code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''OwlViTFeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import cva import numpy as np class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' if k in (0.0_4, 0.0_6): __lowercase = k __lowercase = window_size else: raise ValueError('''invalid k value''' ) def __str__(self ) -> str: '''simple docstring''' return str(self.k ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> tuple[cva.Mat, list[list[int]]]: '''simple docstring''' __lowercase = cva.imread(_lowerCamelCase ,0 ) __lowercase , __lowercase = img.shape __lowercase = [] __lowercase = img.copy() __lowercase = cva.cvtColor(_lowerCamelCase ,cva.COLOR_GRAY2RGB ) __lowercase , __lowercase = np.gradient(_lowerCamelCase ) __lowercase = dx**2 __lowercase = dy**2 __lowercase = dx * dy __lowercase = 0.0_4 __lowercase = self.window_size // 2 for y in range(_lowerCamelCase ,h - offset ): for x in range(_lowerCamelCase ,w - offset ): __lowercase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = (wxx * wyy) - (wxy**2) __lowercase = wxx + wyy __lowercase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,255 ) return color_img, corner_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = HarrisCorner(0.0_4, 3) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _SCREAMING_SNAKE_CASE = 2 class __lowercase : '''simple docstring''' def __init__(self ,*, # begin keyword-only arguments _lowerCamelCase="<s>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase=None ,) -> Tuple: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCamelCase ) __lowercase = self.add_symbol(_lowerCamelCase ) __lowercase = self.add_symbol(_lowerCamelCase ) __lowercase = self.add_symbol(_lowerCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCamelCase ) __lowercase = len(self.symbols ) def __eq__(self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' return self.indices == other.indices def __getitem__(self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__(self ) -> Optional[Any]: '''simple docstring''' return len(self.symbols ) def __contains__(self ,_lowerCamelCase ) -> str: '''simple docstring''' return sym in self.indices @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = cls() d.add_from_file(_lowerCamelCase ) return d def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=1 ,_lowerCamelCase=False ) -> List[Any]: '''simple docstring''' if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCamelCase ) self.count.append(_lowerCamelCase ) return idx def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return 0 def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if isinstance(_lowerCamelCase ,_lowerCamelCase ): try: with open(_lowerCamelCase ,'''r''' ,encoding='''utf-8''' ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_lowerCamelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCamelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(''' ''' ,1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(''' ''' ,1 ) else: __lowercase = False __lowercase = int(_lowerCamelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_lowerCamelCase ) ) self.add_symbol(_lowerCamelCase ,n=_lowerCamelCase ,overwrite=_lowerCamelCase ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowercase = dict((re.sub(r'''@@$''' , '''''' , lowerCamelCase_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , lowerCamelCase_ ), v) for k, v in d.items() ) __lowercase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] __lowercase = d[k] # restore return da def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ): # prep if not os.path.exists(lowerCamelCase_ ): raise ValueError(f"path {biogpt_checkpoint_path} does not exist!" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) print(f"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models __lowercase = os.path.join(lowerCamelCase_ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCamelCase_ ): raise ValueError(f"path to the file {checkpoint_file} does not exist!" ) __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = chkpt['''cfg''']['''model'''] # dicts __lowercase = os.path.join(lowerCamelCase_ , '''dict.txt''' ) if not os.path.isfile(lowerCamelCase_ ): raise ValueError(f"path to the file {dict_file} does not exist!" ) __lowercase = Dictionary.load(lowerCamelCase_ ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase_ ) __lowercase = os.path.join(lowerCamelCase_ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f"Generating {src_vocab_file} of {src_vocab_size} records" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCamelCase_ , ensure_ascii=lowerCamelCase_ , indent=lowerCamelCase_ ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase_ , '''bpecodes''' ) if not os.path.isfile(lowerCamelCase_ ): raise ValueError(f"path to the file {bpecodes_file} does not exist!" ) __lowercase = os.path.join(lowerCamelCase_ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCamelCase_ , lowerCamelCase_ ) # model config __lowercase = os.path.join(lowerCamelCase_ , '''config.json''' ) __lowercase = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f"Generating {biogpt_model_config_file}" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCamelCase_ , ensure_ascii=lowerCamelCase_ , indent=lowerCamelCase_ ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1_0_2_4, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f"Generating {biogpt_tokenizer_config_file}" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCamelCase_ , ensure_ascii=lowerCamelCase_ , indent=lowerCamelCase_ ) ) # model __lowercase = chkpt['''model'''] # remove unneeded keys __lowercase = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): __lowercase = model_state_dict.pop(lowerCamelCase_ ) else: __lowercase = model_state_dict.pop(lowerCamelCase_ ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase_ ) __lowercase = BioGptForCausalLM(lowerCamelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCamelCase_ ) # save __lowercase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) print(f"Generating {pytorch_weights_dump_path}" ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) print('''Conversion is done!''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _SCREAMING_SNAKE_CASE = '''base_with_context''' def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] ): __lowercase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) __lowercase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowerCamelCase_ ) for lyr_num, lyr in enumerate(model.encoders ): __lowercase = weights[f"layers_{lyr_num}"] __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __lowercase = ly_weight['''attention'''] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple ): __lowercase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowerCamelCase_ ) for lyr_num, lyr in enumerate(model.encoders ): __lowercase = weights[f"layers_{lyr_num}"] __lowercase = ly_weight['''attention'''] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): __lowercase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowerCamelCase_ ) __lowercase = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __lowercase = weights[f"layers_{lyr_num}"] __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) __lowercase = ly_weight['''self_attention'''] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __lowercase = ly_weight['''MultiHeadDotProductAttention_0'''] __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) __lowercase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) __lowercase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __lowercase = jnp.tree_util.tree_map(onp.array , lowerCamelCase_ ) __lowercase = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] __lowercase = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) __lowercase = inference.parse_training_gin_file(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = inference.InferenceModel(args.checkpoint_path , lowerCamelCase_ ) __lowercase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) __lowercase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __lowercase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) __lowercase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __lowercase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , lowerCamelCase_ ) __lowercase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , lowerCamelCase_ ) __lowercase = load_decoder(ta_checkpoint['''target''']['''decoder'''] , lowerCamelCase_ ) __lowercase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) __lowercase = SpectrogramDiffusionPipeline( notes_encoder=lowerCamelCase_ , continuous_encoder=lowerCamelCase_ , decoder=lowerCamelCase_ , scheduler=lowerCamelCase_ , melgan=lowerCamelCase_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' from PIL import Image def _lowerCAmelCase ( lowerCamelCase_ : Image ): __lowercase , __lowercase = image.size __lowercase = 0 __lowercase = image.load() for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): __lowercase = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCamelCase_ ): for i in range(lowerCamelCase_ ): __lowercase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _SCREAMING_SNAKE_CASE = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' import math from collections.abc import Callable def _lowerCAmelCase ( lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float , lowerCamelCase_ : float ): __lowercase = xa __lowercase = xa while True: if x_n == x_na or function(lowerCamelCase_ ) == function(lowerCamelCase_ ): raise ZeroDivisionError('''float division by zero, could not find root''' ) __lowercase = x_na - ( function(lowerCamelCase_ ) / ((function(lowerCamelCase_ ) - function(lowerCamelCase_ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __lowercase = x_na __lowercase = x_na def _lowerCAmelCase ( lowerCamelCase_ : float ): return math.pow(lowerCamelCase_ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): try: with open(lowerCamelCase_ , '''rb''' ) as flax_state_f: __lowercase = from_bytes(lowerCamelCase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCamelCase_ ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __lowercase = flatten_dict(jax.tree_util.tree_map(lambda lowerCamelCase_ : x.dtype == jnp.bfloataa , lowerCamelCase_ ) ).values() if any(lowerCamelCase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __lowercase = jax.tree_util.tree_map( lambda lowerCamelCase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCamelCase_ ) __lowercase = '''''' __lowercase = flatten_dict(lowerCamelCase_ , sep='''.''' ) __lowercase = pt_model.state_dict() # keep track of unexpected & missing keys __lowercase = [] __lowercase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowercase = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowercase = flax_key_tuple_array[:-1] + ['''weight'''] __lowercase = jnp.transpose(lowerCamelCase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowercase = flax_key_tuple_array[:-1] + ['''weight'''] __lowercase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowercase = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCamelCase_ ): __lowercase = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __lowercase = '''.'''.join(lowerCamelCase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict __lowercase = np.asarray(lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , np.ndarray ) else flax_tensor __lowercase = torch.from_numpy(lowerCamelCase_ ) # remove from missing keys missing_keys.remove(lowerCamelCase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCamelCase_ ) pt_model.load_state_dict(lowerCamelCase_ ) # re-transform missing_keys to list __lowercase = list(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(lowerCamelCase_ ) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ''' use it for predictions and inference.''' ) return pt_model
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' import os def _lowerCAmelCase ( ): with open(os.path.dirname(lowerCamelCase_ ) + '''/p022_names.txt''' ) as file: __lowercase = str(file.readlines()[0] ) __lowercase = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() __lowercase = 0 __lowercase = 0 for i, name in enumerate(lowerCamelCase_ ): for letter in name: name_score += ord(lowerCamelCase_ ) - 6_4 total_score += (i + 1) * name_score __lowercase = 0 return total_score if __name__ == "__main__": print(solution())
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : Union[tf.Tensor, np.ndarray] ): if isinstance(lowerCamelCase_ , np.ndarray ): return list(tensor.shape ) __lowercase = tf.shape(lowerCamelCase_ ) if tensor.shape == tf.TensorShape(lowerCamelCase_ ): return dynamic __lowercase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase_ )] def _lowerCAmelCase ( lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=lowerCamelCase_ , name=lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Optional[int]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __lowercase , __lowercase = tf.nn.moments(lowerCamelCase_ , axes=[axis] , keepdims=lowerCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __lowercase = [1] * inputs.shape.rank __lowercase = shape_list(lowerCamelCase_ )[axis] __lowercase = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) # Compute layer normalization using the batch_normalization # function. __lowercase = tf.nn.batch_normalization( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , offset=lowerCamelCase_ , scale=lowerCamelCase_ , variance_epsilon=lowerCamelCase_ , ) return outputs def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : Any=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __lowercase = tf.shape(lowerCamelCase_ ) __lowercase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __lowercase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : tf.Tensor ): if not isinstance(lowerCamelCase_ , tf.Tensor ): __lowercase = tf.convert_to_tensor(lowerCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __lowercase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __lowercase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowerCAmelCase ( lowerCamelCase_ : tf.Tensor , lowerCamelCase_ : int , lowerCamelCase_ : str = "input_ids" ): tf.debugging.assert_less( lowerCamelCase_ , tf.cast(lowerCamelCase_ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase_ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): __lowercase = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __lowercase = [x for x in data if len(lowerCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) __lowercase = np.asarray(lowerCamelCase_ ) __lowercase = 1 __lowercase = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __lowercase = np.array_split(lowerCamelCase_ , lowerCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase_ ): __lowercase = chunk_data else: __lowercase = data def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ): if name in group.attrs: __lowercase = [n.decode('''utf8''' ) if hasattr(lowerCamelCase_ , '''decode''' ) else n for n in group.attrs[name]] else: __lowercase = [] __lowercase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(lowerCamelCase_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def _lowerCAmelCase ( lowerCamelCase_ : Any ): def _expand_single_ad_tensor(lowerCamelCase_ : Tuple ): if isinstance(lowerCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase_ )
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False, False, False @dataclass class __lowercase : '''simple docstring''' a : Optional[int] = None a : bool = True a : bool = True a : Optional[str] = None # Automatically constructed a : ClassVar[str] = "dict" a : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) a : str = field(default="Audio" , init=lowerCAmelCase__ , repr=lowerCAmelCase__ ) def __call__(self ) -> Optional[int]: '''simple docstring''' return self.pa_type def _UpperCAmelCase (self ,_lowerCamelCase ) -> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(_lowerCamelCase ,_lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(_lowerCamelCase ,_lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __lowercase = BytesIO() sf.write(_lowerCamelCase ,value['''array'''] ,value['''sampling_rate'''] ,format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __lowercase = np.frombuffer(value['''bytes'''] ,dtype=np.intaa ).astype(np.floataa ) / 32767 else: __lowercase = np.memmap(value['''path'''] ,dtype='''h''' ,mode='''r''' ).astype(np.floataa ) / 32767 __lowercase = BytesIO(bytes() ) sf.write(_lowerCamelCase ,_lowerCamelCase ,value['''sampling_rate'''] ,format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> dict: '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) __lowercase , __lowercase = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err __lowercase = xsplitext(_lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: __lowercase = token_per_repo_id or {} __lowercase = path.split('''::''' )[-1] try: __lowercase = string_to_dict(_lowerCamelCase ,config.HUB_DATASETS_URL )['''repo_id'''] __lowercase = token_per_repo_id[repo_id] except (ValueError, KeyError): __lowercase = None with xopen(_lowerCamelCase ,'''rb''' ,use_auth_token=_lowerCamelCase ) as f: __lowercase , __lowercase = sf.read(_lowerCamelCase ) else: __lowercase , __lowercase = sf.read(_lowerCamelCase ) __lowercase = array.T if self.mono: __lowercase = librosa.to_mono(_lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: __lowercase = librosa.resample(_lowerCamelCase ,orig_sr=_lowerCamelCase ,target_sr=self.sampling_rate ) __lowercase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _UpperCAmelCase (self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def _UpperCAmelCase (self ,_lowerCamelCase ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): __lowercase = pa.array([None] * len(_lowerCamelCase ) ,type=pa.binary() ) __lowercase = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase = pa.array([None] * len(_lowerCamelCase ) ,type=pa.string() ) __lowercase = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): __lowercase = pa.array([Audio().encode_example(_lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __lowercase = storage.field('''bytes''' ) else: __lowercase = pa.array([None] * len(_lowerCamelCase ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __lowercase = storage.field('''path''' ) else: __lowercase = pa.array([None] * len(_lowerCamelCase ) ,type=pa.string() ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) return array_cast(_lowerCamelCase ,self.pa_type ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase ): with xopen(_lowerCamelCase ,'''rb''' ) as f: __lowercase = f.read() return bytes_ __lowercase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) __lowercase = pa.array( [os.path.basename(_lowerCamelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase ,self.pa_type )
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : bool = False ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = f"Expected string as input, found {type(lowerCamelCase_ )}" raise ValueError(lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = f"Expected boolean as use_pascal parameter, found {type(lowerCamelCase_ )}" raise ValueError(lowerCamelCase_ ) __lowercase = input_str.split('''_''' ) __lowercase = 0 if use_pascal else 1 __lowercase = words[start_index:] __lowercase = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowercase = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''squeezebert/squeezebert-uncased''': 5_1_2, '''squeezebert/squeezebert-mnli''': 5_1_2, '''squeezebert/squeezebert-mnli-headless''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = VOCAB_FILES_NAMES a : int = PRETRAINED_VOCAB_FILES_MAP a : Any = PRETRAINED_INIT_CONFIGURATION a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] = SqueezeBertTokenizer def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase="[UNK]" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[PAD]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> str: '''simple docstring''' super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,do_lower_case=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,tokenize_chinese_chars=_lowerCamelCase ,strip_accents=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_lowerCamelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCamelCase ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCamelCase ) __lowercase = do_lower_case def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase )
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''PerceiverFeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _lowerCAmelCase ( lowerCamelCase_ : int ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features ,_lowerCamelCase ,bias=_lowerCamelCase ) ,nn.Linear(_lowerCamelCase ,module.out_features ,bias=_lowerCamelCase ) ,) __lowercase = (2.0 / (5 * min(module.in_features ,module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight ,std=_lowerCamelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCAmelCase (self ,_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return self.module(_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) + self.adapter(_lowerCamelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' a : Any = "bigscience/bloom-1b7" # Constant values a : str = 2.1_09_65_95_52_69_25_74 a : Tuple = "Hello my name is" a : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) a : List[str] = 10 def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,torch_dtype=torch.floataa ,device_map='''auto''' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.model_abit.config self.assertTrue(hasattr(_lowerCamelCase ,'''quantization_config''' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit ,self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_lowerCamelCase ,torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=_lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=_lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' with self.assertRaises(_lowerCamelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = BitsAndBytesConfig() with self.assertRaises(_lowerCamelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=_lowerCamelCase ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ,bnb_abit_quant_type='''nf4''' ,) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' with self.assertRaises(_lowerCamelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_lowerCamelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_lowerCamelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def _UpperCAmelCase (cls ) -> List[Any]: '''simple docstring''' __lowercase = '''t5-small''' __lowercase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = '''Translate in German: Hello, my dog is cute''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) __lowercase = modules def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q ,bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) __lowercase = model.generate(**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # model_name __lowercase = '''bigscience/bloom-560m''' __lowercase = '''t5-small''' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name ,load_in_abit=_lowerCamelCase ,device_map='''auto''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' super().setUp() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = pipeline( '''text-generation''' ,model=self.model_name ,model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} ,max_new_tokens=self.MAX_NEW_TOKENS ,) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] ,self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().setUp() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name ,load_in_abit=_lowerCamelCase ,device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) ,{0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text ,return_tensors='''pt''' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] ,skip_special_tokens=_lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = '''facebook/opt-350m''' super().setUp() def _UpperCAmelCase (self ) -> str: '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=_lowerCamelCase ) self.assertEqual(set(model.hf_device_map.values() ) ,{torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_lowerCamelCase ) ): __lowercase = LoRALayer(module.q_proj ,rank=16 ) __lowercase = LoRALayer(module.k_proj ,rank=16 ) __lowercase = LoRALayer(module.v_proj ,rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('''Test batch ''' ,return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_lowerCamelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_lowerCamelCase ,_lowerCamelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_lowerCamelCase ,nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "gpt2-xl" a : Union[str, Any] = 3.31_91_85_48_54_15_21_87
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 7 , lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __lowercase = 0 __lowercase = 1 for current_denominator in range(1 , limit + 1 ): __lowercase = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowercase = current_numerator __lowercase = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): __lowercase = len(lowerCamelCase_ ) for i in range(length - 1 ): __lowercase = i for k in range(i + 1 , lowerCamelCase_ ): if collection[k] < collection[least]: __lowercase = k if least != i: __lowercase , __lowercase = (collection[i], collection[least]) return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input('''Enter numbers separated by a comma:\n''').strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : str = PriorTransformer a : Optional[Any] = "hidden_states" @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = 4 __lowercase = 8 __lowercase = 7 __lowercase = floats_tensor((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = floats_tensor((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_lowerCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCAmelCase (self ,_lowerCamelCase=0 ) -> Optional[int]: '''simple docstring''' torch.manual_seed(_lowerCamelCase ) __lowercase = 4 __lowercase = 8 __lowercase = 7 __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return (4, 8) @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return (4, 8) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } __lowercase = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' ,output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(_lowerCamelCase ) __lowercase = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.model_class(**_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) __lowercase = model.to(_lowerCamelCase ) if hasattr(_lowerCamelCase ,'''set_default_attn_processor''' ): model.set_default_attn_processor() __lowercase = self.get_dummy_seed_input() with torch.no_grad(): __lowercase = model(**_lowerCamelCase )[0] __lowercase = output[0, :5].flatten().cpu() print(_lowerCamelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(_lowerCamelCase ,_lowerCamelCase ,rtol=1E-2 ) ) @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase=1 ,_lowerCamelCase=768 ,_lowerCamelCase=77 ,_lowerCamelCase=0 ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(_lowerCamelCase ) __lowercase = batch_size __lowercase = embedding_dim __lowercase = num_embeddings __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, embedding_dim) ).to(_lowerCamelCase ) __lowercase = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' ,subfolder='''prior''' ) model.to(_lowerCamelCase ) __lowercase = self.get_dummy_seed_input(seed=_lowerCamelCase ) with torch.no_grad(): __lowercase = model(**_lowerCamelCase )[0] assert list(sample.shape ) == [1, 768] __lowercase = sample[0, :8].flatten().cpu() print(_lowerCamelCase ) __lowercase = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 )
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _SCREAMING_SNAKE_CASE = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''DPTFeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = "vivit" def __init__(self ,_lowerCamelCase=224 ,_lowerCamelCase=32 ,_lowerCamelCase=[2, 16, 16] ,_lowerCamelCase=3 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu_fast" ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-0_6 ,_lowerCamelCase=True ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = num_frames __lowercase = tubelet_size __lowercase = num_channels __lowercase = qkv_bias super().__init__(**_lowerCamelCase )
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' import math import unittest def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' with self.assertRaises(_lowerCamelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) ,'''Zero doesn\'t have any positive factors, primes must have exactly two.''' ,) self.assertFalse( is_prime(1 ) ,'''One only has 1 positive factor, primes must have exactly two.''' ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : bool = True , lowerCamelCase_ : float = math.inf , lowerCamelCase_ : float = -math.inf , lowerCamelCase_ : float = math.inf , lowerCamelCase_ : float = -math.inf , lowerCamelCase_ : bool = False , lowerCamelCase_ : float = 1_0_0 , lowerCamelCase_ : float = 0.01 , lowerCamelCase_ : float = 1 , ): __lowercase = False __lowercase = search_prob __lowercase = start_temperate __lowercase = [] __lowercase = 0 __lowercase = None while not search_end: __lowercase = current_state.score() if best_state is None or current_score > best_state.score(): __lowercase = current_state scores.append(lowerCamelCase_ ) iterations += 1 __lowercase = None __lowercase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __lowercase = random.randint(0 , len(lowerCamelCase_ ) - 1 ) # picking a random neighbor __lowercase = neighbors.pop(lowerCamelCase_ ) __lowercase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __lowercase = change * -1 # in case we are finding minimum if change > 0: # improves the solution __lowercase = picked_neighbor else: __lowercase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __lowercase = picked_neighbor __lowercase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __lowercase = True else: __lowercase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCamelCase_ ) , lowerCamelCase_ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Dict ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _SCREAMING_SNAKE_CASE = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _SCREAMING_SNAKE_CASE = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] ): return (3 * x**2) - (6 * y) _SCREAMING_SNAKE_CASE = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) _SCREAMING_SNAKE_CASE = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Dict = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Tuple = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Dict = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : List[str] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Tuple = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''flax'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = ["flax"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''flax'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''flax'''] )
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' from __future__ import annotations from typing import Any def _lowerCAmelCase ( lowerCamelCase_ : list ): if not postfix_notation: return 0 __lowercase = {'''+''', '''-''', '''*''', '''/'''} __lowercase = [] for token in postfix_notation: if token in operations: __lowercase , __lowercase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowerCamelCase_ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=7 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=32 ,_lowerCamelCase=5 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=50 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=True ,_lowerCamelCase=None ,) -> int: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = use_labels __lowercase = scope def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=_lowerCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase = BertGenerationEncoder(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> Any: '''simple docstring''' __lowercase = True __lowercase = BertGenerationEncoder(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,) __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' __lowercase = True __lowercase = True __lowercase = BertGenerationDecoder(config=_lowerCamelCase ).to(_lowerCamelCase ).eval() # first forward pass __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,use_cache=_lowerCamelCase ,) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] ,dim=-1 ) __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,)['''hidden_states'''][0] __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,encoder_hidden_states=_lowerCamelCase ,encoder_attention_mask=_lowerCamelCase ,past_key_values=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,)['''hidden_states'''][0] # select random slice __lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ,) -> List[str]: '''simple docstring''' __lowercase = BertGenerationDecoder(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs() __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : str = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a : Union[str, Any] = (BertGenerationDecoder,) if is_torch_available() else () a : List[Any] = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = BertGenerationEncoderTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ,hidden_size=37 ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = '''bert''' self.model_tester.create_and_check_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __lowercase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __lowercase = model(_lowerCamelCase )[0] __lowercase = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,_lowerCamelCase ) __lowercase = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_lowerCamelCase ,atol=1E-4 ) ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __lowercase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): __lowercase = model(_lowerCamelCase )[0] __lowercase = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape ,_lowerCamelCase ) __lowercase = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_lowerCamelCase ,atol=1E-4 ) )
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : list , lowerCamelCase_ : list , lowerCamelCase_ : int ): if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(lowerCamelCase_ , lowerCamelCase_ )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(lowerCamelCase_ ) # declaring useful variables __lowercase = len(lowerCamelCase_ ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(lowerCamelCase_ ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) _SCREAMING_SNAKE_CASE = [int(x) for x in input('''Input profits separated by spaces: ''').split()] _SCREAMING_SNAKE_CASE = [int(x) for x in input('''Input weights separated by spaces: ''').split()] _SCREAMING_SNAKE_CASE = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE = { '''vinai/phobert-base''': 2_5_6, '''vinai/phobert-large''': 2_5_6, } def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char __lowercase = set(lowerCamelCase_ ) return pairs class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = VOCAB_FILES_NAMES a : Tuple = PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase="<mask>" ,**_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = merges_file __lowercase = {} __lowercase = 0 __lowercase = 1 __lowercase = 2 __lowercase = 3 self.add_from_file(_lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} with open(_lowerCamelCase ,encoding='''utf-8''' ) as merges_handle: __lowercase = merges_handle.read().split('''\n''' )[:-1] __lowercase = [tuple(merge.split()[:-1] ) for merge in merges] __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase ,token_ids_a=_lowerCamelCase ,already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return len(self.encoder ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(_lowerCamelCase ) __lowercase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowercase = get_pairs(_lowerCamelCase ) if not pairs: return token while True: __lowercase = min(_lowerCamelCase ,key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(_lowerCamelCase ): try: __lowercase = word.index(_lowerCamelCase ,_lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(_lowerCamelCase ) __lowercase = new_word if len(_lowerCamelCase ) == 1: break else: __lowercase = get_pairs(_lowerCamelCase ) __lowercase = '''@@ '''.join(_lowerCamelCase ) __lowercase = word[:-4] __lowercase = word return word def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = [] __lowercase = re.findall(R'''\S+\n?''' ,_lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' return self.encoder.get(_lowerCamelCase ,self.encoder.get(self.unk_token ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' return self.decoder.get(_lowerCamelCase ,self.unk_token ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = ''' '''.join(_lowerCamelCase ).replace('''@@ ''' ,'''''' ).strip() return out_string def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file ,_lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.merges_file ,_lowerCamelCase ) return out_vocab_file, out_merge_file def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' if isinstance(_lowerCamelCase ,_lowerCamelCase ): try: with open(_lowerCamelCase ,'''r''' ,encoding='''utf-8''' ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return __lowercase = f.readlines() for lineTmp in lines: __lowercase = lineTmp.strip() __lowercase = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) __lowercase = line[:idx] __lowercase = len(self.encoder )
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' from __future__ import annotations from collections import deque class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(_lowerCamelCase ) self.set_fail_transitions() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = 0 for character in keyword: __lowercase = self.find_next_state(_lowerCamelCase ,_lowerCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __lowercase = len(self.adlist ) - 1 else: __lowercase = next_state self.adlist[current_state]["output"].append(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = deque() for node in self.adlist[0]["next_states"]: q.append(_lowerCamelCase ) __lowercase = 0 while q: __lowercase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowerCamelCase ) __lowercase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(_lowerCamelCase ,self.adlist[child]['''value'''] ) is None and state != 0 ): __lowercase = self.adlist[state]['''fail_state'''] __lowercase = self.find_next_state( _lowerCamelCase ,self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __lowercase = 0 __lowercase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> dict[str, list[int]]: '''simple docstring''' __lowercase = {} # returns a dict with keywords and list of its occurrences __lowercase = 0 for i in range(len(_lowerCamelCase ) ): while ( self.find_next_state(_lowerCamelCase ,string[i] ) is None and current_state != 0 ): __lowercase = self.adlist[current_state]['''fail_state'''] __lowercase = self.find_next_state(_lowerCamelCase ,string[i] ) if next_state is None: __lowercase = 0 else: __lowercase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __lowercase = [] result[key].append(i - len(_lowerCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) __lowercase = str(lowerCamelCase_ ) __lowercase = ''''''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _lowerCAmelCase ( lowerCamelCase_ : float = 9_9 ): if not 0 < percent < 1_0_0: raise ValueError('''solution() only accepts values from 0 to 100''' ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(9_9)}''')
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = question_encoder __lowercase = generator __lowercase = self.question_encoder def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' if os.path.isfile(_lowerCamelCase ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,'''question_encoder_tokenizer''' ) __lowercase = os.path.join(_lowerCamelCase ,'''generator_tokenizer''' ) self.question_encoder.save_pretrained(_lowerCamelCase ) self.generator.save_pretrained(_lowerCamelCase ) @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __lowercase = kwargs.pop('''config''' ,_lowerCamelCase ) if config is None: __lowercase = RagConfig.from_pretrained(_lowerCamelCase ) __lowercase = AutoTokenizer.from_pretrained( _lowerCamelCase ,config=config.question_encoder ,subfolder='''question_encoder_tokenizer''' ) __lowercase = AutoTokenizer.from_pretrained( _lowerCamelCase ,config=config.generator ,subfolder='''generator_tokenizer''' ) return cls(question_encoder=_lowerCamelCase ,generator=_lowerCamelCase ) def __call__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.current_tokenizer(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return self.generator.batch_decode(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return self.generator.decode(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.question_encoder def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.generator def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = "longest" ,_lowerCamelCase = None ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> BatchEncoding: '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' ,_lowerCamelCase ,) if max_length is None: __lowercase = self.current_tokenizer.model_max_length __lowercase = self( _lowerCamelCase ,add_special_tokens=_lowerCamelCase ,return_tensors=_lowerCamelCase ,max_length=_lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,**_lowerCamelCase ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowercase = self.current_tokenizer.model_max_length __lowercase = self( text_target=_lowerCamelCase ,add_special_tokens=_lowerCamelCase ,return_tensors=_lowerCamelCase ,padding=_lowerCamelCase ,max_length=_lowerCamelCase ,truncation=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = labels['''input_ids'''] return model_inputs
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = OpenAIGPTTokenizer a : int = OpenAIGPTTokenizerFast a : Tuple = True a : Any = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file ,'''w''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' return "lower newer", "lower newer" def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) __lowercase = '''lower''' __lowercase = ['''low''', '''er</w>'''] __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = tokens + ['''<unk>'''] __lowercase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_lowerCamelCase ,tokenizer_r.encode ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Simple input self.assertRaises(_lowerCamelCase ,tokenizer_r.encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Simple input self.assertRaises( _lowerCamelCase ,tokenizer_r.batch_encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ,) # Pair input self.assertRaises(_lowerCamelCase ,tokenizer_r.encode ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Pair input self.assertRaises(_lowerCamelCase ,tokenizer_r.encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ) # Pair input self.assertRaises( _lowerCamelCase ,tokenizer_r.batch_encode_plus ,_lowerCamelCase ,max_length=_lowerCamelCase ,padding='''max_length''' ,) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' pass
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _SCREAMING_SNAKE_CASE = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _SCREAMING_SNAKE_CASE = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __lowercase : '''simple docstring''' def __init__(self ) -> List[str]: '''simple docstring''' __lowercase = WATERMARK_BITS __lowercase = WatermarkEncoder() self.encoder.set_watermark('''bits''' ,self.watermark ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' if images.shape[-1] < 256: return images __lowercase = (255 * (images / 2 + 0.5)).cpu().permute(0 ,2 ,3 ,1 ).float().numpy() __lowercase = [self.encoder.encode(_lowerCamelCase ,'''dwtDct''' ) for image in images] __lowercase = torch.from_numpy(np.array(_lowerCamelCase ) ).permute(0 ,3 ,1 ,2 ) __lowercase = torch.clamp(2 * (images / 255 - 0.5) ,min=-1.0 ,max=1.0 ) return images
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = "bit" a : List[str] = ["preactivation", "bottleneck"] a : Optional[Any] = ["SAME", "VALID"] def __init__(self ,_lowerCamelCase=3 ,_lowerCamelCase=64 ,_lowerCamelCase=[256, 512, 1024, 2048] ,_lowerCamelCase=[3, 4, 6, 3] ,_lowerCamelCase="preactivation" ,_lowerCamelCase="relu" ,_lowerCamelCase=None ,_lowerCamelCase=32 ,_lowerCamelCase=0.0 ,_lowerCamelCase=False ,_lowerCamelCase=32 ,_lowerCamelCase=1 ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> int: '''simple docstring''' super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowercase = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) __lowercase = num_channels __lowercase = embedding_size __lowercase = hidden_sizes __lowercase = depths __lowercase = layer_type __lowercase = hidden_act __lowercase = global_padding __lowercase = num_groups __lowercase = drop_path_rate __lowercase = embedding_dynamic_padding __lowercase = output_stride __lowercase = width_factor __lowercase = ['''stem'''] + [f"stage{idx}" for idx in range(1 ,len(_lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=_lowerCamelCase ,out_indices=_lowerCamelCase ,stage_names=self.stage_names )
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return TrainCommand(lowerCamelCase_ ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = parser.add_parser('''train''' ,help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' ,) train_parser.add_argument( '''--column_label''' ,type=_lowerCamelCase ,default=0 ,help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' ,type=_lowerCamelCase ,default=1 ,help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' ,type=_lowerCamelCase ,default=2 ,help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' ,action='''store_true''' ,help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' ,type=_lowerCamelCase ,default='''''' ,help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' ,type=_lowerCamelCase ,default=0.1 ,help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' ,) train_parser.add_argument('''--output''' ,type=_lowerCamelCase ,default='''./''' ,help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' ,type=_lowerCamelCase ,default='''text_classification''' ,help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' ,type=_lowerCamelCase ,default='''bert-base-uncased''' ,help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' ,type=_lowerCamelCase ,default=32 ,help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' ,type=_lowerCamelCase ,default=64 ,help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' ,type=_lowerCamelCase ,default=3E-5 ,help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' ,type=_lowerCamelCase ,default=1E-0_8 ,help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = logging.get_logger('''transformers-cli/training''' ) __lowercase = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output ,exist_ok=_lowerCamelCase ) __lowercase = args.output __lowercase = args.column_label __lowercase = args.column_text __lowercase = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": __lowercase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) __lowercase = Processor.create_from_csv( args.train_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,) __lowercase = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) __lowercase = Processor.create_from_csv( args.validation_data ,column_label=args.column_label ,column_text=args.column_text ,column_id=args.column_id ,skip_first_row=args.skip_first_row ,) __lowercase = args.validation_split __lowercase = args.train_batch_size __lowercase = args.valid_batch_size __lowercase = args.learning_rate __lowercase = args.adam_epsilon def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def _UpperCAmelCase (self ) -> str: '''simple docstring''' self.pipeline.fit( self.train_dataset ,validation_data=self.valid_dataset ,validation_split=self.validation_split ,learning_rate=self.learning_rate ,adam_epsilon=self.adam_epsilon ,train_batch_size=self.train_batch_size ,valid_batch_size=self.valid_batch_size ,) # Save trained pipeline self.pipeline.save_pretrained(self.output )
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = 0 for ch in input_str: __lowercase = ord(lowerCamelCase_ ) __lowercase = pow(2 , lowerCamelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''camembert-base''': 5_1_2, } _SCREAMING_SNAKE_CASE = '''▁''' class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : int = ["input_ids", "attention_mask"] a : Dict = CamembertTokenizer def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase="<mask>" ,_lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] ,**_lowerCamelCase ,) -> Dict: '''simple docstring''' __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else mask_token super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file ,_lowerCamelCase ) return (out_vocab_file,)
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''sentencepiece.bpe.model'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } _SCREAMING_SNAKE_CASE = { '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } _SCREAMING_SNAKE_CASE = '''▁''' class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase="<mask>" ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) __lowercase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __lowercase = len(self.sp_model ) - 1 __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase ,token_ids_a=_lowerCamelCase ,already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase (self ) -> Any: '''simple docstring''' return len(self.sp_model ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase ,out_type=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(_lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(_lowerCamelCase ) __lowercase = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __getstate__(self ) -> List[Any]: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__(self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : list[str] ): __lowercase = '''''' for word_or_phrase in separated: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(lowerCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'status' must been from type bool" return status def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase_ ): ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(lowerCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase_ ): while quotient != 1: if is_prime(lowerCamelCase_ ) and (quotient % factor == 0): ans.append(lowerCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type list" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = max(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = min(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'ans' must been from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( lowerCamelCase_ : int ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (number > 2) and is_even(lowerCamelCase_ ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (len(lowerCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(lowerCamelCase_ ) __lowercase = prime_factorization(lowerCamelCase_ ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(lowerCamelCase_ ) __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(max(lowerCamelCase_ , lowerCamelCase_ ) ): ans *= n else: __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(lowerCamelCase_ ) for _ in range(lowerCamelCase_ ): ans *= n done.append(lowerCamelCase_ ) # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( lowerCamelCase_ : str ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase_ ): ans += 1 # precondition assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and is_prime( lowerCamelCase_ ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] ): assert ( is_prime(lowerCamelCase_ ) and is_prime(lowerCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase_ ): number += 1 # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ans[0] != p_number_a and ans[len(lowerCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(lowerCamelCase_ ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(lowerCamelCase_ ) , abs(lowerCamelCase_ ) ) # precondition assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : str ): return [ord(lowerCamelCase_ ) - 9_6 for elem in plain] def _lowerCAmelCase ( lowerCamelCase_ : list[int] ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def _lowerCAmelCase ( ): __lowercase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , lowerCamelCase_ ) print('''Decoded:''' , decode(lowerCamelCase_ ) ) if __name__ == "__main__": main()
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = "transfo-xl" a : List[str] = ["mems"] a : Tuple = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self ,_lowerCamelCase=267735 ,_lowerCamelCase=[20000, 40000, 200000] ,_lowerCamelCase=1024 ,_lowerCamelCase=1024 ,_lowerCamelCase=16 ,_lowerCamelCase=64 ,_lowerCamelCase=4096 ,_lowerCamelCase=4 ,_lowerCamelCase=False ,_lowerCamelCase=18 ,_lowerCamelCase=1600 ,_lowerCamelCase=1000 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=0 ,_lowerCamelCase=-1 ,_lowerCamelCase=True ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.0 ,_lowerCamelCase=True ,_lowerCamelCase="normal" ,_lowerCamelCase=0.0_1 ,_lowerCamelCase=0.0_1 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-5 ,_lowerCamelCase=0 ,**_lowerCamelCase ,) -> str: '''simple docstring''' __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_lowerCamelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): return base * power(lowerCamelCase_ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') _SCREAMING_SNAKE_CASE = int(input('''Enter the base: ''').strip()) _SCREAMING_SNAKE_CASE = int(input('''Enter the exponent: ''').strip()) _SCREAMING_SNAKE_CASE = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _SCREAMING_SNAKE_CASE = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = TextToVideoSDPipeline a : Optional[int] = TEXT_TO_IMAGE_PARAMS a : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a : str = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=32 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=_lowerCamelCase ,set_alpha_to_one=_lowerCamelCase ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='''gelu''' ,projection_dim=512 ,) __lowercase = CLIPTextModel(_lowerCamelCase ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> str: '''simple docstring''' if str(_lowerCamelCase ).startswith('''mps''' ): __lowercase = torch.manual_seed(_lowerCamelCase ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**_lowerCamelCase ) __lowercase = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = self.get_dummy_inputs(_lowerCamelCase ) __lowercase = '''np''' __lowercase = sd_pipe(**_lowerCamelCase ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowerCamelCase ,expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowerCamelCase ,expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(_lowerCamelCase ,generator=_lowerCamelCase ,num_inference_steps=25 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(_lowerCamelCase ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''BeitFeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' from __future__ import annotations from random import choice def _lowerCAmelCase ( lowerCamelCase_ : str ): return choice(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): __lowercase = random_pivot(lowerCamelCase_ ) # partition based on pivot # linear time __lowercase = [e for e in lst if e < pivot] __lowercase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCamelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCamelCase_ ) < k - 1: return kth_number(lowerCamelCase_ , k - len(lowerCamelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = "masked_bert" def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=0 ,_lowerCamelCase="topK" ,_lowerCamelCase="constant" ,_lowerCamelCase=0.0 ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = pruning_method __lowercase = mask_init __lowercase = mask_scale
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): __lowercase = [[] for _ in range(lowerCamelCase_ )] __lowercase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(lowerCamelCase_ ) <= key: return input_string for position, character in enumerate(lowerCamelCase_ ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCamelCase_ ) __lowercase = [''''''.join(lowerCamelCase_ ) for row in temp_grid] __lowercase = ''''''.join(lowerCamelCase_ ) return output_string def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): __lowercase = [] __lowercase = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __lowercase = [[] for _ in range(lowerCamelCase_ )] # generates template for position in range(len(lowerCamelCase_ ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __lowercase = 0 for row in temp_grid: # fills in the characters __lowercase = input_string[counter : counter + len(lowerCamelCase_ )] grid.append(list(lowerCamelCase_ ) ) counter += len(lowerCamelCase_ ) __lowercase = '''''' # reads as zigzag for position in range(len(lowerCamelCase_ ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase_ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} for key_guess in range(1 , len(lowerCamelCase_ ) ): # tries every key __lowercase = decrypt(lowerCamelCase_ , lowerCamelCase_ ) return results if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCamelCase_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["PoolFormerFeatureExtractor"] _SCREAMING_SNAKE_CASE = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
700
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
701
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
0
from functools import lru_cache @lru_cache def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] = "dhaka" , lowerCamelCase_ : List[Any] = 5 ): __lowercase = min(lowerCamelCase_ , 5_0 ) # Prevent abuse! __lowercase = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } __lowercase = requests.get('''https://www.google.com/search''' , params=lowerCamelCase_ , headers=lowerCamelCase_ ) __lowercase = BeautifulSoup(html.text , '''html.parser''' ) __lowercase = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) __lowercase = json.dumps(lowerCamelCase_ ) __lowercase = json.loads(lowerCamelCase_ ) __lowercase = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , lowerCamelCase_ , ) if not matched_google_image_data: return 0 __lowercase = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(lowerCamelCase_ ) , ) __lowercase = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , lowerCamelCase_ , ) for index, fixed_full_res_image in enumerate(lowerCamelCase_ ): if index >= max_images: return index __lowercase = bytes(lowerCamelCase_ , '''ascii''' ).decode( '''unicode-escape''' ) __lowercase = bytes(lowerCamelCase_ , '''ascii''' ).decode( '''unicode-escape''' ) __lowercase = urllib.request.build_opener() __lowercase = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(lowerCamelCase_ ) __lowercase = f"query_{query.replace(' ' , '_' )}" if not os.path.exists(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) urllib.request.urlretrieve( # noqa: S310 lowerCamelCase_ , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
703
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
0
import math def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] ): if ( not isinstance(_lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ): if ( not isinstance(_lowercase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
0
from datetime import datetime import requests def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __lowercase = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(_A ).content if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input('''Enter Video/IGTV url: ''').strip() _SCREAMING_SNAKE_CASE = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
705
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __lowercase ( __lowerCamelCase ): '''simple docstring''' a : List[str] = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a : List[Any] = Features({"text": Value("string" )} ) a : str = Features({"labels": ClassLabel} ) a : List[Any] = "text" a : Optional[Any] = "labels" def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] ,UpperCAmelCase_ ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowercase = copy.deepcopy(self ) __lowercase = self.label_schema.copy() __lowercase = features[self.label_column] __lowercase = label_schema return task_template @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
706
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a : Dict = GPTSanJapaneseTokenizer a : int = False a : Union[str, Any] = {'do_clean_text': False, 'add_prefix_space': False} def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().setUp() # fmt: off __lowercase = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on __lowercase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 __lowercase = {'unk_token': '<unk>'} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file ,'''w''' ) as emoji_writer: emoji_writer.write(json.dumps(_lowercase ) ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname ,**_lowercase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = 'こんにちは、世界。 \nこんばんは、㔺界。😀' __lowercase = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_input_output_texts(_lowercase ) __lowercase = tokenizer.encode(_lowercase ,add_special_tokens=_lowercase ) __lowercase = tokenizer.decode(_lowercase ,clean_up_tokenization_spaces=_lowercase ) return text, ids def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizer() # Testing tokenization __lowercase = 'こんにちは、世界。 こんばんは、㔺界。' __lowercase = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] __lowercase = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) # Testing conversion to ids without special tokens __lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __lowercase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) # Testing conversion to ids with special tokens __lowercase = tokens + [tokenizer.unk_token] __lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __lowercase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizer() # Testing tokenization __lowercase = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' __lowercase = 'こんにちは、、、、世界。こんばんは、、、、世界。' __lowercase = tokenizer.encode(_lowercase ) __lowercase = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase ,_lowercase ) @slow def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowercase = 'こんにちは、世界。' __lowercase = 'こんばんは、㔺界。😀' __lowercase = 'こんにちは、世界。こんばんは、世界。😀' __lowercase = tokenizer.encode(prefix_text + input_text ) __lowercase = tokenizer.encode('''''' ,prefix_text=prefix_text + input_text ) __lowercase = tokenizer.encode(_lowercase ,prefix_text=_lowercase ) __lowercase = tokenizer.decode(_lowercase ) __lowercase = tokenizer.decode(_lowercase ) __lowercase = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase ,_lowercase ) self.assertEqual(_lowercase ,_lowercase ) self.assertEqual(_lowercase ,_lowercase ) @slow def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __lowercase = 'こんにちは、世界。' __lowercase = 'こんばんは、㔺界。😀' __lowercase = len(tokenizer.encode(_lowercase ) ) - 2 __lowercase = len(tokenizer.encode(_lowercase ) ) - 2 __lowercase = [1] + [0] * (len_prefix + len_text + 1) __lowercase = [1] * (len_prefix + len_text + 1) + [0] __lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __lowercase = tokenizer(prefix_text + input_text ).token_type_ids __lowercase = tokenizer('''''' ,prefix_text=prefix_text + input_text ).token_type_ids __lowercase = tokenizer(_lowercase ,prefix_text=_lowercase ).token_type_ids self.assertListEqual(_lowercase ,_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) self.assertListEqual(_lowercase ,_lowercase ) @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowercase = tokenizer.encode('''あンいワ''' ) __lowercase = tokenizer.encode('''''' ,prefix_text='''あンいワ''' ) __lowercase = tokenizer.encode('''いワ''' ,prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(_lowercase ) ,tokenizer.decode(_lowercase ) ) self.assertEqual(tokenizer.decode(_lowercase ) ,tokenizer.decode(_lowercase ) ) self.assertNotEqual(_lowercase ,_lowercase ) self.assertNotEqual(_lowercase ,_lowercase ) self.assertEqual(x_token_a[1] ,x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] ,x_token_a[3] ) # SEG token @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __lowercase = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] __lowercase = tokenizer(_lowercase ,padding=_lowercase ) __lowercase = tokenizer.batch_encode_plus(_lowercase ,padding=_lowercase ) # fmt: off __lowercase = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] __lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids ,_lowercase ) self.assertListEqual(x_token.token_type_ids ,_lowercase ) self.assertListEqual(x_token.attention_mask ,_lowercase ) self.assertListEqual(x_token_a.input_ids ,_lowercase ) self.assertListEqual(x_token_a.token_type_ids ,_lowercase ) self.assertListEqual(x_token_a.attention_mask ,_lowercase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
0
from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __lowercase ( __A ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ) @torch.no_grad() def __call__(self ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,_lowerCamelCase = 50 ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __lowercase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,generator=_lowerCamelCase ,) __lowercase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowercase = self.scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ).prev_sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowerCamelCase ), "This is a local test"
708
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
0
'''simple docstring''' _SCREAMING_SNAKE_CASE = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['''bs4'''] ) super().__init__(**UpperCamelCase_ ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = [] __lowercase = [] __lowercase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __lowercase = parent.find_all(child.name ,recursive=UpperCamelCase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCamelCase_ ) else next(i for i, s in enumerate(UpperCamelCase_ ,1 ) if s is child ) ) __lowercase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = BeautifulSoup(UpperCamelCase_ ,'''html.parser''' ) __lowercase = [] __lowercase = [] __lowercase = [] for element in html_code.descendants: if type(UpperCamelCase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __lowercase = html.unescape(UpperCamelCase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCamelCase_ ) __lowercase = self.xpath_soup(UpperCamelCase_ ) stringaxtag_seq.append(UpperCamelCase_ ) stringaxsubs_seq.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = "" for tagname, subs in zip(UpperCamelCase_ ,UpperCamelCase_ ): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__(self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = False # Check that strings has a valid type if isinstance(UpperCamelCase_ ,UpperCamelCase_ ): __lowercase = True elif isinstance(UpperCamelCase_ ,(list, tuple) ): if len(UpperCamelCase_ ) == 0 or isinstance(html_strings[0] ,UpperCamelCase_ ): __lowercase = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f"but is of type {type(UpperCamelCase_ )}." ) __lowercase = bool(isinstance(UpperCamelCase_ ,(list, tuple) ) and (isinstance(html_strings[0] ,UpperCamelCase_ )) ) if not is_batched: __lowercase = [html_strings] # Get nodes + xpaths __lowercase = [] __lowercase = [] for html_string in html_strings: __lowercase = self.get_three_from_single(UpperCamelCase_ ) nodes.append(UpperCamelCase_ ) __lowercase = [] for node, tag_list, sub_list in zip(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): __lowercase = self.construct_xpath(UpperCamelCase_ ,UpperCamelCase_ ) xpath_strings.append(UpperCamelCase_ ) xpaths.append(UpperCamelCase_ ) # return as Dict __lowercase = {"nodes": nodes, "xpaths": xpaths} __lowercase = BatchFeature(data=UpperCamelCase_ ,tensor_type=UpperCamelCase_ ) return encoded_inputs
710
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
0
import requests def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __lowercase = {"Content-Type": "application/json"} __lowercase = requests.post(_lowerCAmelCase , json={'''text''': message_body} , headers=_lowerCAmelCase ) if response.status_code != 2_0_0: __lowercase = ( "Request to slack returned an error " f"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
711
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
0
'''simple docstring''' _SCREAMING_SNAKE_CASE = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } _SCREAMING_SNAKE_CASE = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase ( lowerCamelCase_ : Any ): '''simple docstring''' __lowercase = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): '''simple docstring''' if set(__lowerCAmelCase ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __lowercase = """""" for word in coded.split(): while len(__lowerCAmelCase ) != 0: decoded += decode_dict[word[:5]] __lowercase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
712
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
0
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE = '''src/transformers''' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'''\s+\"\S*\":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE = re.compile(R'''^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE = re.compile('''^\s+\"([^\"]+)\",''') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _SCREAMING_SNAKE_CASE = re.compile(R'''^\s*try:''') # Catches a line with else: _SCREAMING_SNAKE_CASE = re.compile(R'''^\s*else:''') def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): if _re_test_backend.search(__UpperCAmelCase ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): __lowercase = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] __lowercase = re.findall('''\[([^\]]+)\]''' , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: __lowercase = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) __lowercase = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: __lowercase = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) __lowercase = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''\"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''\"''' ): objects.append(line[1_3:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): def find_duplicates(lowerCamelCase_ : int ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = '''base imports''' if key == '''none''' else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def _lowerCAmelCase ( ): __lowercase = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: __lowercase = os.path.join(__UpperCAmelCase , '''__init__.py''' ) __lowercase = parse_init(__UpperCAmelCase ) if objects is not None: __lowercase = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: __lowercase = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__UpperCAmelCase ) ) def _lowerCAmelCase ( ): __lowercase = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue __lowercase = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) __lowercase = short_path.replace(os.path.sep , '''.''' ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) __lowercase = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules _SCREAMING_SNAKE_CASE = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _lowerCAmelCase ( ): __lowercase = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(__UpperCAmelCase , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCAmelCase ) > 0: __lowercase = '''\n'''.join(f"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
713
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
0
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
714
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=__lowerCAmelCase ): '''simple docstring''' a : Dict = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=__lowerCAmelCase ): '''simple docstring''' a : Optional[Any] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=__lowerCAmelCase ): '''simple docstring''' a : Union[str, Any] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=__lowerCAmelCase ): '''simple docstring''' a : Any = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=__lowerCAmelCase ): '''simple docstring''' a : Optional[Any] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=__lowerCAmelCase ): '''simple docstring''' a : Optional[int] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
715
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _SCREAMING_SNAKE_CASE : Dict = {'''facebook/blenderbot-3B''': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase ( ): __lowercase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class __lowercase ( a__ ): '''simple docstring''' a : Any = VOCAB_FILES_NAMES a : str = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase="replace" ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase="<mask>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Any: '''simple docstring''' __lowercase = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else bos_token __lowercase = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else eos_token __lowercase = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else sep_token __lowercase = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else cls_token __lowercase = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else unk_token __lowercase = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token super().__init__( errors=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,add_prefix_space=_A ,**_A ,) with open(_A ,encoding='''utf-8''' ) as vocab_handle: __lowercase = json.load(_A ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(_A ,encoding='''utf-8''' ) as merges_handle: __lowercase = merges_handle.read().split('''\n''' )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(_A ,range(len(_A ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return len(self.encoder ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(_A ) __lowercase = get_pairs(_A ) if not pairs: return token while True: __lowercase = min(_A ,key=lambda _lowerCamelCase : self.bpe_ranks.get(_A ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(_A ): try: __lowercase = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(_A ) __lowercase = new_word if len(_A ) == 1: break else: __lowercase = get_pairs(_A ) __lowercase = ' '.join(_A ) __lowercase = word return word def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = [] for token in re.findall(self.pat ,_A ): __lowercase = ''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(''' ''' ) ) return bpe_tokens def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' return self.decoder.get(_A ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = ''.join(_A ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' ,errors=self.errors ) return text def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple: '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _A ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join( _A ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_A ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '''\n''' ) __lowercase = 0 with open(_A ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) __lowercase = token_index writer.write(''' '''.join(_A ) + '''\n''' ) index += 1 return vocab_file, merge_file def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Union[str, Any]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=False ,**_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = kwargs.pop('''add_prefix_space''' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): __lowercase = ' ' + text return (text, kwargs) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> int: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_A ) __lowercase = ' '.join(_A ) __lowercase = self.encode(_A ) if len(_A ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
716
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[str] = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowercase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' a : Tuple = BertJapaneseTokenizer a : int = False a : int = True def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().setUp() __lowercase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = self.get_input_output_texts(lowerCamelCase_ ) __lowercase = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) __lowercase = tokenizer.decode(lowerCamelCase_ ,clean_up_tokenization_spaces=lowerCamelCase_ ) return text, ids def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> str: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(lowerCamelCase_ ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''mecab''' ) self.assertIsNotNone(lowerCamelCase_ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(lowerCamelCase_ ,'''wb''' ) as handle: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) with open(lowerCamelCase_ ,'''rb''' ) as handle: __lowercase = pickle.load(lowerCamelCase_ ) __lowercase = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = MecabTokenizer(do_lower_case=lowerCamelCase_ ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' try: __lowercase = MecabTokenizer( do_lower_case=lowerCamelCase_ ,normalize_text=lowerCamelCase_ ,mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = MecabTokenizer(normalize_text=lowerCamelCase_ ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] ,) @require_sudachi def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(lowerCamelCase_ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(lowerCamelCase_ ,'''wb''' ) as handle: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) with open(lowerCamelCase_ ,'''rb''' ) as handle: __lowercase = pickle.load(lowerCamelCase_ ) __lowercase = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) @require_sudachi def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人''', '''参政権'''] ) @require_sudachi def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人参政権'''] ) @require_sudachi def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = SudachiTokenizer(do_lower_case=lowerCamelCase_ ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = SudachiTokenizer(normalize_text=lowerCamelCase_ ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = SudachiTokenizer(trim_whitespace=lowerCamelCase_ ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(lowerCamelCase_ ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(lowerCamelCase_ ,'''wb''' ) as handle: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) with open(lowerCamelCase_ ,'''rb''' ) as handle: __lowercase = pickle.load(lowerCamelCase_ ) __lowercase = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) @require_jumanpp def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = JumanppTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = JumanppTokenizer(normalize_text=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = JumanppTokenizer(trim_whitespace=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) ,['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] ,) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __lowercase = {} for i, token in enumerate(lowerCamelCase_ ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=lowerCamelCase_ ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) ,['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) ,['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) __lowercase = tokenizer.subword_tokenizer __lowercase = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(lowerCamelCase_ ,['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) __lowercase = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(lowerCamelCase_ ,['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) __lowercase = tokenizer.encode('''ありがとう。''' ,add_special_tokens=lowerCamelCase_ ) __lowercase = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=lowerCamelCase_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' a : Dict = BertJapaneseTokenizer a : Dict = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().setUp() __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type='''character''' ,**lowerCamelCase_ ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type='''character''' ) __lowercase = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( lowerCamelCase_ ,['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = {} for i, token in enumerate(lowerCamelCase_ ): __lowercase = i __lowercase = CharacterTokenizer(vocab=lowerCamelCase_ ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) __lowercase = tokenizer.encode('''ありがとう。''' ,add_special_tokens=lowerCamelCase_ ) __lowercase = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=lowerCamelCase_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) __lowercase = '''bert-base-cased''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
718
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
0
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : Any ): assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(_A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any]=1 , **lowerCamelCase_ : int ): __lowercase = factor * value __lowercase = value while not is_prime(_A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_A ) return value
719
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> int: '''simple docstring''' debug_launcher(test_script.main ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' debug_launcher(test_ops.main )
721
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
0
'''simple docstring''' import logging import os from .state import PartialState class __lowercase ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) __lowercase = kwargs.pop('''main_process_only''' ,A_ ) __lowercase = kwargs.pop('''in_order''' ,A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): __lowercase , __lowercase = self.process(A_ ,A_ ) self.logger.log(A_ ,A_ ,*A_ ,**A_ ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(A_ ,A_ ) self.logger.log(A_ ,A_ ,*A_ ,**A_ ) state.wait_for_everyone() def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str = None ): if log_level is None: __lowercase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , snake_case__ ) __lowercase = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__ , {} )
700
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _SCREAMING_SNAKE_CASE = getLogger(__name__) _SCREAMING_SNAKE_CASE = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] = 8 , lowerCamelCase_ : List[str] = DEFAULT_DEVICE , lowerCamelCase_ : Dict=False , lowerCamelCase_ : List[str]="summarization" , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : str , ): __lowercase = Path(__SCREAMING_SNAKE_CASE ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(__SCREAMING_SNAKE_CASE ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , truncation=__SCREAMING_SNAKE_CASE , padding='''longest''' ).to(__SCREAMING_SNAKE_CASE ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__SCREAMING_SNAKE_CASE , ) __lowercase = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(__SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _lowerCAmelCase ( ): return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str]=True ): __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=__SCREAMING_SNAKE_CASE , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=__SCREAMING_SNAKE_CASE , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=__SCREAMING_SNAKE_CASE , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=__SCREAMING_SNAKE_CASE , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=__SCREAMING_SNAKE_CASE , default=8 , required=__SCREAMING_SNAKE_CASE , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=__SCREAMING_SNAKE_CASE , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(__SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( __SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__SCREAMING_SNAKE_CASE )] __lowercase = score_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) scores.update(__SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(__SCREAMING_SNAKE_CASE ) if args.info: __lowercase = args.info if verbose: print(__SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(__SCREAMING_SNAKE_CASE , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
701
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
0
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = FunnelTokenizer a : Union[str, Any] = FunnelTokenizerFast a : Optional[Any] = True a : Optional[int] = True def _UpperCAmelCase (self ) -> int: '''simple docstring''' super().setUp() __lowercase = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Any: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = '''UNwant\u00E9d,running''' __lowercase = '''unwanted, running''' return input_text, output_text def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowerCamelCase ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[7, 4, 5, 10, 8, 9] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: __lowercase = tokenizer('''UNwant\u00E9d,running''' ) __lowercase = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] ,[2] + [0] * sentence_len ) __lowercase = tokenizer('''UNwant\u00E9d,running''' ,'''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] ,[2] + [0] * sentence_len + [1] * sentence_len )
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
def _lowerCAmelCase ( lowerCamelCase_ : int = 4_0_0_0_0_0_0 ): __lowercase = [] __lowercase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case_ ) __lowercase = b, a + b return sum(snake_case_ ) if __name__ == "__main__": print(f'''{solution() = }''')
703
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class __lowercase : '''simple docstring''' a : Optional[Any] = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : int = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a : Any = field( default=lowercase__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) a : Optional[Any] = field( default=lowercase__ , metadata={"help": "Whether to log verbose messages or not."} , ) a : str = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) a : int = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) a : List[str] = field( default=0.99_99_95 , metadata={"help": "Decay of gumbel temperature during training."} ) def _lowerCAmelCase ( lowerCamelCase_ : ModelArguments , lowerCamelCase_ : TrainingArguments ): logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowercase = logging.WARNING if model_args.verbose_logging: __lowercase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __lowercase = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class __lowercase : '''simple docstring''' a : List[str] = field( default=lowercase__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) a : List[Any] = field( default=lowercase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a : Any = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) a : str = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) a : str = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) a : Tuple = field( default=lowercase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) a : Tuple = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) a : Optional[Any] = field( default=lowercase__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) a : Dict = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class __lowercase : '''simple docstring''' a : Dict = 42 a : List[Any] = 42 a : int = "longest" a : Tuple = None a : Union[str, Any] = None def __call__(self ,_lowerCamelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' __lowercase = self.feature_extractor.pad( _lowerCamelCase ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='''pt''' ,) __lowercase = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) __lowercase = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __lowercase = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) __lowercase = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __lowercase = 1 __lowercase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __lowercase = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=_lowerCamelCase ,min_masks=2 ,) return batch class __lowercase ( lowercase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,_lowerCamelCase=1.0 ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' super().__init__(*_lowerCamelCase ,**_lowerCamelCase ) __lowercase = 0 __lowercase = max_gumbel_temp __lowercase = min_gumbel_temp __lowercase = gumbel_temp_decay def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> torch.Tensor: '''simple docstring''' model.train() __lowercase = self._prepare_inputs(_lowerCamelCase ) if self.use_amp: with autocast(): __lowercase = self.compute_loss(_lowerCamelCase ,_lowerCamelCase ) else: __lowercase = self.compute_loss(_lowerCamelCase ,_lowerCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __lowercase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowercase = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: __lowercase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_lowerCamelCase ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_lowerCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def _lowerCAmelCase ( ): __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. __lowercase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __lowercase = DatasetDict() __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __lowercase = DatasetDict() __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __lowercase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(lowerCamelCase_ : Any ): # check that all files have the correct sampling rate __lowercase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __lowercase = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long __lowercase = vectorized_datasets.filter( lambda lowerCamelCase_ : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCamelCase_ : Union[str, Any] ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __lowercase = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __lowercase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) __lowercase = WavaVecaForPreTraining(_lowerCamelCase ) __lowercase = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) __lowercase = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
704
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=__a ): '''simple docstring''' a : Tuple = ["note_seq"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self ,['''note_seq'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''note_seq'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''note_seq'''] )
706
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
0
def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) __lowercase = sum(__snake_case ) / len(__snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
0
def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): return "\n".join( f"{number} * {i} = {number * i}" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
708
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
0
'''simple docstring''' from maths.prime_check import is_prime def _lowerCAmelCase ( lowerCamelCase_ : int ): if not isinstance(_lowercase , _lowercase ): __lowercase = f"Input value of [number={number}] must be an integer" raise TypeError(_lowercase ) if is_prime(_lowercase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): __lowercase = 0 __lowercase = len(UpperCAmelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowercase = i + 1 else: __lowercase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
710
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
0
from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : List[str] = None ): if start is None: __lowercase = 0 if end is None: __lowercase = len(_snake_case ) - 1 if start >= end: return __lowercase = (start + end) // 2 slowsort(_snake_case , _snake_case , _snake_case ) slowsort(_snake_case , mid + 1 , _snake_case ) if sequence[end] < sequence[mid]: __lowercase , __lowercase = sequence[mid], sequence[end] slowsort(_snake_case , _snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
711
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : Dict = 1_0_0_0_0_0_0 ): '''simple docstring''' __lowercase = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) __lowercase = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
712
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): __lowercase = SwinConfig(image_size=1_9_2 ) if "base" in model_name: __lowercase = 6 __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) elif "large" in model_name: __lowercase = 1_2 __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __lowercase = window_size __lowercase = embed_dim __lowercase = depths __lowercase = num_heads return config def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): if "encoder.mask_token" in name: __lowercase = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __lowercase = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __lowercase = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __lowercase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __lowercase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __lowercase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __lowercase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __lowercase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __lowercase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __lowercase = '''layernorm.weight''' if name == "encoder.norm.bias": __lowercase = '''layernorm.bias''' if "decoder" in name: pass else: __lowercase = '''swin.''' + name return name def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(__UpperCamelCase ) if "attn_mask" in key: pass elif "qkv" in key: __lowercase = key.split('''.''' ) __lowercase = int(key_split[2] ) __lowercase = int(key_split[4] ) __lowercase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[ dim : dim * 2, : ] __lowercase = val[-dim:, :] else: __lowercase = val[ :dim ] __lowercase = val[ dim : dim * 2 ] __lowercase = val[ -dim: ] else: __lowercase = val return orig_state_dict def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int ): __lowercase = torch.load(__UpperCamelCase , map_location='''cpu''' )['''model'''] __lowercase = get_swin_config(__UpperCamelCase ) __lowercase = SwinForMaskedImageModeling(__UpperCamelCase ) model.eval() __lowercase = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = ViTImageProcessor(size={'''height''': 1_9_2, '''width''': 1_9_2} ) __lowercase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) __lowercase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) with torch.no_grad(): __lowercase = model(**__UpperCamelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(f"microsoft/{model_name}" ) image_processor.push_to_hub(f"microsoft/{model_name}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
713
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[str] ): __lowercase = AutoConfig.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) __lowercase = AutoModelForSeqaSeqLM.from_config(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) AutoTokenizer.from_pretrained(lowerCamelCase_ ).save_pretrained(lowerCamelCase_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
714
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _SCREAMING_SNAKE_CASE = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> str: '''simple docstring''' super().__init__() __lowercase = torchvision.models.resnetaaa(pretrained=__lowercase ) __lowercase = list(model.children() )[:-2] __lowercase = nn.Sequential(*__lowercase ) __lowercase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.pool(self.model(__lowercase ) ) __lowercase = torch.flatten(__lowercase ,start_dim=2 ) __lowercase = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __lowercase ( lowercase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = [json.loads(__lowercase ) for l in open(__lowercase )] __lowercase = os.path.dirname(__lowercase ) __lowercase = tokenizer __lowercase = labels __lowercase = len(__lowercase ) __lowercase = max_seq_length __lowercase = transforms def __len__(self ) -> Tuple: '''simple docstring''' return len(self.data ) def __getitem__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] ,add_special_tokens=__lowercase ) ) __lowercase , __lowercase , __lowercase = sentence[0], sentence[1:-1], sentence[-1] __lowercase = sentence[: self.max_seq_length] __lowercase = torch.zeros(self.n_classes ) __lowercase = 1 __lowercase = Image.open(os.path.join(self.data_dir ,self.data[index]['''img'''] ) ).convert('''RGB''' ) __lowercase = self.transforms(__lowercase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = [len(row['''sentence'''] ) for row in batch] __lowercase , __lowercase = len(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) __lowercase = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.long ) __lowercase = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): __lowercase = input_row['''sentence'''] __lowercase = 1 __lowercase = torch.stack([row['''image'''] for row in batch] ) __lowercase = torch.stack([row['''label'''] for row in batch] ) __lowercase = torch.stack([row['''image_start_token'''] for row in batch] ) __lowercase = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _lowerCAmelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _lowerCAmelCase ( ): return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
715
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class __lowercase ( __snake_case ): '''simple docstring''' def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' super().__init__(*A_ ,**A_ ) if config is None: assert isinstance(self.model ,A_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) __lowercase = self.model.config else: __lowercase = config __lowercase = data_args __lowercase = self.config.tgt_vocab_size if isinstance(self.config ,A_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" ''' padding..''' ) if self.args.label_smoothing == 0: __lowercase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __lowercase = label_smoothed_nll_loss def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.optimizer is None: __lowercase = ["bias", "LayerNorm.weight"] __lowercase = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] __lowercase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __lowercase = Adafactor __lowercase = {"scale_parameter": False, "relative_step": False} else: __lowercase = AdamW __lowercase = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } __lowercase = self.args.learning_rate if self.sharded_ddp: __lowercase = OSS( params=A_ ,optim=A_ ,**A_ ,) else: __lowercase = optimizer_cls(A_ ,**A_ ) if self.lr_scheduler is None: __lowercase = self._get_lr_scheduler(A_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __lowercase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __lowercase = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: __lowercase = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=A_ ) return scheduler def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __lowercase = model(**A_ ,use_cache=A_ )[0] __lowercase = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models __lowercase = model(**A_ ,labels=A_ ,use_cache=A_ )[:2] else: # compute label smoothed loss __lowercase = model(**A_ ,use_cache=A_ )[0] __lowercase = torch.nn.functional.log_softmax(A_ ,dim=-1 ) __lowercase = self.loss_fn(A_ ,A_ ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = inputs.pop('''labels''' ) __lowercase = self._compute_loss(A_ ,A_ ,A_ ) return loss def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,) -> Optional[Any]: '''simple docstring''' __lowercase = self._prepare_inputs(A_ ) __lowercase = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __lowercase = self.model.generate( inputs['''input_ids'''] ,attention_mask=inputs['''attention_mask'''] ,**A_ ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __lowercase = self._pad_tensors_to_max_len(A_ ,gen_kwargs['''max_length'''] ) __lowercase = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __lowercase = self._compute_loss(A_ ,A_ ,A_ ) __lowercase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __lowercase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __lowercase = self._pad_tensors_to_max_len(A_ ,gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f" padded to `max_length`={max_length}" ) __lowercase = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) __lowercase = tensor return padded_tensor
716
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _SCREAMING_SNAKE_CASE : List[Any] = sys.version_info >= (3, 1_0) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Union[str, Any]=None ): return field(default_factory=lambda: default , metadata=lowerCamelCase_ ) @dataclass class __lowercase : '''simple docstring''' a : int a : float a : str a : bool @dataclass class __lowercase : '''simple docstring''' a : int = 42 a : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class __lowercase : '''simple docstring''' a : bool = False a : bool = True a : Optional[bool] = None class __lowercase ( UpperCamelCase__ ): '''simple docstring''' a : Optional[int] = """titi""" a : int = """toto""" class __lowercase ( UpperCamelCase__ ): '''simple docstring''' a : Union[str, Any] = """titi""" a : Any = """toto""" a : Union[str, Any] = 42 @dataclass class __lowercase : '''simple docstring''' a : BasicEnum = "toto" def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = BasicEnum(self.foo ) @dataclass class __lowercase : '''simple docstring''' a : MixedTypeEnum = "toto" def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = MixedTypeEnum(self.foo ) @dataclass class __lowercase : '''simple docstring''' a : Optional[int] = None a : Optional[float] = field(default=UpperCamelCase__ , metadata={"help": "help message"} ) a : Optional[str] = None a : Optional[List[str]] = list_field(default=[] ) a : Optional[List[int]] = list_field(default=[] ) @dataclass class __lowercase : '''simple docstring''' a : List[int] = list_field(default=[] ) a : List[int] = list_field(default=[1, 2, 3] ) a : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) a : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __lowercase : '''simple docstring''' a : List[int] = field() a : str = field() a : BasicEnum = field() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = BasicEnum(self.required_enum ) @dataclass class __lowercase : '''simple docstring''' a : int a : "BasicEnum" = field() a : "Optional[bool]" = None a : "str" = field(default="toto" , metadata={"help": "help message"} ) a : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __lowercase : '''simple docstring''' a : bool = False a : bool = True a : bool | None = None @dataclass class __lowercase : '''simple docstring''' a : int | None = None a : float | None = field(default=UpperCamelCase__ , metadata={"help": "help message"} ) a : str | None = None a : list[str] | None = list_field(default=[] ) a : list[int] | None = list_field(default=[] ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' self.assertEqual(len(a._actions ) ,len(b._actions ) ) for x, y in zip(a._actions ,b._actions ): __lowercase = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} __lowercase = {k: v for k, v in vars(_lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' ,_lowerCamelCase ) and yy.get('''choices''' ,_lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowerCamelCase ) ,yy['''type'''](_lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument('''--foo''' ,type=_lowerCamelCase ,required=_lowerCamelCase ) expected.add_argument('''--bar''' ,type=_lowerCamelCase ,required=_lowerCamelCase ) expected.add_argument('''--baz''' ,type=_lowerCamelCase ,required=_lowerCamelCase ) expected.add_argument('''--flag''' ,type=_lowerCamelCase ,default=_lowerCamelCase ,const=_lowerCamelCase ,nargs='''?''' ) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((__lowercase ) , ) = parser.parse_args_into_dataclasses(_lowerCamelCase ,look_for_args_file=_lowerCamelCase ) self.assertFalse(example.flag ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument('''--foo''' ,default=42 ,type=_lowerCamelCase ) expected.add_argument('''--baz''' ,default='''toto''' ,type=_lowerCamelCase ,help='''help message''' ) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = argparse.ArgumentParser() expected.add_argument('''--foo''' ,type=_lowerCamelCase ,default=_lowerCamelCase ,const=_lowerCamelCase ,nargs='''?''' ) expected.add_argument('''--baz''' ,type=_lowerCamelCase ,default=_lowerCamelCase ,const=_lowerCamelCase ,nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' ,action='''store_false''' ,default=_lowerCamelCase ,dest='''baz''' ) expected.add_argument('''--opt''' ,type=_lowerCamelCase ,default=_lowerCamelCase ) __lowercase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: __lowercase = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(_lowerCamelCase ,Namespace(foo=_lowerCamelCase ,baz=_lowerCamelCase ,opt=_lowerCamelCase ) ) __lowercase = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowerCamelCase ,Namespace(foo=_lowerCamelCase ,baz=_lowerCamelCase ,opt=_lowerCamelCase ) ) __lowercase = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowerCamelCase ,Namespace(foo=_lowerCamelCase ,baz=_lowerCamelCase ,opt=_lowerCamelCase ) ) __lowercase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowerCamelCase ,Namespace(foo=_lowerCamelCase ,baz=_lowerCamelCase ,opt=_lowerCamelCase ) ) __lowercase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowerCamelCase ,Namespace(foo=_lowerCamelCase ,baz=_lowerCamelCase ,opt=_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument( '''--foo''' ,default='''toto''' ,choices=['''titi''', '''toto''', 42] ,type=make_choice_type_function(['''titi''', '''toto''', 42] ) ,) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(args.foo ,'''toto''' ) __lowercase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.toto ) __lowercase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo ,'''titi''' ) __lowercase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.titi ) __lowercase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo ,42 ) __lowercase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.fourtytwo ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' @dataclass class __lowercase : '''simple docstring''' a : Literal["titi", "toto", 42] = "toto" __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument( '''--foo''' ,default='''toto''' ,choices=('''titi''', '''toto''', 42) ,type=make_choice_type_function(['''titi''', '''toto''', 42] ) ,) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(args.foo ,'''toto''' ) __lowercase = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo ,'''titi''' ) __lowercase = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo ,42 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' ,nargs='''+''' ,default=[] ,type=_lowerCamelCase ) expected.add_argument('''--bar_int''' ,nargs='''+''' ,default=[1, 2, 3] ,type=_lowerCamelCase ) expected.add_argument('''--foo_str''' ,nargs='''+''' ,default=['''Hallo''', '''Bonjour''', '''Hello'''] ,type=_lowerCamelCase ) expected.add_argument('''--foo_float''' ,nargs='''+''' ,default=[0.1, 0.2, 0.3] ,type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual( _lowerCamelCase ,Namespace(foo_int=[] ,bar_int=[1, 2, 3] ,foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] ,foo_float=[0.1, 0.2, 0.3] ) ,) __lowercase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowerCamelCase ,Namespace(foo_int=[1] ,bar_int=[2, 3] ,foo_str=['''a''', '''b''', '''c'''] ,foo_float=[0.1, 0.7] ) ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = argparse.ArgumentParser() expected.add_argument('''--foo''' ,default=_lowerCamelCase ,type=_lowerCamelCase ) expected.add_argument('''--bar''' ,default=_lowerCamelCase ,type=_lowerCamelCase ,help='''help message''' ) expected.add_argument('''--baz''' ,default=_lowerCamelCase ,type=_lowerCamelCase ) expected.add_argument('''--ces''' ,nargs='''+''' ,default=[] ,type=_lowerCamelCase ) expected.add_argument('''--des''' ,nargs='''+''' ,default=[] ,type=_lowerCamelCase ) __lowercase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCamelCase ) for dataclass_type in dataclass_types: __lowercase = HfArgumentParser(_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(_lowerCamelCase ,Namespace(foo=_lowerCamelCase ,bar=_lowerCamelCase ,baz=_lowerCamelCase ,ces=[] ,des=[] ) ) __lowercase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowerCamelCase ,Namespace(foo=12 ,bar=3.1_4 ,baz='''42''' ,ces=['''a''', '''b''', '''c'''] ,des=[1, 2, 3] ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument('''--required_list''' ,nargs='''+''' ,type=_lowerCamelCase ,required=_lowerCamelCase ) expected.add_argument('''--required_str''' ,type=_lowerCamelCase ,required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' ,type=make_choice_type_function(['''titi''', '''toto'''] ) ,choices=['''titi''', '''toto'''] ,required=_lowerCamelCase ,) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument('''--foo''' ,type=_lowerCamelCase ,required=_lowerCamelCase ) expected.add_argument( '''--required_enum''' ,type=make_choice_type_function(['''titi''', '''toto'''] ) ,choices=['''titi''', '''toto'''] ,required=_lowerCamelCase ,) expected.add_argument('''--opt''' ,type=_lowerCamelCase ,default=_lowerCamelCase ) expected.add_argument('''--baz''' ,default='''toto''' ,type=_lowerCamelCase ,help='''help message''' ) expected.add_argument('''--foo_str''' ,nargs='''+''' ,default=['''Hallo''', '''Bonjour''', '''Hello'''] ,type=_lowerCamelCase ) self.argparsersEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } __lowercase = parser.parse_dict(_lowerCamelCase )[0] __lowercase = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowerCamelCase ,parser.parse_dict ,_lowerCamelCase ,allow_extra_keys=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase ,'''temp_json''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.json''' ,'''w+''' ) as f: json.dump(_lowerCamelCase ,_lowerCamelCase ) __lowercase = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] __lowercase = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.1_4, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase ,'''temp_yaml''' ) os.mkdir(_lowerCamelCase ) with open(temp_local_path + '''.yaml''' ,'''w+''' ) as f: yaml.dump(_lowerCamelCase ,_lowerCamelCase ) __lowercase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] __lowercase = BasicExample(**_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = HfArgumentParser(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
717
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=7 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=32 ,_lowerCamelCase=2 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=16 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=3 ,_lowerCamelCase=4 ,_lowerCamelCase=None ,_lowerCamelCase=0 ,) -> Union[str, Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = projection_dim def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) __lowercase = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = TFDPRContextEncoder(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = TFDPRQuestionEncoder(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = TFDPRReader(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( __lowercase ) = config_and_inputs __lowercase = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[int] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a : List[str] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} a : int = False a : Optional[Any] = False a : Union[str, Any] = False a : Tuple = False a : int = False def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = TFDPRModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowerCamelCase__ ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowerCamelCase__ ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowerCamelCase__ ) @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRContextEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRContextEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRQuestionEncoder.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRReader.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) __lowercase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] __lowercase = model(lowerCamelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __lowercase = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
718
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
0