowerCamelCase ,eta=_lowerCamelCase ,generator=_lowerCamelCase ,)['''prev_sample'''] else: __lowercase = self.scheduler.step( model_output=_lowerCamelCase ,timestep=_lowerCamelCase ,sample=_lowerCamelCase ,generator=_lowerCamelCase ,)['''prev_sample'''] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_lowerCamelCase )['''sample'''] __lowercase = (images / 2 + 0.5).clamp(0 ,1 ) __lowercase = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() __lowercase = (images * 255).round().astype('''uint8''' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowerCamelCase ,mode='''RGB''' ).convert('''L''' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowerCamelCase )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_lowerCamelCase ) ) @torch.no_grad() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler ,_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() ,dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 255) * 2 - 1 __lowercase = torch.Tensor(_lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase )['''sample'''] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> torch.Tensor: '''simple docstring''' __lowercase = acos(torch.dot(torch.flatten(_lowerCamelCase ) ,torch.flatten(_lowerCamelCase ) ) / torch.norm(_lowerCamelCase ) / torch.norm(_lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowerCamelCase ) + sin(alpha * theta ) * xa / sin(_lowerCamelCase )
720
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
0
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __lowercase = 0 __lowercase = 0 __lowercase = 4_2 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
721
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
0
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '''T5Config''' def _lowerCAmelCase ( lowerCamelCase_ : jnp.array , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase = jnp.zeros_like(lowerCamelCase_ ) __lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase = shifted_input_ids.at[:, 0].set(lowerCamelCase_ ) __lowercase = jnp.where(shifted_input_ids == -1_0_0 , lowerCamelCase_ , lowerCamelCase_ ) return shifted_input_ids class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = "mt5" a : Optional[Any] = MTaConfig class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = "mt5" a : int = MTaConfig class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = "mt5" a : Tuple = MTaConfig
700
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
0
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : str = PriorTransformer a : Optional[Any] = "hidden_states" @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = 4 __lowercase = 8 __lowercase = 7 __lowercase = floats_tensor((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = floats_tensor((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_lowerCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCAmelCase (self ,_lowerCamelCase=0 ) -> Optional[int]: '''simple docstring''' torch.manual_seed(_lowerCamelCase ) __lowercase = 4 __lowercase = 8 __lowercase = 7 __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return (4, 8) @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return (4, 8) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } __lowercase = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' ,output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(_lowerCamelCase ) __lowercase = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.model_class(**_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) __lowercase = model.to(_lowerCamelCase ) if hasattr(_lowerCamelCase ,'''set_default_attn_processor''' ): model.set_default_attn_processor() __lowercase = self.get_dummy_seed_input() with torch.no_grad(): __lowercase = model(**_lowerCamelCase )[0] __lowercase = output[0, :5].flatten().cpu() print(_lowerCamelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(_lowerCamelCase ,_lowerCamelCase ,rtol=1E-2 ) ) @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase=1 ,_lowerCamelCase=768 ,_lowerCamelCase=77 ,_lowerCamelCase=0 ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(_lowerCamelCase ) __lowercase = batch_size __lowercase = embedding_dim __lowercase = num_embeddings __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' ,subfolder='''prior''' ) model.to(_lowerCamelCase ) __lowercase = self.get_dummy_seed_input(seed=_lowerCamelCase ) with torch.no_grad(): __lowercase = model(**_lowerCamelCase )[0] assert list(sample.shape ) == [1, 768] __lowercase = sample[0, :8].flatten().cpu() print(_lowerCamelCase ) __lowercase = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 )
701
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _SCREAMING_SNAKE_CASE = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any]=None ): require_version(deps[pkg] , lowerCamelCase_ )
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : Union[tf.Tensor, np.ndarray] ): if isinstance(lowerCamelCase_ , np.ndarray ): return list(tensor.shape ) __lowercase = tf.shape(lowerCamelCase_ ) if tensor.shape == tf.TensorShape(lowerCamelCase_ ): return dynamic __lowercase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase_ )] def _lowerCAmelCase ( lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=lowerCamelCase_ , name=lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Optional[int]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __lowercase , __lowercase = tf.nn.moments(lowerCamelCase_ , axes=[axis] , keepdims=lowerCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __lowercase = [1] * inputs.shape.rank __lowercase = shape_list(lowerCamelCase_ )[axis] __lowercase = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) # Compute layer normalization using the batch_normalization # function. __lowercase = tf.nn.batch_normalization( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , offset=lowerCamelCase_ , scale=lowerCamelCase_ , variance_epsilon=lowerCamelCase_ , ) return outputs def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : Any=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __lowercase = tf.shape(lowerCamelCase_ ) __lowercase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __lowercase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : tf.Tensor ): if not isinstance(lowerCamelCase_ , tf.Tensor ): __lowercase = tf.convert_to_tensor(lowerCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __lowercase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __lowercase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowerCAmelCase ( lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : int , lowerCamelCase_ : str = "input_ids" ): tf.debugging.assert_less( lowerCamelCase_ , tf.cast(lowerCamelCase_ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase_ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): __lowercase = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __lowercase = [x for x in data if len(lowerCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) __lowercase = np.asarray(lowerCamelCase_ ) __lowercase = 1 __lowercase = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __lowercase = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase_ ): __lowercase = chunk_data else: __lowercase = data def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ): if name in group.attrs: __lowercase = [n.decode('''utf8''' ) if hasattr(lowerCamelCase_ , '''decode''' ) else n for n in group.attrs[name]] else: __lowercase = [] __lowercase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(lowerCamelCase_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def _lowerCAmelCase ( lowerCamelCase_ : Any ): def _expand_single_ad_tensor(lowerCamelCase_ : Tuple ): if isinstance(lowerCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase_ )
703
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _lowerCAmelCase ( lowerCamelCase_ : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _lowerCAmelCase ( ): with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" __lowercase = [1, 2, 3] with pytest.raises(lowerCamelCase_ ): with parallel_backend('''unsupported backend''' ): map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=2 ) with pytest.raises(lowerCamelCase_ ): with parallel_backend('''unsupported backend''' ): map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): __lowercase = [1, 2] __lowercase = {'''a''': 1, '''b''': 2} __lowercase = {'''a''': [1, 2], '''b''': [3, 4]} __lowercase = {'''a''': {'''1''': 1}, '''b''': 2} __lowercase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __lowercase = [2, 3] __lowercase = {'''a''': 2, '''b''': 3} __lowercase = {'''a''': [2, 3], '''b''': [4, 5]} __lowercase = {'''a''': {'''1''': 2}, '''b''': 3} __lowercase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
704
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
0
_SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
705
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = "instructblip_vision_model" def __init__(self ,_lowerCamelCase=1408 ,_lowerCamelCase=6144 ,_lowerCamelCase=39 ,_lowerCamelCase=16 ,_lowerCamelCase=224 ,_lowerCamelCase=14 ,_lowerCamelCase="gelu" ,_lowerCamelCase=1E-6 ,_lowerCamelCase=0.0 ,_lowerCamelCase=1E-1_0 ,_lowerCamelCase=True ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "instructblip_qformer" def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=0 ,_lowerCamelCase="absolute" ,_lowerCamelCase=2 ,_lowerCamelCase=1408 ,**_lowerCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": __lowercase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[str] = "instructblip" a : str = True def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=32 ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: __lowercase = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: __lowercase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __lowercase = InstructBlipVisionConfig(**_lowerCamelCase ) __lowercase = InstructBlipQFormerConfig(**_lowerCamelCase ) __lowercase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __lowercase = CONFIG_MAPPING[text_model_type](**_lowerCamelCase ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.0_2 @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
706
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=7 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=32 ,_lowerCamelCase=5 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=50 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=True ,_lowerCamelCase=None ,) -> int: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = use_labels __lowercase = scope def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=_lowerCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase = BertGenerationEncoder(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> Any: '''simple docstring''' __lowercase = True __lowercase = BertGenerationEncoder(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,) __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' __lowercase = True __lowercase = True __lowercase = BertGenerationDecoder(config=_lowerCamelCase ).to(_lowerCamelCase ).eval() # first forward pass __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,use_cache=_lowerCamelCase ,) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] ,dim=-1 ) __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,)['''hidden_states'''][0] __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,past_key_values=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,)['''hidden_states'''][0] # select random slice __lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ,) -> List[str]: '''simple docstring''' __lowercase = BertGenerationDecoder(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs() __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a : Union[str, Any] = (BertGenerationDecoder,) if is_torch_available() else () a : List[Any] = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = BertGenerationEncoderTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ,hidden_size=37 ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = '''bert''' self.model_tester.create_and_check_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __lowercase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __lowercase = model(_lowerCamelCase )[0] __lowercase = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,_lowerCamelCase ) __lowercase = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_lowerCamelCase ,atol=1E-4 ) ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __lowercase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __lowercase = model(_lowerCamelCase )[0] __lowercase = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape ,_lowerCamelCase ) __lowercase = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_lowerCamelCase ,atol=1E-4 ) )
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
708
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
0
'''simple docstring''' import random class __lowercase : '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> tuple[list[int], list[int]]: '''simple docstring''' __lowercase = [ord(_lowerCamelCase ) for i in text] __lowercase = [] __lowercase = [] for i in plain: __lowercase = random.randint(1 ,300 ) __lowercase = (i + k) * k cipher.append(_lowerCamelCase ) key.append(_lowerCamelCase ) return cipher, key @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = [] for i in range(len(_lowerCamelCase ) ): __lowercase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_lowerCamelCase ) ) return "".join(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
710
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' super().__init__(*_lowerCamelCase ,**_lowerCamelCase ) self.check_model_type(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase = {}, {} if padding is not None: __lowercase = padding if truncation is not None: __lowercase = truncation if top_k is not None: __lowercase = top_k return preprocess_params, {}, postprocess_params def __call__(self ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> str: '''simple docstring''' if isinstance(_lowerCamelCase ,(Image.Image, str) ) and isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = {'''image''': image, '''question''': question} else: __lowercase = image __lowercase = super().__call__(_lowerCamelCase ,**_lowerCamelCase ) return results def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=False ,_lowerCamelCase=False ) -> Tuple: '''simple docstring''' __lowercase = load_image(inputs['''image'''] ) __lowercase = self.tokenizer( inputs['''question'''] ,return_tensors=self.framework ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ) __lowercase = self.image_processor(images=_lowerCamelCase ,return_tensors=self.framework ) model_inputs.update(_lowerCamelCase ) return model_inputs def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.model(**_lowerCamelCase ) return model_outputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=5 ) -> Tuple: '''simple docstring''' if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.sigmoid()[0] __lowercase , __lowercase = probs.topk(_lowerCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase ,_lowerCamelCase )]
711
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase ( ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase_ ) __lowercase = parser.parse_args_into_dataclasses()[0] __lowercase = TensorFlowBenchmark(args=lowerCamelCase_ ) try: __lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowercase = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __lowercase = ''' '''.join(str(lowerCamelCase_ ).split(''' ''' )[:-1] ) __lowercase = '''''' __lowercase = eval(str(lowerCamelCase_ ).split(''' ''' )[-1] ) __lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: __lowercase = full_error_msg + begin_error_msg + str(lowerCamelCase_ ) raise ValueError(lowerCamelCase_ ) benchmark.run() if __name__ == "__main__": main()
712
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return TrainCommand(lowerCamelCase_ ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = parser.add_parser('''train''' ,help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' ,) train_parser.add_argument( '''--column_label''' ,type=_lowerCamelCase ,default=0 ,help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' ,type=_lowerCamelCase ,default=1 ,help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' ,type=_lowerCamelCase ,default=2 ,help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' ,action='''store_true''' ,help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' ,type=_lowerCamelCase ,default='''''' ,help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' ,type=_lowerCamelCase ,default=0.1 ,help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' ,) train_parser.add_argument('''--output''' ,type=_lowerCamelCase ,default='''./''' ,help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' ,type=_lowerCamelCase ,default='''text_classification''' ,help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' ,type=_lowerCamelCase ,default='''bert-base-uncased''' ,help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' ,type=_lowerCamelCase ,default=32 ,help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' ,type=_lowerCamelCase ,default=64 ,help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' ,type=_lowerCamelCase ,default=3E-5 ,help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' ,type=_lowerCamelCase ,default=1E-0_8 ,help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = logging.get_logger('''transformers-cli/training''' ) __lowercase = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output ,exist_ok=_lowerCamelCase ) __lowercase = args.output __lowercase = args.column_label __lowercase = args.column_text __lowercase = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": __lowercase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) __lowercase = Processor.create_from_csv( args.train_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,) __lowercase = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) __lowercase = Processor.create_from_csv( args.validation_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,) __lowercase = args.validation_split __lowercase = args.train_batch_size __lowercase = args.valid_batch_size __lowercase = args.learning_rate __lowercase = args.adam_epsilon def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def _UpperCAmelCase (self ) -> str: '''simple docstring''' self.pipeline.fit( self.train_dataset ,validation_data=self.valid_dataset ,validation_split=self.validation_split ,learning_rate=self.learning_rate ,adam_epsilon=self.adam_epsilon ,train_batch_size=self.train_batch_size ,valid_batch_size=self.valid_batch_size ,) # Save trained pipeline self.pipeline.save_pretrained(self.output )
713
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Tuple = CpmAntTokenizer a : Union[str, Any] = False def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().setUp() __lowercase = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __lowercase = '''今天天气真好!''' __lowercase = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = '''今天天气真好!''' __lowercase = [tokenizer.bos_token] + tokens __lowercase = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase )
714
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): try: with open(lowerCamelCase_ , '''rb''' ) as flax_state_f: __lowercase = from_bytes(lowerCamelCase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCamelCase_ ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __lowercase = flatten_dict(jax.tree_util.tree_map(lambda lowerCamelCase_ : x.dtype == jnp.bfloataa , lowerCamelCase_ ) ).values() if any(lowerCamelCase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __lowercase = jax.tree_util.tree_map( lambda lowerCamelCase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCamelCase_ ) __lowercase = '''''' __lowercase = flatten_dict(lowerCamelCase_ , sep='''.''' ) __lowercase = pt_model.state_dict() # keep track of unexpected & missing keys __lowercase = [] __lowercase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowercase = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowercase = flax_key_tuple_array[:-1] + ['''weight'''] __lowercase = jnp.transpose(lowerCamelCase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowercase = flax_key_tuple_array[:-1] + ['''weight'''] __lowercase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowercase = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCamelCase_ ): __lowercase = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __lowercase = '''.'''.join(lowerCamelCase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict __lowercase = np.asarray(lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , np.ndarray ) else flax_tensor __lowercase = torch.from_numpy(lowerCamelCase_ ) # remove from missing keys missing_keys.remove(lowerCamelCase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCamelCase_ ) pt_model.load_state_dict(lowerCamelCase_ ) # re-transform missing_keys to list __lowercase = list(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(lowerCamelCase_ ) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ''' use it for predictions and inference.''' ) return pt_model
715
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
0
'''simple docstring''' from collections.abc import Sequence def _lowerCAmelCase ( lowerCamelCase_ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) __lowercase = nums[0] for i in range(1 , len(lowerCamelCase_ ) ): __lowercase = nums[i] __lowercase = max(lowerCamelCase_ , ans + num , lowerCamelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _SCREAMING_SNAKE_CASE : Optional[Any] = int(input('''Enter number of elements : ''').strip()) _SCREAMING_SNAKE_CASE : Dict = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
716
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = "convbert" def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,_lowerCamelCase=2 ,_lowerCamelCase=768 ,_lowerCamelCase=2 ,_lowerCamelCase=9 ,_lowerCamelCase=1 ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = embedding_size __lowercase = head_ratio __lowercase = conv_kernel_size __lowercase = num_groups __lowercase = classifier_dropout class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
718
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
719
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
0
'''simple docstring''' from __future__ import annotations from random import choice def _lowerCAmelCase ( lowerCamelCase_ : str ): return choice(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): __lowercase = random_pivot(lowerCamelCase_ ) # partition based on pivot # linear time __lowercase = [e for e in lst if e < pivot] __lowercase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCamelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCamelCase_ ) < k - 1: return kth_number(lowerCamelCase_ , k - len(lowerCamelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
0
'''simple docstring''' from __future__ import annotations from typing import Any def _lowerCAmelCase ( lowerCamelCase_ : list ): if not postfix_notation: return 0 __lowercase = {'''+''', '''-''', '''*''', '''/'''} __lowercase = [] for token in postfix_notation: if token in operations: __lowercase , __lowercase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowerCamelCase_ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int = 0 , lowerCamelCase_ : int = 0 ): __lowercase = right or len(lowerCamelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCamelCase_ , lowerCamelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = VOCAB_FILES_NAMES a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = VOCAB_FILES_NAMES a : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _SCREAMING_SNAKE_CASE = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _SCREAMING_SNAKE_CASE = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(lowerCAmelCase__ ) class __lowercase : '''simple docstring''' def __call__(self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = False ,_lowerCamelCase = False ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( _lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=_lowerCamelCase ,return_tensors=_lowerCamelCase ,return_attention_mask=_lowerCamelCase ,**_lowerCamelCase ,) elif titles is None or texts is None: __lowercase = titles if texts is None else texts return super().__call__( _lowerCamelCase ,_lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=_lowerCamelCase ,return_tensors=_lowerCamelCase ,return_attention_mask=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = titles if not isinstance(_lowerCamelCase ,_lowerCamelCase ) else [titles] __lowercase = texts if not isinstance(_lowerCamelCase ,_lowerCamelCase ) else [texts] __lowercase = len(_lowerCamelCase ) __lowercase = questions if not isinstance(_lowerCamelCase ,_lowerCamelCase ) else [questions] * n_passages if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts." ) __lowercase = super().__call__(_lowerCamelCase ,_lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase )['''input_ids'''] __lowercase = super().__call__(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase )['''input_ids'''] __lowercase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase ,_lowerCamelCase ) ] } if return_attention_mask is not False: __lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase = attention_mask return self.pad(_lowerCamelCase ,padding=_lowerCamelCase ,max_length=_lowerCamelCase ,return_tensors=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 16 ,_lowerCamelCase = 64 ,_lowerCamelCase = 4 ,) -> List[DPRSpanPrediction]: '''simple docstring''' __lowercase = reader_input['''input_ids'''] __lowercase , __lowercase , __lowercase = reader_output[:3] __lowercase = len(_lowerCamelCase ) __lowercase = sorted(range(_lowerCamelCase ) ,reverse=_lowerCamelCase ,key=relevance_logits.__getitem__ ) __lowercase = [] for doc_id in sorted_docs: __lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase = sequence_ids.index(self.pad_token_id ) else: __lowercase = len(_lowerCamelCase ) __lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_lowerCamelCase ,top_spans=_lowerCamelCase ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_lowerCamelCase ,start_index=_lowerCamelCase ,end_index=_lowerCamelCase ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> List[DPRSpanPrediction]: '''simple docstring''' __lowercase = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase = sorted(_lowerCamelCase ,key=lambda _lowerCamelCase : x[1] ,reverse=_lowerCamelCase ) __lowercase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) __lowercase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCAmelCase__ ) class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' a : Tuple = VOCAB_FILES_NAMES a : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION a : int = ["input_ids", "attention_mask"]
701
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _SCREAMING_SNAKE_CASE = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ) -> Optional[int]: '''simple docstring''' __lowercase = None __lowercase = os.path.abspath(os.path.join('''examples''' ,'''by_feature''' ) ) __lowercase = os.path.abspath('''examples''' ) for item in os.listdir(_lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if os.path.isfile(_lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=_lowerCamelCase ,feature_script=_lowerCamelCase ,tested_section='''main()''' if parser_only else '''training_function()''' ,): __lowercase = compare_against_test( os.path.join(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = '''\n'''.join(_lowerCamelCase ) if special_strings is not None: for string in special_strings: __lowercase = diff.replace(_lowerCamelCase ,'''''' ) self.assertEqual(_lowerCamelCase ,'''''' ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' ,_lowerCamelCase ) self.one_complete_example('''complete_nlp_example.py''' ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = os.path.abspath(os.path.join('''examples''' ,'''cv_example.py''' ) ) __lowercase = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) self.one_complete_example('''complete_cv_example.py''' ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = False @classmethod def _UpperCAmelCase (cls ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls._tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __lowercase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def _UpperCAmelCase (cls ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,'''epoch_0''' ) ) ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() __lowercase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,'''step_2''' ) ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir ,'epoch_0' )}\n ".split() __lowercase = run_command(self._launch_args + testargs ,return_stdout=_lowerCamelCase ) self.assertNotIn('''epoch 0:''' ,_lowerCamelCase ) self.assertIn('''epoch 1:''' ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir ,'step_2' )}\n ".split() __lowercase = run_command(self._launch_args + testargs ,return_stdout=_lowerCamelCase ) if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() else: __lowercase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' ,_lowerCamelCase ) self.assertIn('''epoch 1:''' ,_lowerCamelCase ) else: self.assertIn('''epoch 0:''' ,_lowerCamelCase ) self.assertIn('''epoch 1:''' ,_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ ,{'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __lowercase = run_command(self._launch_args + testargs ,return_stdout=_lowerCamelCase ) __lowercase = re.findall('''({.+})''' ,_lowerCamelCase ) __lowercase = [r for r in results if '''accuracy''' in r][-1] __lowercase = ast.literal_eval(_lowerCamelCase ) self.assertGreaterEqual(results['''accuracy'''] ,0.7_5 ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __lowercase = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase ,'''tracking''' ) ) ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class __lowercase : '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> str: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' pass def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCamelCase ,_lowerCamelCase ,f"Difference between torch and flax is {diff} (>= {tol})." ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase ,_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.get_vision_text_model(_lowerCamelCase ,_lowerCamelCase ) __lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> str: '''simple docstring''' __lowercase , __lowercase = self.get_vision_text_model(_lowerCamelCase ,_lowerCamelCase ) __lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = after_output[0] __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase ,1E-3 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase , __lowercase = self.get_vision_text_model(_lowerCamelCase ,_lowerCamelCase ) __lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) __lowercase = model( input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ,output_attentions=_lowerCamelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCamelCase ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCamelCase ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' pt_model.to(_lowerCamelCase ) pt_model.eval() # prepare inputs __lowercase = inputs_dict __lowercase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase = pt_model(**_lowerCamelCase ).to_tuple() __lowercase = fx_model(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase ,pt_output.numpy() ,4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ,from_pt=_lowerCamelCase ) __lowercase = fx_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase ,pt_output.numpy() ,4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCamelCase ) __lowercase = VisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ,from_flax=_lowerCamelCase ) pt_model_loaded.to(_lowerCamelCase ) pt_model_loaded.eval() with torch.no_grad(): __lowercase = pt_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCamelCase ,pt_output_loaded.numpy() ,4E-2 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase ,_lowerCamelCase ) __lowercase = VisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,_lowerCamelCase ) __lowercase = fx_state self.check_pt_flax_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase ,_lowerCamelCase ) __lowercase = VisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = load_flax_weights_in_pytorch_model(_lowerCamelCase ,fx_model.params ) self.check_pt_flax_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCamelCase ) @is_pt_flax_cross_test def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase = config_inputs_dict.pop('''vision_config''' ) __lowercase = config_inputs_dict.pop('''text_config''' ) __lowercase = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) self.check_equivalence_flax_to_pt(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCamelCase ) __lowercase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) __lowercase = model_a(**_lowerCamelCase ) __lowercase = after_outputs[0] __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase ,1E-5 ) @require_flax class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=_lowerCamelCase ,text_from_pt=_lowerCamelCase ,) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = FlaxViTModel(_lowerCamelCase ) __lowercase = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = FlaxViTModelTester(self ) __lowercase = FlaxBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=_lowerCamelCase ,text_from_pt=_lowerCamelCase ,) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = FlaxCLIPVisionModel(_lowerCamelCase ) __lowercase = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = FlaxCLIPVisionModelTester(self ) __lowercase = FlaxBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowercase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''np''' ) __lowercase = model(**_lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) __lowercase = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,_lowerCamelCase ,atol=1E-3 ) )
703
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _lowerCAmelCase ( lowerCamelCase_ : int ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features ,_lowerCamelCase ,bias=_lowerCamelCase ) ,nn.Linear(_lowerCamelCase ,module.out_features ,bias=_lowerCamelCase ) ,) __lowercase = (2.0 / (5 * min(module.in_features ,module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight ,std=_lowerCamelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCAmelCase (self ,_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return self.module(_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) + self.adapter(_lowerCamelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' a : Any = "bigscience/bloom-1b7" # Constant values a : str = 2.1_09_65_95_52_69_25_74 a : Tuple = "Hello my name is" a : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) a : List[str] = 10 def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,torch_dtype=torch.floataa ,device_map='''auto''' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.model_abit.config self.assertTrue(hasattr(_lowerCamelCase ,'''quantization_config''' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit ,self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_lowerCamelCase ,torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=_lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=_lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' with self.assertRaises(_lowerCamelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = BitsAndBytesConfig() with self.assertRaises(_lowerCamelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=_lowerCamelCase ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ,bnb_abit_quant_type='''nf4''' ,) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(_lowerCamelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_lowerCamelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def _UpperCAmelCase (cls ) -> List[Any]: '''simple docstring''' __lowercase = '''t5-small''' __lowercase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = '''Translate in German: Hello, my dog is cute''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) __lowercase = modules def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q ,bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # model_name __lowercase = '''bigscience/bloom-560m''' __lowercase = '''t5-small''' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' super().setUp() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = pipeline( '''text-generation''' ,model=self.model_name ,model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} ,max_new_tokens=self.MAX_NEW_TOKENS ,) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] ,self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().setUp() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) ,{0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] ,skip_special_tokens=_lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = '''facebook/opt-350m''' super().setUp() def _UpperCAmelCase (self ) -> str: '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ) self.assertEqual(set(model.hf_device_map.values() ) ,{torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_lowerCamelCase ) ): __lowercase = LoRALayer(module.q_proj ,rank=16 ) __lowercase = LoRALayer(module.k_proj ,rank=16 ) __lowercase = LoRALayer(module.v_proj ,rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('''Test batch ''' ,return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_lowerCamelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_lowerCamelCase ,_lowerCamelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_lowerCamelCase ,nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "gpt2-xl" a : Union[str, Any] = 3.31_91_85_48_54_15_21_87
704
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _SCREAMING_SNAKE_CASE = 8 def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple=BITS ): __lowercase = x.device __lowercase = (x * 2_5_5).int().clamp(0 , 2_5_5 ) __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase_ ) __lowercase = rearrange(lowerCamelCase_ , '''d -> d 1 1''' ) __lowercase = rearrange(lowerCamelCase_ , '''b c h w -> b c 1 h w''' ) __lowercase = ((x & mask) != 0).float() __lowercase = rearrange(lowerCamelCase_ , '''b c d h w -> b (c d) h w''' ) __lowercase = bits * 2 - 1 return bits def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : List[str]=BITS ): __lowercase = x.device __lowercase = (x > 0).int() __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase_ , dtype=torch.intaa ) __lowercase = rearrange(lowerCamelCase_ , '''d -> d 1 1''' ) __lowercase = rearrange(lowerCamelCase_ , '''b (c d) h w -> b c d h w''' , d=8 ) __lowercase = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def _lowerCAmelCase ( self : Tuple , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : bool = True , ): if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowercase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowercase = self.alphas_cumprod[timestep] __lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowercase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(lowerCamelCase_ , -scale , lowerCamelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowercase = self._get_variance(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowercase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowercase = model_output.device if torch.is_tensor(lowerCamelCase_ ) else '''cpu''' __lowercase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase_ ).to(lowerCamelCase_ ) __lowercase = self._get_variance(lowerCamelCase_ , lowerCamelCase_ ) ** 0.5 * eta * noise __lowercase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def _lowerCAmelCase ( self : str , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[int]="epsilon" , lowerCamelCase_ : Dict=None , lowerCamelCase_ : bool = True , ): __lowercase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = torch.split(lowerCamelCase_ , sample.shape[1] , dim=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = self.alphas_cumprod[t] __lowercase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowercase = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(lowerCamelCase_ , -scale , lowerCamelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowercase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowercase = 0 if t > 0: __lowercase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCamelCase_ ).to(model_output.device ) __lowercase = (self._get_variance(lowerCamelCase_ , predicted_variance=lowerCamelCase_ ) ** 0.5) * noise __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 1.0 ,) -> int: '''simple docstring''' super().__init__() __lowercase = bit_scale __lowercase = ( ddim_bit_scheduler_step if isinstance(_lowerCamelCase ,_lowerCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ) @torch.no_grad() def __call__(self ,_lowerCamelCase = 256 ,_lowerCamelCase = 256 ,_lowerCamelCase = 50 ,_lowerCamelCase = None ,_lowerCamelCase = 1 ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' __lowercase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=_lowerCamelCase ,) __lowercase = decimal_to_bits(_lowerCamelCase ) * self.bit_scale __lowercase = latents.to(self.device ) self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ).prev_sample __lowercase = bits_to_decimal(_lowerCamelCase ) if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
705
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
0
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = RoFormerTokenizer a : List[Any] = RoFormerTokenizerFast a : Tuple = True a : Any = True def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().setUp() def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = '''永和服装饰品有限公司,今天天气非常好''' __lowercase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase , __lowercase = self.get_chinese_input_output_texts() __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,output_text.split() ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_rust_tokenizer() __lowercase , __lowercase = self.get_chinese_input_output_texts() __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,output_text.split() ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' pass
706
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[str] = "owlvit_text_model" def __init__(self ,_lowerCamelCase=49408 ,_lowerCamelCase=512 ,_lowerCamelCase=2048 ,_lowerCamelCase=12 ,_lowerCamelCase=8 ,_lowerCamelCase=16 ,_lowerCamelCase="quick_gelu" ,_lowerCamelCase=1E-5 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1.0 ,_lowerCamelCase=0 ,_lowerCamelCase=49406 ,_lowerCamelCase=49407 ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = max_position_embeddings __lowercase = hidden_act __lowercase = layer_norm_eps __lowercase = attention_dropout __lowercase = initializer_range __lowercase = initializer_factor @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = "owlvit_vision_model" def __init__(self ,_lowerCamelCase=768 ,_lowerCamelCase=3072 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3 ,_lowerCamelCase=768 ,_lowerCamelCase=32 ,_lowerCamelCase="quick_gelu" ,_lowerCamelCase=1E-5 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1.0 ,**_lowerCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_channels __lowercase = image_size __lowercase = patch_size __lowercase = hidden_act __lowercase = layer_norm_eps __lowercase = attention_dropout __lowercase = initializer_range __lowercase = initializer_factor @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = "owlvit" a : str = True def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=512 ,_lowerCamelCase=2.6_5_9_2 ,_lowerCamelCase=True ,**_lowerCamelCase ,) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) if text_config is None: __lowercase = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __lowercase = OwlViTTextConfig(**_lowerCamelCase ) __lowercase = OwlViTVisionConfig(**_lowerCamelCase ) __lowercase = projection_dim __lowercase = logit_scale_init_value __lowercase = return_dict __lowercase = 1.0 @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = {} __lowercase = text_config __lowercase = vision_config return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def _UpperCAmelCase (self ) -> float: '''simple docstring''' return 1E-4 def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = -1 ,_lowerCamelCase = -1 ,_lowerCamelCase = None ,) -> Mapping[str, Any]: '''simple docstring''' __lowercase = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_lowerCamelCase ,seq_length=_lowerCamelCase ,framework=_lowerCamelCase ) __lowercase = super().generate_dummy_inputs( processor.image_processor ,batch_size=_lowerCamelCase ,framework=_lowerCamelCase ) return {**text_input_dict, **image_input_dict} @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 14
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) ,1 ) self.assertEqual(x.component(2 ) ,3 ) __lowercase = Vector() def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowerCamelCase ) ,'''(0,0,0,0,0,1)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowerCamelCase ) ,4 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2] ) __lowercase = Vector([1, 2, 3, 4, 5] ) __lowercase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowercase = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() ,2.2_3_6 ,3 ) self.assertAlmostEqual(y.euclidean_length() ,7.4_1_6 ,3 ) self.assertEqual(z.euclidean_length() ,0 ) self.assertAlmostEqual(w.euclidean_length() ,7.6_1_6 ,3 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) ,2 ) self.assertEqual((x + y).component(1 ) ,3 ) self.assertEqual((x + y).component(2 ) ,4 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) ,0 ) self.assertEqual((x - y).component(1 ) ,1 ) self.assertEqual((x - y).component(2 ) ,2 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([2, -1, 4] ) # for test of dot product __lowercase = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) ,'''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) ,0 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) ,10 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 ,1 ) ) ,'''(0,1,0)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 ,_lowerCamelCase ,_lowerCamelCase ) ) ,'''(3,4,7)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 0, 0, 0, 0, 0] ) __lowercase = x.copy() self.assertEqual(str(_lowerCamelCase ) ,str(_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 0, 0] ) x.change_component(0 ,0 ) x.change_component(1 ,1 ) self.assertEqual(str(_lowerCamelCase ) ,'''(0,1,0)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' ,str(_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] ,a.minor(_lowerCamelCase ,_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] ,a.cofactor(_lowerCamelCase ,_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(-5 ,a.determinant() ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ,3 ,3 ) __lowercase = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' ,str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' ,str(a * 2 ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) a.change_component(0 ,2 ,5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' ,str(_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(7 ,a.component(2 ,1 ) ,0.0_1 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' ,str(a + b ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' ,str(a - b ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' ,str(square_zero_matrix(5 ) ) ,) if __name__ == "__main__": unittest.main()
708
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline a : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] a : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] a : List[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Optional[int] = False @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' return self.time_input_dim @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 100 @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __lowercase = UNetaDConditionModel(**_lowerCamelCase ) return model @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.dummy_unet __lowercase = self.dummy_movq __lowercase = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __lowercase = DDIMScheduler(**_lowerCamelCase ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> Any: '''simple docstring''' __lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image __lowercase = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 )[0] __lowercase = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __lowercase = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): __lowercase = torch.manual_seed(_lowerCamelCase ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowercase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCamelCase ) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) __lowercase = output.images __lowercase = pipe( **self.get_dummy_inputs(_lowerCamelCase ) ,return_dict=_lowerCamelCase ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __lowercase = init_image.resize((512, 512) ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __lowercase = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 255.0 __lowercase = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) __lowercase = '''A robot, 4k photo''' __lowercase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) __lowercase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' ,torch_dtype=torch.floataa ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase , __lowercase = pipe_prior( _lowerCamelCase ,image=_lowerCamelCase ,strength=0.8_5 ,generator=_lowerCamelCase ,negative_prompt='''''' ,).to_tuple() __lowercase = pipeline( image=_lowerCamelCase ,image_embeds=_lowerCamelCase ,negative_image_embeds=_lowerCamelCase ,hint=_lowerCamelCase ,generator=_lowerCamelCase ,num_inference_steps=100 ,height=512 ,width=512 ,strength=0.5 ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase ,_lowerCamelCase )
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowercase = flax_key_tuple[:-1] + ('''weight''',) __lowercase = torch.permute(lowerCamelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase_ ): # linear layer __lowercase = flax_key_tuple[:-1] + ('''weight''',) __lowercase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowercase = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ): if "metadata" in layer: __lowercase = layer.split('''metadata''' ) __lowercase = ''''''.join(split_layer[0] )[:-1] __lowercase = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __lowercase = layer.split('''kvstore''' ) __lowercase = ''''''.join(split_layer[0] )[:-1] __lowercase = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __lowercase = layer.split('''/''' ) __lowercase = '''/'''.join(split_layer[:-1] ) __lowercase = (split_layer[-1],) if "kvstore/path" in layer: __lowercase = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __lowercase = '''file''' else: __lowercase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): __lowercase = rename_keys(lowerCamelCase_ ) __lowercase = {} for k, v in current_block.items(): __lowercase = v __lowercase = new_current_block torch.save(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str = WEIGHTS_NAME ): __lowercase = convert_file_size_to_int(lowerCamelCase_ ) __lowercase = [] __lowercase = {} __lowercase = 0 __lowercase = 0 os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __lowercase = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __lowercase = flatten_dict(lowerCamelCase_ , sep='''/''' ) __lowercase = {} for layer in checkpoint_info.keys(): __lowercase , __lowercase , __lowercase = get_key_and_tensorstore_dict( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if curr_real_layer_name in all_layers: __lowercase = content else: __lowercase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowercase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowercase = torch.tensor(lowerCamelCase_ ) __lowercase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowercase , __lowercase = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowerCamelCase_ ) __lowercase = '''/'''.join(lowerCamelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowercase = os.path.join( lowerCamelCase_ , weights_name.replace('''.bin''' , f"-{len(lowerCamelCase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowercase = {} __lowercase = 0 __lowercase = raw_weights.to(getattr(lowerCamelCase_ , lowerCamelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowercase = os.path.join(lowerCamelCase_ , weights_name.replace('''.bin''' , f"-{len(lowerCamelCase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCamelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowercase = {} __lowercase = {} for idx, shard in enumerate(lowerCamelCase_ ): __lowercase = weights_name.replace( '''.bin''' , f"-{idx+1:05d}-of-{len(lowerCamelCase_ ):05d}.bin" ) # len(sharded_state_dicts):05d} __lowercase = os.path.join(lowerCamelCase_ , weights_name.replace('''.bin''' , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) __lowercase = shard for key in shard: __lowercase = shard_file # Add the metadata __lowercase = {'''total_size''': total_size} __lowercase = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '''\n''' f.write(lowerCamelCase_ ) return metadata, index if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _lowerCAmelCase ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowercase = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __lowercase = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __lowercase = TaTokenizer.from_pretrained('''t5-small''' ) __lowercase = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __lowercase = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids __lowercase = model.generate(lowerCamelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
710
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase=None ) -> Any: '''simple docstring''' if not conversation_id: __lowercase = uuid.uuida() if past_user_inputs is None: __lowercase = [] if generated_responses is None: __lowercase = [] __lowercase = conversation_id __lowercase = past_user_inputs __lowercase = generated_responses __lowercase = text def __eq__(self ,_lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase ,_lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ) -> Optional[int]: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " f"with: \"{text}\"." ) __lowercase = text else: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " f"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase = text def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' self.generated_responses.append(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> int: '''simple docstring''' __lowercase = f"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase = '''user''' if is_user else '''bot''' output += f"{name} >> {text} \n" return output @add_end_docstrings( lowerCAmelCase__ , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' super().__init__(*_lowerCamelCase ,**_lowerCamelCase ) if self.tokenizer.pad_token_id is None: __lowercase = self.tokenizer.eos_token def _UpperCAmelCase (self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = {} __lowercase = {} __lowercase = {} if min_length_for_response is not None: __lowercase = min_length_for_response if minimum_tokens is not None: __lowercase = minimum_tokens if "max_length" in generate_kwargs: __lowercase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self ,_lowerCamelCase ,_lowerCamelCase=0 ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = super().__call__(_lowerCamelCase ,num_workers=_lowerCamelCase ,**_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) and len(_lowerCamelCase ) == 1: return outputs[0] return outputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=32 ) -> Dict[str, Any]: '''simple docstring''' if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer ,'''_build_conversation_input_ids''' ): __lowercase = self.tokenizer._build_conversation_input_ids(_lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase = self._legacy_parse_and_tokenize(_lowerCamelCase ) if self.framework == "pt": __lowercase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=10 ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = generate_kwargs.get('''max_length''' ,self.model.config.max_length ) __lowercase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase = max_length - minimum_tokens __lowercase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowercase = model_inputs['''attention_mask'''][:, -trim:] __lowercase = model_inputs.pop('''conversation''' ) __lowercase = max_length __lowercase = self.model.generate(**_lowerCamelCase ,**_lowerCamelCase ) if self.model.config.is_encoder_decoder: __lowercase = 1 else: __lowercase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=True ) -> Dict: '''simple docstring''' __lowercase = model_outputs['''output_ids'''] __lowercase = self.tokenizer.decode( output_ids[0] ,skip_special_tokens=_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ,) __lowercase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_lowerCamelCase ) return conversation def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer.eos_token_id __lowercase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) ) if len(_lowerCamelCase ) > self.tokenizer.model_max_length: __lowercase = input_ids[-self.tokenizer.model_max_length :] return input_ids
711
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
712
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
0
'''simple docstring''' from PIL import Image def _lowerCAmelCase ( lowerCamelCase_ : Image ): __lowercase , __lowercase = image.size __lowercase = 0 __lowercase = image.load() for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): __lowercase = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCamelCase_ ): for i in range(lowerCamelCase_ ): __lowercase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _SCREAMING_SNAKE_CASE = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
713
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE = '''MobileNetV1Config''' # Base docstring _SCREAMING_SNAKE_CASE = '''google/mobilenet_v1_1.0_224''' _SCREAMING_SNAKE_CASE = [1, 1_0_2_4, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE = '''google/mobilenet_v1_1.0_224''' _SCREAMING_SNAKE_CASE = '''tabby, tabby cat''' _SCREAMING_SNAKE_CASE = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]=None ): __lowercase = {} if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = model.mobilenet_va else: __lowercase = model __lowercase = '''MobilenetV1/Conv2d_0/''' __lowercase = backbone.conv_stem.convolution.weight __lowercase = backbone.conv_stem.normalization.bias __lowercase = backbone.conv_stem.normalization.weight __lowercase = backbone.conv_stem.normalization.running_mean __lowercase = backbone.conv_stem.normalization.running_var for i in range(1_3 ): __lowercase = i + 1 __lowercase = i * 2 __lowercase = backbone.layer[pt_index] __lowercase = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" __lowercase = pointer.convolution.weight __lowercase = pointer.normalization.bias __lowercase = pointer.normalization.weight __lowercase = pointer.normalization.running_mean __lowercase = pointer.normalization.running_var __lowercase = backbone.layer[pt_index + 1] __lowercase = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" __lowercase = pointer.convolution.weight __lowercase = pointer.normalization.bias __lowercase = pointer.normalization.weight __lowercase = pointer.normalization.running_mean __lowercase = pointer.normalization.running_var if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __lowercase = model.classifier.weight __lowercase = model.classifier.bias return tf_to_pt_map def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __lowercase = tf.train.list_variables(lowerCamelCase_ ) __lowercase = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) __lowercase = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = array # Build TF to PyTorch weights loading map __lowercase = _build_tf_to_pytorch_map(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue __lowercase = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __lowercase = np.transpose(lowerCamelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __lowercase = array.squeeze().transpose() else: __lowercase = np.transpose(lowerCamelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) __lowercase = torch.from_numpy(lowerCamelCase_ ) tf_weights.pop(lowerCamelCase_ , lowerCamelCase_ ) tf_weights.pop(name + '''/RMSProp''' , lowerCamelCase_ ) tf_weights.pop(name + '''/RMSProp_1''' , lowerCamelCase_ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , lowerCamelCase_ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def _lowerCAmelCase ( lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : nn.Convad ): __lowercase , __lowercase = features.shape[-2:] __lowercase , __lowercase = conv_layer.stride __lowercase , __lowercase = conv_layer.kernel_size if in_height % stride_height == 0: __lowercase = max(kernel_height - stride_height , 0 ) else: __lowercase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __lowercase = max(kernel_width - stride_width , 0 ) else: __lowercase = max(kernel_width - (in_width % stride_width) , 0 ) __lowercase = pad_along_width // 2 __lowercase = pad_along_width - pad_left __lowercase = pad_along_height // 2 __lowercase = pad_along_height - pad_top __lowercase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase_ , lowerCamelCase_ , '''constant''' , 0.0 ) class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 1 ,_lowerCamelCase = 1 ,_lowerCamelCase = False ,_lowerCamelCase = True ,_lowerCamelCase = True ,) -> None: '''simple docstring''' super().__init__() __lowercase = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) __lowercase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __lowercase = nn.Convad( in_channels=_lowerCamelCase ,out_channels=_lowerCamelCase ,kernel_size=_lowerCamelCase ,stride=_lowerCamelCase ,padding=_lowerCamelCase ,groups=_lowerCamelCase ,bias=_lowerCamelCase ,padding_mode='''zeros''' ,) if use_normalization: __lowercase = nn.BatchNormad( num_features=_lowerCamelCase ,eps=config.layer_norm_eps ,momentum=0.9_9_9_7 ,affine=_lowerCamelCase ,track_running_stats=_lowerCamelCase ,) else: __lowercase = None if use_activation: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = ACTaFN[use_activation] elif isinstance(config.hidden_act ,_lowerCamelCase ): __lowercase = ACTaFN[config.hidden_act] else: __lowercase = config.hidden_act else: __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: __lowercase = apply_tf_padding(_lowerCamelCase ,self.convolution ) __lowercase = self.convolution(_lowerCamelCase ) if self.normalization is not None: __lowercase = self.normalization(_lowerCamelCase ) if self.activation is not None: __lowercase = self.activation(_lowerCamelCase ) return features class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = MobileNetVaConfig a : Union[str, Any] = load_tf_weights_in_mobilenet_va a : Optional[Any] = "mobilenet_v1" a : int = "pixel_values" a : Union[str, Any] = False def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if isinstance(_lowerCamelCase ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _SCREAMING_SNAKE_CASE = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _SCREAMING_SNAKE_CASE = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , lowerCAmelCase__ , ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase = True ) -> str: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = config __lowercase = 32 __lowercase = max(int(depth * config.depth_multiplier ) ,config.min_depth ) __lowercase = MobileNetVaConvLayer( _lowerCamelCase ,in_channels=config.num_channels ,out_channels=_lowerCamelCase ,kernel_size=3 ,stride=2 ,) __lowercase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __lowercase = nn.ModuleList() for i in range(13 ): __lowercase = out_channels if strides[i] == 2 or i == 0: depth *= 2 __lowercase = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase ,in_channels=_lowerCamelCase ,out_channels=_lowerCamelCase ,kernel_size=3 ,stride=strides[i] ,groups=_lowerCamelCase ,) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase ,in_channels=_lowerCamelCase ,out_channels=_lowerCamelCase ,kernel_size=1 ,) ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _UpperCAmelCase (self ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __lowercase = self.conv_stem(_lowerCamelCase ) __lowercase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __lowercase = layer_module(_lowerCamelCase ) if output_hidden_states: __lowercase = all_hidden_states + (hidden_states,) __lowercase = hidden_states if self.pooler is not None: __lowercase = torch.flatten(self.pooler(_lowerCamelCase ) ,start_dim=1 ) else: __lowercase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase ,pooler_output=_lowerCamelCase ,hidden_states=_lowerCamelCase ,) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = config.num_labels __lowercase = MobileNetVaModel(_lowerCamelCase ) __lowercase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __lowercase = nn.Dropout(config.classifier_dropout_prob ,inplace=_lowerCamelCase ) __lowercase = nn.Linear(_lowerCamelCase ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _UpperCAmelCase (self ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.mobilenet_va(_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,return_dict=_lowerCamelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(self.dropout(_lowerCamelCase ) ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = '''single_label_classification''' else: __lowercase = '''multi_label_classification''' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() ,labels.squeeze() ) else: __lowercase = loss_fct(_lowerCamelCase ,_lowerCamelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_lowerCamelCase ,_lowerCamelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase ,logits=_lowerCamelCase ,hidden_states=outputs.hidden_states ,)
714
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
_SCREAMING_SNAKE_CASE = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _SCREAMING_SNAKE_CASE = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _SCREAMING_SNAKE_CASE = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
715
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
0
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _SCREAMING_SNAKE_CASE : str = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __lowercase : '''simple docstring''' def __init__(self ) -> List[str]: '''simple docstring''' __lowercase = WATERMARK_BITS __lowercase = WatermarkEncoder() self.encoder.set_watermark('''bits''' ,self.watermark ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' if images.shape[-1] < 256: return images __lowercase = (255 * (images / 2 + 0.5)).cpu().permute(0 ,2 ,3 ,1 ).float().numpy() __lowercase = [self.encoder.encode(_lowerCamelCase ,'''dwtDct''' ) for image in images] __lowercase = torch.from_numpy(np.array(_lowerCamelCase ) ).permute(0 ,3 ,1 ,2 ) __lowercase = torch.clamp(2 * (images / 255 - 0.5) ,min=-1.0 ,max=1.0 ) return images
716
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ) __lowercase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ,streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ) __lowercase = tokenizer.decode(greedy_ids[0] ) __lowercase = TextIteratorStreamer(_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase = Thread(target=model.generate ,kwargs=_lowerCamelCase ) thread.start() __lowercase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ) __lowercase = greedy_ids[:, input_ids.shape[1] :] __lowercase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(_lowerCamelCase ,skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ,streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = torch.ones((1, 5) ,device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase = TextStreamer(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase ,max_new_tokens=1 ,do_sample=_lowerCamelCase ,streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase = cs.out[:-1] # Remove the final "\n" __lowercase = tokenizer(_lowerCamelCase ,return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = TextIteratorStreamer(_lowerCamelCase ,timeout=0.0_0_1 ) __lowercase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase = Thread(target=model.generate ,kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): __lowercase = '''''' for new_text in streamer: streamer_text += new_text
717
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): __lowercase = [image] __lowercase = [trans(img.convert('''RGB''' ) ) for img in image] __lowercase = torch.stack(lowerCamelCase_ ) return image class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __lowercase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = min(int(num_inference_steps * strength ) ,_lowerCamelCase ) __lowercase = max(num_inference_steps - init_timestep ,0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowerCamelCase )}" ) __lowercase = image.to(device=_lowerCamelCase ,dtype=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowercase = init_latents.shape __lowercase = randn_tensor(_lowerCamelCase ,generator=_lowerCamelCase ,device=_lowerCamelCase ,dtype=_lowerCamelCase ) # get latents print('''add noise to latents at timestep''' ,_lowerCamelCase ) __lowercase = self.scheduler.add_noise(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = init_latents return latents @torch.no_grad() def __call__(self ,_lowerCamelCase = None ,_lowerCamelCase = 0.8 ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,_lowerCamelCase = 0.0 ,_lowerCamelCase = 50 ,_lowerCamelCase = None ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(_lowerCamelCase ) # 2. Preprocess image __lowercase = preprocess(_lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(_lowerCamelCase ,device=self.device ) __lowercase , __lowercase = self.get_timesteps(_lowerCamelCase ,_lowerCamelCase ,self.device ) __lowercase = timesteps[:1].repeat(_lowerCamelCase ) # 4. Prepare latent variables __lowercase = self.prepare_latents(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,self.unet.dtype ,self.device ,_lowerCamelCase ) __lowercase = latents # 5. Denoising loop for t in self.progress_bar(_lowerCamelCase ): # 1. predict noise model_output __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowercase = self.scheduler.step( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,eta=_lowerCamelCase ,use_clipped_model_output=_lowerCamelCase ,generator=_lowerCamelCase ,).prev_sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowerCamelCase )
718
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): '''simple docstring''' a : str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : Dict = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = TextaTextGenerationPipeline(model=_lowerCamelCase ,tokenizer=_lowerCamelCase ) return generator, ["Something to write", "Something else"] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = generator('''Something there''' ) self.assertEqual(_lowerCamelCase ,[{'''generated_text''': ANY(_lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __lowercase = generator(['''This is great !''', '''Something else'''] ,num_return_sequences=2 ,do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase ,[ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] ,) __lowercase = generator( ['''This is great !''', '''Something else'''] ,num_return_sequences=2 ,batch_size=2 ,do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase ,[ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] ,) with self.assertRaises(_lowerCamelCase ): generator(4 ) @require_torch def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = pipeline('''text2text-generation''' ,model='''patrickvonplaten/t5-tiny-random''' ,framework='''pt''' ) # do_sample=False necessary for reproducibility __lowercase = generator('''Something there''' ,do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,[{'''generated_text''': ''''''}] ) __lowercase = 3 __lowercase = generator( '''Something there''' ,num_return_sequences=_lowerCamelCase ,num_beams=_lowerCamelCase ,) __lowercase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = generator('''This is a test''' ,do_sample=_lowerCamelCase ,num_return_sequences=2 ,return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase ,[ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] ,) __lowercase = generator.model.config.eos_token_id __lowercase = '''<pad>''' __lowercase = generator( ['''This is a test''', '''This is a second test'''] ,do_sample=_lowerCamelCase ,num_return_sequences=2 ,batch_size=2 ,return_tensors=_lowerCamelCase ,) self.assertEqual( _lowerCamelCase ,[ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] ,) @require_tf def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = pipeline('''text2text-generation''' ,model='''patrickvonplaten/t5-tiny-random''' ,framework='''tf''' ) # do_sample=False necessary for reproducibility __lowercase = generator('''Something there''' ,do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,[{'''generated_text''': ''''''}] )
719
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
0
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
720
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=7 ,_lowerCamelCase=3 ,_lowerCamelCase=18 ,_lowerCamelCase=30 ,_lowerCamelCase=400 ,_lowerCamelCase=True ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase=False ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=[0.5, 0.5, 0.5] ,_lowerCamelCase=[0.5, 0.5, 0.5] ,) -> List[Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size if size is not None else {'''height''': 18, '''width''': 20} __lowercase = do_thumbnail __lowercase = do_align_axis __lowercase = do_pad __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = DonutImageProcessor if is_vision_available() else None def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = DonutImageProcessingTester(self ) @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''image_std''' ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' pass @is_flaky() def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __lowercase = image_processing(_lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCamelCase ,numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __lowercase = image_processing(_lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCamelCase ,torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __lowercase = image_processing(_lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
721
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {} class _snake_case ( _A ): _A = 'llama' _A = ['past_key_values'] def __init__( self ,UpperCamelCase=32_000 ,UpperCamelCase=4_096 ,UpperCamelCase=11_008 ,UpperCamelCase=32 ,UpperCamelCase=32 ,UpperCamelCase=None ,UpperCamelCase="silu" ,UpperCamelCase=2_048 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-6 ,UpperCamelCase=True ,UpperCamelCase=0 ,UpperCamelCase=1 ,UpperCamelCase=2 ,UpperCamelCase=1 ,UpperCamelCase=False ,UpperCamelCase=None ,**UpperCamelCase ,) -> Tuple: snake_case__ :int = vocab_size snake_case__ :Any = max_position_embeddings snake_case__ :int = hidden_size snake_case__ :List[Any] = intermediate_size snake_case__ :int = num_hidden_layers snake_case__ :Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case__ :Dict = num_attention_heads snake_case__ :List[str] = num_key_value_heads snake_case__ :Optional[int] = hidden_act snake_case__ :Any = initializer_range snake_case__ :Dict = rms_norm_eps snake_case__ :List[str] = pretraining_tp snake_case__ :Any = use_cache snake_case__ :Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase ,bos_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,tie_word_embeddings=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'got {self.rope_scaling}' ) snake_case__ :Optional[int] = self.rope_scaling.get("type" ,UpperCamelCase ) snake_case__ :Optional[Any] = self.rope_scaling.get("factor" ,UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase ,UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase : Tuple = 2_5_6 class _snake_case ( _A ): _A = ['melgan'] def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> None: super().__init__() # From MELGAN snake_case__ :int = math.log(1E-5 ) # Matches MelGAN training. snake_case__ :List[Any] = 4.0 # Largest value for most examples snake_case__ :List[str] = 128 self.register_modules( notes_encoder=UpperCamelCase ,continuous_encoder=UpperCamelCase ,decoder=UpperCamelCase ,scheduler=UpperCamelCase ,melgan=UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=(-1.0, 1.0) ,UpperCamelCase=False ) -> Any: snake_case__ , snake_case__ :Optional[int] = output_range if clip: snake_case__ :List[str] = torch.clip(UpperCamelCase ,self.min_value ,self.max_value ) # Scale to [0, 1]. snake_case__ :Tuple = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=(-1.0, 1.0) ,UpperCamelCase=False ) -> Any: snake_case__ , snake_case__ :Union[str, Any] = input_range snake_case__ :Any = torch.clip(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) if clip else outputs # Scale to [0, 1]. snake_case__ :Optional[Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :Optional[int] = input_tokens > 0 snake_case__ , snake_case__ :List[Any] = self.notes_encoder( encoder_input_tokens=UpperCamelCase ,encoder_inputs_mask=UpperCamelCase ) snake_case__ , snake_case__ :List[Any] = self.continuous_encoder( encoder_inputs=UpperCamelCase ,encoder_inputs_mask=UpperCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :Tuple = noise_time if not torch.is_tensor(UpperCamelCase ): snake_case__ :Tuple = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: snake_case__ :str = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ :int = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) snake_case__ :str = self.decoder( encodings_and_masks=UpperCamelCase ,decoder_input_tokens=UpperCamelCase ,decoder_noise_time=UpperCamelCase ) return logits @torch.no_grad() def __call__( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = 100 ,UpperCamelCase = True ,UpperCamelCase = "numpy" ,UpperCamelCase = None ,UpperCamelCase = 1 ,) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase ,UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(UpperCamelCase )}.' ) snake_case__ :List[Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) snake_case__ :Any = np.zeros([1, 0, self.n_dims] ,np.floataa ) snake_case__ :List[str] = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=UpperCamelCase ,device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase ): if i == 0: snake_case__ :int = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. snake_case__ :List[str] = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=UpperCamelCase ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case__ :List[Any] = ones snake_case__ :List[Any] = self.scale_features( UpperCamelCase ,output_range=[-1.0, 1.0] ,clip=UpperCamelCase ) snake_case__ :List[Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=UpperCamelCase ,continuous_mask=UpperCamelCase ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case__ :List[str] = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=UpperCamelCase ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(UpperCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case__ :List[str] = self.decode( encodings_and_masks=UpperCamelCase ,input_tokens=UpperCamelCase ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 snake_case__ :str = self.scheduler.step(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,generator=UpperCamelCase ).prev_sample snake_case__ :Any = self.scale_to_features(UpperCamelCase ,input_range=[-1.0, 1.0] ) snake_case__ :Union[str, Any] = mel[:1] snake_case__ :Tuple = mel.cpu().float().numpy() snake_case__ :List[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase ,UpperCamelCase ) logger.info("Generated segment" ,UpperCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": snake_case__ :str = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: snake_case__ :Any = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase )
57
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( _A ): def __init__( self ,UpperCamelCase ) -> List[Any]: super().__init__() snake_case__ :Union[str, Any] = nn.ModuleList(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = False ,UpperCamelCase = True ,) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase ,UpperCamelCase ,self.nets ) ): snake_case__ , snake_case__ :List[str] = controlnet( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) # merge samples if i == 0: snake_case__ , snake_case__ :Optional[int] = down_samples, mid_sample else: snake_case__ :Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase ,UpperCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = False ,UpperCamelCase = None ,) -> Union[str, Any]: snake_case__ :List[str] = 0 snake_case__ :Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase ,is_main_process=UpperCamelCase ,save_function=UpperCamelCase ,safe_serialization=UpperCamelCase ,variant=UpperCamelCase ,) idx += 1 snake_case__ :List[Any] = model_path_to_save + f'_{idx}' @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,**UpperCamelCase ) -> Dict: snake_case__ :List[Any] = 0 snake_case__ :int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case__ :Any = pretrained_model_path while os.path.isdir(UpperCamelCase ): snake_case__ :List[str] = ControlNetModel.from_pretrained(UpperCamelCase ,**UpperCamelCase ) controlnets.append(UpperCamelCase ) idx += 1 snake_case__ :Optional[Any] = pretrained_model_path + f'_{idx}' logger.info(f'{len(UpperCamelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(UpperCamelCase ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(UpperCamelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(UpperCamelCase )
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
from collections import defaultdict class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Dict = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 snake_case__ :str = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase ) ) ] snake_case__ :Any = defaultdict(UpperCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 snake_case__ :Dict = (1 << len(UpperCamelCase )) - 1 def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Dict: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement snake_case__ :Any = self.count_ways_until(UpperCamelCase ,task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) ,task_no + 1 ) # save the value. snake_case__ :Tuple = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: # Store the list of persons for each task for i in range(len(UpperCamelCase ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 ,1 ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __UpperCAmelCase : Optional[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
57
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Tuple , __snake_case : Tuple=False ) -> str: '''simple docstring''' snake_case__ :Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ :Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowercase_ ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[Any]=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ :List[str] = "" else: snake_case__ :List[Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ :Dict = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) snake_case__ :Dict = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case__ :Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ :List[str] = in_proj_bias[: config.hidden_size] snake_case__ :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ :List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ :Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowercase_ ( __snake_case : Dict , __snake_case : int , __snake_case : Tuple ) -> Tuple: '''simple docstring''' snake_case__ :Optional[int] = dct.pop(__snake_case ) snake_case__ :Dict = val def lowercase_ ( ) -> int: '''simple docstring''' snake_case__ :Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ :Optional[int] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def lowercase_ ( __snake_case : Tuple , __snake_case : List[Any] ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ :Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ :Optional[int] = 10_00 snake_case__ :Tuple = "huggingface/label-files" snake_case__ :Union[str, Any] = "imagenet-1k-id2label.json" snake_case__ :Dict = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) snake_case__ :int = {int(__snake_case ): v for k, v in idalabel.items()} snake_case__ :List[str] = idalabel snake_case__ :Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case__ :int = int(deit_name[-6:-4] ) snake_case__ :str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): snake_case__ :Union[str, Any] = 1_92 snake_case__ :Optional[Any] = 7_68 snake_case__ :Tuple = 12 snake_case__ :int = 3 elif deit_name[9:].startswith("small" ): snake_case__ :Any = 3_84 snake_case__ :Union[str, Any] = 15_36 snake_case__ :List[Any] = 12 snake_case__ :Optional[Any] = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): snake_case__ :Tuple = 10_24 snake_case__ :int = 40_96 snake_case__ :List[Any] = 24 snake_case__ :Any = 16 # load original model from timm snake_case__ :Optional[Any] = timm.create_model(__snake_case , pretrained=__snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ :str = timm_model.state_dict() snake_case__ :Any = create_rename_keys(__snake_case , __snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , __snake_case ) # load HuggingFace model snake_case__ :List[Any] = DeiTForImageClassificationWithTeacher(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ :List[str] = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ :str = DeiTImageProcessor(size=__snake_case , crop_size=config.image_size ) snake_case__ :List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case__ :str = encoding["pixel_values"] snake_case__ :List[str] = model(__snake_case ) snake_case__ :Optional[Any] = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCAmelCase : Optional[int] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
57
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __UpperCAmelCase : Dict = re.compile(R"\s+") def lowercase_ ( __snake_case : int ) -> Dict: '''simple docstring''' return {"hash": hashlib.mda(re.sub(__snake_case , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def lowercase_ ( __snake_case : Any ) -> List[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = [len(__snake_case ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__snake_case ), "line_max": max(__snake_case )} def lowercase_ ( __snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case__ :Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def lowercase_ ( __snake_case : List[str] , __snake_case : int ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any]=5 ) -> str: '''simple docstring''' snake_case__ :Dict = ["auto-generated", "autogenerated", "automatically generated"] snake_case__ :List[Any] = example["content"].splitlines() for _, line in zip(range(__snake_case ) , __snake_case ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowercase_ ( __snake_case : List[str] , __snake_case : int=5 , __snake_case : List[str]=0.0_5 ) -> Optional[int]: '''simple docstring''' snake_case__ :int = ["unit tests", "test file", "configuration file"] snake_case__ :Any = example["content"].splitlines() snake_case__ :List[Any] = 0 snake_case__ :Union[str, Any] = 0 # first test for _, line in zip(range(__snake_case ) , __snake_case ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case__ :Dict = example["content"].count("\n" ) snake_case__ :Optional[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowercase_ ( __snake_case : int ) -> Tuple: '''simple docstring''' snake_case__ :str = ["def ", "class ", "for ", "while "] snake_case__ :int = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowercase_ ( __snake_case : Tuple , __snake_case : Tuple=4 ) -> List[Any]: '''simple docstring''' snake_case__ :Tuple = example["content"].splitlines() snake_case__ :Optional[int] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowercase_ ( __snake_case : str ) -> Optional[int]: '''simple docstring''' snake_case__ :List[str] = tokenizer(example["content"] , truncation=__snake_case )["input_ids"] snake_case__ :int = len(example["content"] ) / len(__snake_case ) return {"ratio": ratio} def lowercase_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :str = {} results.update(get_hash(__snake_case ) ) results.update(line_stats(__snake_case ) ) results.update(alpha_stats(__snake_case ) ) results.update(char_token_ratio(__snake_case ) ) results.update(is_autogenerated(__snake_case ) ) results.update(is_config_or_test(__snake_case ) ) results.update(has_no_keywords(__snake_case ) ) results.update(has_few_assignments(__snake_case ) ) return results def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Any: '''simple docstring''' if not check_uniques(__snake_case , __snake_case ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowercase_ ( __snake_case : Dict ) -> Any: '''simple docstring''' with open(__snake_case , "rb" ) as f_in: with gzip.open(str(__snake_case ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(__snake_case , __snake_case ) os.unlink(__snake_case ) # Settings __UpperCAmelCase : Any = HfArgumentParser(PreprocessingArguments) __UpperCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: __UpperCAmelCase : Any = multiprocessing.cpu_count() __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __UpperCAmelCase : int = time.time() __UpperCAmelCase : Dict = load_dataset(args.dataset_name, split="train") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __UpperCAmelCase : Optional[Any] = time.time() __UpperCAmelCase : Tuple = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __UpperCAmelCase : Dict = set(ds.unique("hash")) __UpperCAmelCase : List[Any] = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __UpperCAmelCase : List[str] = time.time() __UpperCAmelCase : Tuple = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __UpperCAmelCase : Tuple = time.time() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __UpperCAmelCase : Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) __UpperCAmelCase : Any = output_dir / "data" data_dir.mkdir(exist_ok=True) __UpperCAmelCase : Optional[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __UpperCAmelCase : Dict = str(data_dir / F'''file-{file_number+1:012}.json''') __UpperCAmelCase : List[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
57
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[Any] = "ylacombe/bark-small" snake_case__ :Dict = tempfile.mkdtemp() snake_case__ :Tuple = "en_speaker_1" snake_case__ :List[Any] = "This is a test string" snake_case__ :List[Any] = "speaker_embeddings_path.json" snake_case__ :Optional[Any] = "speaker_embeddings" def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> Union[str, Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[str] = self.get_tokenizer() snake_case__ :Tuple = BarkProcessor(tokenizer=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) snake_case__ :Tuple = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) snake_case__ :Tuple = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) snake_case__ :int = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="(BOS)" ,eos_token="(EOS)" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) snake_case__ :Optional[Any] = 35 snake_case__ :Optional[int] = 2 snake_case__ :str = 8 snake_case__ :Any = { "semantic_prompt": np.ones(UpperCamelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case__ :Any = processor(text=self.input_string ,voice_preset=UpperCamelCase ) snake_case__ :List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(UpperCamelCase ,np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case__ :List[str] = os.path.join(self.tmpdirname ,"file.npz" ) np.savez(UpperCamelCase ,**UpperCamelCase ) snake_case__ :Union[str, Any] = processor(text=self.input_string ,voice_preset=UpperCamelCase ) snake_case__ :int = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(UpperCamelCase ,np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case__ :Dict = processor(text=self.input_string ,voice_preset=self.voice_preset ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = self.get_tokenizer() snake_case__ :str = BarkProcessor(tokenizer=UpperCamelCase ) snake_case__ :List[Any] = processor(text=self.input_string ) snake_case__ :Optional[int] = tokenizer( self.input_string ,padding="max_length" ,max_length=256 ,add_special_tokens=UpperCamelCase ,return_attention_mask=UpperCamelCase ,return_token_type_ids=UpperCamelCase ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
57
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
1
def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number | (1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number & ~(1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number ^ (1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
57
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=30 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=10 ,UpperCamelCase=0.02 ,) -> Dict: snake_case__ :Any = parent snake_case__ :Union[str, Any] = batch_size snake_case__ :Tuple = image_size snake_case__ :Any = patch_size snake_case__ :Optional[int] = num_channels snake_case__ :Dict = is_training snake_case__ :str = use_labels snake_case__ :List[Any] = hidden_size snake_case__ :Dict = num_hidden_layers snake_case__ :Tuple = num_attention_heads snake_case__ :List[str] = intermediate_size snake_case__ :List[Any] = hidden_act snake_case__ :Optional[Any] = hidden_dropout_prob snake_case__ :Tuple = attention_probs_dropout_prob snake_case__ :Any = type_sequence_label_size snake_case__ :int = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ :Union[str, Any] = (image_size // patch_size) ** 2 snake_case__ :Union[str, Any] = num_patches + 1 def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :Union[str, Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Union[str, Any] = FlaxViTModel(config=UpperCamelCase ) snake_case__ :Tuple = model(UpperCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ :List[str] = (self.image_size, self.image_size) snake_case__ :Tuple = (self.patch_size, self.patch_size) snake_case__ :Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> str: snake_case__ :List[str] = self.type_sequence_label_size snake_case__ :Optional[int] = FlaxViTForImageClassification(config=UpperCamelCase ) snake_case__ :List[str] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ :List[Any] = 1 snake_case__ :str = FlaxViTForImageClassification(UpperCamelCase ) snake_case__ :int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :List[Any] = model(UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[str] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ) :List[str] = config_and_inputs snake_case__ :List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _snake_case ( _A , unittest.TestCase ): _A = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCAmelCase_ ( self ) -> None: snake_case__ :Optional[int] = FlaxViTModelTester(self ) snake_case__ :Union[str, Any] = ConfigTester(self ,config_class=UpperCamelCase ,has_text_modality=UpperCamelCase ,hidden_size=37 ) def lowerCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ , snake_case__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Any = model_class(UpperCamelCase ) snake_case__ :Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Any = [*signature.parameters.keys()] snake_case__ :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ , snake_case__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ :int = self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) snake_case__ :Union[str, Any] = model_class(UpperCamelCase ) @jax.jit def model_jitted(UpperCamelCase ,**UpperCamelCase ): return model(pixel_values=UpperCamelCase ,**UpperCamelCase ) with self.subTest("JIT Enabled" ): snake_case__ :Any = model_jitted(**UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case__ :Optional[Any] = model_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase ,UpperCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def lowerCAmelCase_ ( self ) -> Tuple: for model_class_name in self.all_model_classes: snake_case__ :List[str] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) snake_case__ :Tuple = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCamelCase )
57
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
1
from __future__ import annotations def lowercase_ ( __snake_case : list[int] ) -> int: '''simple docstring''' snake_case__ :Union[str, Any] = len(__snake_case ) // 2 # choose the middle 3 elements snake_case__ :List[str] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase : Union[str, Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase_ ( __snake_case : Dict , __snake_case : Dict , __snake_case : Union[str, Any]=None , __snake_case : List[str]=None , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Optional[Any]=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: snake_case__ :Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: snake_case__ :Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: snake_case__ :Union[str, Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ :str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ :str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=99 ,UpperCamelCase=16 ,UpperCamelCase=2 ,UpperCamelCase=4 ,UpperCamelCase=4 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=1 ,UpperCamelCase=0 ,UpperCamelCase=0.02 ,) -> Optional[Any]: snake_case__ :Dict = parent snake_case__ :int = batch_size snake_case__ :Optional[Any] = seq_length snake_case__ :Optional[Any] = is_training snake_case__ :Optional[Any] = use_labels snake_case__ :Union[str, Any] = vocab_size snake_case__ :Optional[int] = hidden_size snake_case__ :List[Any] = num_hidden_layers snake_case__ :List[Any] = num_attention_heads snake_case__ :Any = intermediate_size snake_case__ :Any = hidden_act snake_case__ :Dict = hidden_dropout_prob snake_case__ :str = attention_probs_dropout_prob snake_case__ :str = max_position_embeddings snake_case__ :Optional[int] = eos_token_id snake_case__ :Optional[int] = pad_token_id snake_case__ :Dict = bos_token_id snake_case__ :List[str] = initializer_range def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) ,3 ,self.vocab_size ) snake_case__ :str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) ,dtype=np.intaa )) ,-1 ) snake_case__ :Union[str, Any] = shift_tokens_right(UpperCamelCase ,1 ,2 ) snake_case__ :List[Any] = BlenderbotConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,initializer_range=self.initializer_range ,use_cache=UpperCamelCase ,) snake_case__ :Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) return config, inputs_dict def lowerCAmelCase_ ( self ) -> int: snake_case__ , snake_case__ :Any = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :List[Any] = 20 snake_case__ :str = model_class_name(UpperCamelCase ) snake_case__ :Union[str, Any] = model.encode(inputs_dict["input_ids"] ) snake_case__ , snake_case__ :Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) snake_case__ :Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="i4" ) snake_case__ :Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) snake_case__ :Optional[Any] = model.decode( decoder_input_ids[:, :-1] ,UpperCamelCase ,decoder_attention_mask=UpperCamelCase ,past_key_values=UpperCamelCase ,decoder_position_ids=UpperCamelCase ,) snake_case__ :Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="i4" ) snake_case__ :Any = model.decode( decoder_input_ids[:, -1:] ,UpperCamelCase ,decoder_attention_mask=UpperCamelCase ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=UpperCamelCase ,) snake_case__ :str = model.decode(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'Max diff is {diff}' ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :Tuple = 20 snake_case__ :Dict = model_class_name(UpperCamelCase ) snake_case__ :Optional[Any] = model.encode(inputs_dict["input_ids"] ) snake_case__ , snake_case__ :Tuple = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) snake_case__ :Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) snake_case__ :str = model.init_cache(decoder_input_ids.shape[0] ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) snake_case__ :Optional[int] = model.decode( decoder_input_ids[:, :-1] ,UpperCamelCase ,decoder_attention_mask=UpperCamelCase ,past_key_values=UpperCamelCase ,decoder_position_ids=UpperCamelCase ,) snake_case__ :int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="i4" ) snake_case__ :Optional[Any] = model.decode( decoder_input_ids[:, -1:] ,UpperCamelCase ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=UpperCamelCase ,decoder_position_ids=UpperCamelCase ,) snake_case__ :List[str] = model.decode(UpperCamelCase ,UpperCamelCase ,decoder_attention_mask=UpperCamelCase ) snake_case__ :Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'Max diff is {diff}' ) @require_flax class _snake_case ( unittest.TestCase ): _A = 99 def lowerCAmelCase_ ( self ) -> str: snake_case__ :Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] ,dtype=np.intaa ,) snake_case__ :List[Any] = input_ids.shape[0] snake_case__ :Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size ,d_model=24 ,encoder_layers=2 ,decoder_layers=2 ,encoder_attention_heads=2 ,decoder_attention_heads=2 ,encoder_ffn_dim=32 ,decoder_ffn_dim=32 ,max_position_embeddings=48 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ , snake_case__ , snake_case__ :List[str] = self._get_config_and_data() snake_case__ :str = FlaxBlenderbotForConditionalGeneration(UpperCamelCase ) snake_case__ :Optional[Any] = lm_model(input_ids=UpperCamelCase ) snake_case__ :Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = BlenderbotConfig( vocab_size=self.vocab_size ,d_model=14 ,encoder_layers=2 ,decoder_layers=2 ,encoder_attention_heads=2 ,decoder_attention_heads=2 ,encoder_ffn_dim=8 ,decoder_ffn_dim=8 ,max_position_embeddings=48 ,) snake_case__ :str = FlaxBlenderbotForConditionalGeneration(UpperCamelCase ) snake_case__ :Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] ,dtype=np.intaa ) snake_case__ :Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] ,dtype=np.intaa ) snake_case__ :Any = lm_model(input_ids=UpperCamelCase ,decoder_input_ids=UpperCamelCase ) snake_case__ :str = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] ,dtype=np.intaa ) snake_case__ :str = shift_tokens_right(UpperCamelCase ,1 ,2 ) snake_case__ :int = np.equal(UpperCamelCase ,1 ).astype(np.floataa ).sum() snake_case__ :Dict = np.equal(UpperCamelCase ,1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape ,input_ids.shape ) self.assertEqual(UpperCamelCase ,n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] ,2 ).all() ) @require_flax class _snake_case ( _A , unittest.TestCase , _A ): _A = True _A = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _A = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = FlaxBlenderbotModelTester(self ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ , snake_case__ :int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ , snake_case__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ :Optional[int] = self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ): return model.encode(input_ids=UpperCamelCase ,attention_mask=UpperCamelCase ) with self.subTest("JIT Enabled" ): snake_case__ :Dict = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case__ :List[Any] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase ,UpperCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ , snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ :Union[str, Any] = model_class(UpperCamelCase ) snake_case__ :Optional[Any] = model.encode(inputs_dict["input_ids"] ,inputs_dict["attention_mask"] ) snake_case__ :List[str] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): return model.decode( decoder_input_ids=UpperCamelCase ,decoder_attention_mask=UpperCamelCase ,encoder_outputs=UpperCamelCase ,) with self.subTest("JIT Enabled" ): snake_case__ :Tuple = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case__ :int = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase ,UpperCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: snake_case__ :Optional[int] = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids snake_case__ :Any = np.ones((1, 1) ) * model.config.eos_token_id snake_case__ :Dict = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skipUnless(jax_device != "cpu" ,"3B test too slow on CPU." ) @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Any = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} snake_case__ :Any = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} snake_case__ :str = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" ,from_pt=UpperCamelCase ) snake_case__ :List[str] = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) snake_case__ :List[str] = ["Sam"] snake_case__ :Dict = tokenizer(UpperCamelCase ,return_tensors="jax" ) snake_case__ :List[Any] = model.generate(**UpperCamelCase ,**UpperCamelCase ) snake_case__ :Union[str, Any] = "Sam is a great name. It means \"sun\" in Gaelic." snake_case__ :List[Any] = tokenizer.batch_decode(UpperCamelCase ,**UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
57
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __UpperCAmelCase : Tuple = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def lowercase_ ( __snake_case : Tuple ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = {} state_dict.pop("pixel_mean" , __snake_case ) state_dict.pop("pixel_std" , __snake_case ) snake_case__ :int = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ :int = key.replace(__snake_case , __snake_case ) if re.match(__snake_case , __snake_case ): snake_case__ :Optional[Any] = int(re.match(__snake_case , __snake_case ).group(2 ) ) if layer_nb == 0: snake_case__ :Tuple = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: snake_case__ :List[Any] = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: snake_case__ :int = key.replace("layers.2" , "proj_out" ) snake_case__ :Any = value snake_case__ :List[Any] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def lowercase_ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any]="ybelkada/segment-anything" ) -> str: '''simple docstring''' snake_case__ :int = hf_hub_download(__snake_case , F'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: snake_case__ :List[Any] = SamConfig() elif "sam_vit_l" in model_name: snake_case__ :Any = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case__ :Dict = SamConfig( vision_config=__snake_case , ) elif "sam_vit_h" in model_name: snake_case__ :Optional[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case__ :Optional[Any] = SamConfig( vision_config=__snake_case , ) snake_case__ :Optional[Any] = torch.load(__snake_case , map_location="cpu" ) snake_case__ :List[str] = replace_keys(__snake_case ) snake_case__ :List[str] = SamImageProcessor() snake_case__ :Any = SamProcessor(image_processor=__snake_case ) snake_case__ :Dict = SamModel(__snake_case ) hf_model.load_state_dict(__snake_case ) snake_case__ :Optional[Any] = hf_model.to("cuda" ) snake_case__ :Dict = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" snake_case__ :List[Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("RGB" ) snake_case__ :Tuple = [[[4_00, 6_50]]] snake_case__ :Tuple = [[1]] snake_case__ :str = processor(images=np.array(__snake_case ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ :Tuple = hf_model(**__snake_case ) snake_case__ :Optional[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 snake_case__ :Any = processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ :List[Any] = hf_model(**__snake_case ) snake_case__ :str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 snake_case__ :Tuple = ((75, 2_75, 17_25, 8_50),) snake_case__ :str = processor(images=np.array(__snake_case ) , input_boxes=__snake_case , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ :Optional[int] = hf_model(**__snake_case ) snake_case__ :List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. snake_case__ :Dict = [[[4_00, 6_50], [8_00, 6_50]]] snake_case__ :Optional[Any] = [[1, 1]] snake_case__ :str = processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ :Any = hf_model(**__snake_case ) snake_case__ :List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": __UpperCAmelCase : int = argparse.ArgumentParser() __UpperCAmelCase : List[str] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __UpperCAmelCase : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
57
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
1
def lowercase_ ( __snake_case : str , __snake_case : str ) -> str: '''simple docstring''' snake_case__ :int = len(__snake_case ) snake_case__ :int = len(__snake_case ) snake_case__ :int = ( first_str_length if first_str_length > second_str_length else second_str_length ) snake_case__ :list = [] for char_count in range(__snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__snake_case ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
57
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=None ,) -> Optional[Any]: snake_case__ :Optional[Any] = size if size is not None else {"shortest_edge": 20} snake_case__ :List[str] = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case__ :Union[str, Any] = parent snake_case__ :Union[str, Any] = batch_size snake_case__ :Optional[Any] = num_channels snake_case__ :List[str] = image_size snake_case__ :List[str] = min_resolution snake_case__ :Tuple = max_resolution snake_case__ :Optional[Any] = do_resize snake_case__ :Any = size snake_case__ :Dict = do_center_crop snake_case__ :int = crop_size def lowerCAmelCase_ ( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( _A , unittest.TestCase ): _A = MobileNetVaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[Any] = MobileNetVaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"do_center_crop" ) ) self.assertTrue(hasattr(UpperCamelCase ,"crop_size" ) ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) snake_case__ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def lowerCAmelCase_ ( self ) -> Optional[int]: pass def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image_processing snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image_processing snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :Dict = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :List[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Tuple: # Initialize image_processing snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :Any = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :List[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
57
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCAmelCase : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase : Any = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __UpperCAmelCase : Dict = spec.loader.load_module() __UpperCAmelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCAmelCase : int = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __UpperCAmelCase : Optional[int] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case__ :Any = False # source code of `config_class` snake_case__ :List[str] = inspect.getsource(__snake_case ) snake_case__ :Any = _re_checkpoint.findall(__snake_case ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case__ , snake_case__ :Optional[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case__ :Dict = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case__ :Dict = True break snake_case__ :Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__snake_case ) if len(__snake_case ) > 0: snake_case__ :int = "\n".join(sorted(__snake_case ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
57
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
1
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
1
from PIL import Image def lowercase_ ( __snake_case : Image , __snake_case : int ) -> Image: '''simple docstring''' snake_case__ :int = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(__snake_case : int ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 __UpperCAmelCase : Dict = change_contrast(img, 1_7_0) cont_img.save("image_data/lena_high_contrast.png", format="png")
57
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : int = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : Union[str, Any] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : Union[str, Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : str = { "facebook/dpr-ctx_encoder-single-nq-base": 5_1_2, "facebook/dpr-ctx_encoder-multiset-base": 5_1_2, } __UpperCAmelCase : List[str] = { "facebook/dpr-question_encoder-single-nq-base": 5_1_2, "facebook/dpr-question_encoder-multiset-base": 5_1_2, } __UpperCAmelCase : List[str] = { "facebook/dpr-reader-single-nq-base": 5_1_2, "facebook/dpr-reader-multiset-base": 5_1_2, } __UpperCAmelCase : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __UpperCAmelCase : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __UpperCAmelCase : List[Any] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _A = DPRContextEncoderTokenizer class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _A = DPRQuestionEncoderTokenizer __UpperCAmelCase : Tuple = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __UpperCAmelCase : Dict = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __UpperCAmelCase : Any = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_A ) class _snake_case : def __call__( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = False ,UpperCamelCase = False ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,**UpperCamelCase ,) -> BatchEncoding: if titles is None and texts is None: return super().__call__( UpperCamelCase ,padding=UpperCamelCase ,truncation=UpperCamelCase ,max_length=UpperCamelCase ,return_tensors=UpperCamelCase ,return_attention_mask=UpperCamelCase ,**UpperCamelCase ,) elif titles is None or texts is None: snake_case__ :Tuple = titles if texts is None else texts return super().__call__( UpperCamelCase ,UpperCamelCase ,padding=UpperCamelCase ,truncation=UpperCamelCase ,max_length=UpperCamelCase ,return_tensors=UpperCamelCase ,return_attention_mask=UpperCamelCase ,**UpperCamelCase ,) snake_case__ :List[str] = titles if not isinstance(UpperCamelCase ,UpperCamelCase ) else [titles] snake_case__ :List[Any] = texts if not isinstance(UpperCamelCase ,UpperCamelCase ) else [texts] snake_case__ :Optional[Any] = len(UpperCamelCase ) snake_case__ :Tuple = questions if not isinstance(UpperCamelCase ,UpperCamelCase ) else [questions] * n_passages assert len(UpperCamelCase ) == len( UpperCamelCase ), f'There should be as many titles than texts but got {len(UpperCamelCase )} titles and {len(UpperCamelCase )} texts.' snake_case__ :Dict = super().__call__(UpperCamelCase ,UpperCamelCase ,padding=UpperCamelCase ,truncation=UpperCamelCase )["input_ids"] snake_case__ :int = super().__call__(UpperCamelCase ,add_special_tokens=UpperCamelCase ,padding=UpperCamelCase ,truncation=UpperCamelCase )["input_ids"] snake_case__ :Tuple = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase ,UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ :Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ :int = attention_mask return self.pad(UpperCamelCase ,padding=UpperCamelCase ,max_length=UpperCamelCase ,return_tensors=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 16 ,UpperCamelCase = 64 ,UpperCamelCase = 4 ,) -> List[DPRSpanPrediction]: snake_case__ :Dict = reader_input["input_ids"] snake_case__ , snake_case__ , snake_case__ :Union[str, Any] = reader_output[:3] snake_case__ :Dict = len(UpperCamelCase ) snake_case__ :List[Any] = sorted(range(UpperCamelCase ) ,reverse=UpperCamelCase ,key=relevance_logits.__getitem__ ) snake_case__ :List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ :Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ :List[Any] = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ :List[Any] = sequence_ids.index(self.pad_token_id ) else: snake_case__ :Tuple = len(UpperCamelCase ) snake_case__ :str = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=UpperCamelCase ,top_spans=UpperCamelCase ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=UpperCamelCase ,start_index=UpperCamelCase ,end_index=UpperCamelCase ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> List[DPRSpanPrediction]: snake_case__ :Any = [] for start_index, start_score in enumerate(UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ :str = sorted(UpperCamelCase ,key=lambda UpperCamelCase : x[1] ,reverse=UpperCamelCase ) snake_case__ :List[str] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' snake_case__ :str = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_A ) class _snake_case ( _A , _A ): _A = VOCAB_FILES_NAMES _A = READER_PRETRAINED_VOCAB_FILES_MAP _A = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = READER_PRETRAINED_INIT_CONFIGURATION _A = ['input_ids', 'attention_mask'] _A = DPRReaderTokenizer
57
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
1