code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float ): if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(lowerCamelCase_ ) * abs(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) ,1 ) self.assertEqual(x.component(2 ) ,3 ) __lowercase = Vector() def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowerCamelCase ) ,'''(0,0,0,0,0,1)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowerCamelCase ) ,4 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2] ) __lowercase = Vector([1, 2, 3, 4, 5] ) __lowercase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowercase = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() ,2.2_3_6 ,3 ) self.assertAlmostEqual(y.euclidean_length() ,7.4_1_6 ,3 ) self.assertEqual(z.euclidean_length() ,0 ) self.assertAlmostEqual(w.euclidean_length() ,7.6_1_6 ,3 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) ,2 ) self.assertEqual((x + y).component(1 ) ,3 ) self.assertEqual((x + y).component(2 ) ,4 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) ,0 ) self.assertEqual((x - y).component(1 ) ,1 ) self.assertEqual((x - y).component(2 ) ,2 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([2, -1, 4] ) # for test of dot product __lowercase = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) ,'''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) ,0 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) ,10 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 ,1 ) ) ,'''(0,1,0)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 2, 3] ) __lowercase = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 ,_lowerCamelCase ,_lowerCamelCase ) ) ,'''(3,4,7)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 0, 0, 0, 0, 0] ) __lowercase = x.copy() self.assertEqual(str(_lowerCamelCase ) ,str(_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Vector([1, 0, 0] ) x.change_component(0 ,0 ) x.change_component(1 ,1 ) self.assertEqual(str(_lowerCamelCase ) ,'''(0,1,0)''' ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' ,str(_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] ,a.minor(_lowerCamelCase ,_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] ,a.cofactor(_lowerCamelCase ,_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(-5 ,a.determinant() ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ,3 ,3 ) __lowercase = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' ,str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' ,str(a * 2 ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) a.change_component(0 ,2 ,5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' ,str(_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(7 ,a.component(2 ,1 ) ,0.0_1 ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' ,str(a + b ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) __lowercase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' ,str(a - b ) ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' ,str(square_zero_matrix(5 ) ) ,) if __name__ == "__main__": unittest.main()
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowerCAmelCase ( lowerCamelCase_ : Union[dict, list, tuple, torch.Tensor] ): __lowercase = [] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_ ) ) elif isinstance(lowerCamelCase_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_ ) ) elif isinstance(lowerCamelCase_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple[int, ...] ): __lowercase = [] for d in reversed(lowerCamelCase_ ): idx.append(flat_idx % d ) __lowercase = flat_idx // d return tuple(reversed(lowerCamelCase_ ) ) @torch.jit.ignore def _lowerCAmelCase ( lowerCamelCase_ : Sequence[int] , lowerCamelCase_ : Sequence[int] , lowerCamelCase_ : Sequence[int] , lowerCamelCase_ : Optional[Sequence[bool]] = None , lowerCamelCase_ : Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_ : List[bool] ) -> None: __lowercase = True for i in range(len(lowerCamelCase_ ) ): __lowercase = -1 * (i + 1) l[reversed_idx] &= tally __lowercase = l[reversed_idx] if start_edges is None: __lowercase = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_ ) if end_edges is None: __lowercase = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_ )] reduce_edge_list(lowerCamelCase_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_ ) == 0: return [()] elif len(lowerCamelCase_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowercase = [] __lowercase = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_ ): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1 ) ) else: break __lowercase = tuple(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) # start == end, and we're done if divergence_idx == len(lowerCamelCase_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowercase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowerCAmelCase ( lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase = t.shape[:no_batch_dims] __lowercase = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_ ) ) # _get_minimal_slice_set is inclusive __lowercase = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_ ) ) # Get an ordered list of slices to perform __lowercase = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) __lowercase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowerCAmelCase ( lowerCamelCase_ : Callable , lowerCamelCase_ : Dict[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : bool = False , lowerCamelCase_ : Any = None , lowerCamelCase_ : bool = False , ): if not (len(lowerCamelCase_ ) > 0): raise ValueError('''Must provide at least one input''' ) __lowercase = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_ )] __lowercase = tuple([max(lowerCamelCase_ ) for s in zip(*lowerCamelCase_ )] ) def _prep_inputs(lowerCamelCase_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowercase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowercase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowercase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowercase = tensor_tree_map(_prep_inputs , lowerCamelCase_ ) __lowercase = None if _out is not None: __lowercase = tensor_tree_map(lambda lowerCamelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowercase = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowercase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowercase = 0 __lowercase = prepped_outputs for _ in range(lowerCamelCase_ ): # Chunk the input if not low_mem: __lowercase = _select_chunk else: __lowercase = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size ) , no_batch_dims=len(lowerCamelCase_ ) , ) __lowercase = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_ ) # Run the layer on the chunk __lowercase = layer(**lowerCamelCase_ ) # Allocate space for the output if out is None: __lowercase = tensor_tree_map(lambda lowerCamelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowerCamelCase_ ) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_ ): def assign(lowerCamelCase_ : dict , lowerCamelCase_ : dict ) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): assign(lowerCamelCase_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowercase = da[k] assign(lowerCamelCase_ , lowerCamelCase_ ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowercase = xa elif isinstance(lowerCamelCase_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowercase = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __lowercase = tensor_tree_map(lambda lowerCamelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , lowerCamelCase_ ) return out class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase = 512 ,) -> List[str]: '''simple docstring''' __lowercase = max_chunk_size __lowercase = None __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowercase = [2**l for l in range(int(math.log(self.max_chunk_size ,2 ) ) + 1 )] __lowercase = [c for c in candidates if c > min_chunk_size] __lowercase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_lowerCamelCase ) -> bool: try: with torch.no_grad(): fn(*_lowerCamelCase ,chunk_size=_lowerCamelCase ) return True except RuntimeError: return False __lowercase = 0 __lowercase = len(_lowerCamelCase ) - 1 while i > min_viable_chunk_size_index: __lowercase = test_chunk_size(candidates[i] ) if not viable: __lowercase = (min_viable_chunk_size_index + i) // 2 else: __lowercase = i __lowercase = (i + len(_lowerCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> bool: '''simple docstring''' __lowercase = True for aa, aa in zip(_lowerCamelCase ,_lowerCamelCase ): assert type(_lowerCamelCase ) == type(_lowerCamelCase ) if isinstance(_lowerCamelCase ,(list, tuple) ): consistent &= self._compare_arg_caches(_lowerCamelCase ,_lowerCamelCase ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [v for _, v in sorted(aa.items() ,key=lambda _lowerCamelCase : x[0] )] __lowercase = [v for _, v in sorted(aa.items() ,key=lambda _lowerCamelCase : x[0] )] consistent &= self._compare_arg_caches(_lowerCamelCase ,_lowerCamelCase ) else: consistent &= aa == aa return consistent def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> int: '''simple docstring''' __lowercase = True __lowercase = tree_map(lambda _lowerCamelCase : a.shape if isinstance(_lowerCamelCase ,torch.Tensor ) else a ,_lowerCamelCase ,_lowerCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_lowerCamelCase ) __lowercase = self._compare_arg_caches(self.cached_arg_data ,_lowerCamelCase ) else: # Otherwise, we can reuse the precomputed value __lowercase = False if not consistent: __lowercase = self._determine_favorable_chunk_size( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) __lowercase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( lowerCamelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _SCREAMING_SNAKE_CASE = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def _lowerCAmelCase ( lowerCamelCase_ : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __lowercase = [] for num in range(len(lowerCamelCase_ ) ): __lowercase = 0 while 2 * i * i <= odd_composites[num]: __lowercase = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase_ ) == n: return list_nums return [] def _lowerCAmelCase ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def _lowerCAmelCase ( lowerCamelCase_ : int ): if hor == 1_2_8: __lowercase = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __lowercase = (3_2, 1_2_8, 2_5_6) __lowercase = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 3_2: __lowercase = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') __lowercase = (3_2, 6_4, 1_2_8, 2_5_6) __lowercase = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') __lowercase = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) __lowercase = model.state_dict() __lowercase = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 1_4, '''out_channels''': 1_4, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 6_5_5_3_6, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } __lowercase = UNetaDModel(**lowerCamelCase_ ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __lowercase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json" , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( ): __lowercase = { '''in_channels''': 1_4, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (3_2, 6_4, 1_2_8, 2_5_6), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 6_5_5_3_6, '''out_channels''': 1_4, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } __lowercase = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) __lowercase = model __lowercase = UNetaDModel(**lowerCamelCase_ ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __lowercase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _SCREAMING_SNAKE_CASE = 1_0_0 _SCREAMING_SNAKE_CASE = set(range(3, NUM_PRIMES, 2)) primes.add(2) _SCREAMING_SNAKE_CASE = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _lowerCAmelCase ( lowerCamelCase_ : int ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __lowercase = set() __lowercase = 42 __lowercase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _lowerCAmelCase ( lowerCamelCase_ : int = 5_0_0_0 ): for number_to_partition in range(1 , lowerCamelCase_ ): if len(partition(lowerCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _SCREAMING_SNAKE_CASE = 2_5_6_0_4_7 _SCREAMING_SNAKE_CASE = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Dict = NllbTokenizer a : List[Any] = NllbTokenizerFast a : Optional[int] = True a : Optional[int] = True a : List[str] = {} def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase = NllbTokenizer(_lowerCamelCase ,keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = NllbTokenizer(_lowerCamelCase ,keep_accents=_lowerCamelCase ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) __lowercase = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) __lowercase = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = self.tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowercase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCamelCase ,_lowerCamelCase ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(_lowerCamelCase ) __lowercase = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase ,_lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(_lowerCamelCase ,legacy_format=_lowerCamelCase ) __lowercase = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase ,_lowerCamelCase ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(_lowerCamelCase ) __lowercase = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase ,_lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(_lowerCamelCase ,legacy_format=_lowerCamelCase ) __lowercase = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(_lowerCamelCase ) __lowercase = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase ,_lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @require_torch def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' if not self.test_seqaseq: return __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. __lowercase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] __lowercase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: __lowercase = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCamelCase ,tgt_texts=_lowerCamelCase ,max_length=3 ,max_target_length=10 ,return_tensors='''pt''' ,src_lang='''eng_Latn''' ,tgt_lang='''ron_Latn''' ,) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,10 ) # max_target_length will default to max_length if not specified __lowercase = tokenizer.prepare_seqaseq_batch( _lowerCamelCase ,tgt_texts=_lowerCamelCase ,max_length=3 ,return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,3 ) __lowercase = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCamelCase ,max_length=3 ,max_target_length=10 ,return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 ) self.assertNotIn('''decoder_input_ids''' ,_lowerCamelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = [AddedToken('''<special>''' ,lstrip=_lowerCamelCase )] __lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = tokenizer_r.encode('''Hey this is a <special> token''' ) __lowercase = tokenizer_r.encode('''<special>''' ,add_special_tokens=_lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowercase = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = self.tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = tokenizer_p.encode('''Hey this is a <special> token''' ) __lowercase = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): '''simple docstring''' a : int = "facebook/nllb-200-distilled-600M" a : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a : int = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a : Any = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def _UpperCAmelCase (cls ) -> Optional[Any]: '''simple docstring''' __lowercase = NllbTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''eng_Latn''' ,tgt_lang='''ron_Latn''' ) __lowercase = 1 return cls def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] ,256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] ,256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] ,256057 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' self.assertIn(_lowerCamelCase ,self.tokenizer.all_special_ids ) # fmt: off __lowercase = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on __lowercase = self.tokenizer.decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] ,_lowerCamelCase ) __lowercase = 10 __lowercase = self.tokenizer(_lowerCamelCase ,max_length=_lowerCamelCase ,truncation=_lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1] ,2 ) self.assertEqual(ids[0] ,_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) ,[256203, 3] ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = NllbTokenizer.from_pretrained(_lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,_lowerCamelCase ) @require_torch def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors='''pt''' ,) __lowercase = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 15) ,batch.input_ids.shape ) self.assertEqual((2, 15) ,batch.attention_mask.shape ) __lowercase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.tokenizer(self.src_text ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=3 ,return_tensors='''pt''' ) __lowercase = self.tokenizer( text_target=self.tgt_text ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=10 ,return_tensors='''pt''' ) __lowercase = targets['''input_ids'''] __lowercase = shift_tokens_right( _lowerCamelCase ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.tokenizer._build_translation_inputs( '''A test''' ,return_tensors='''pt''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) ,{ # A, test, EOS, en_XX '''input_ids''': [[256047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 256057, } ,) @require_torch def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = True __lowercase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids ,[16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) __lowercase = False __lowercase = self.tokenizer( '''UN Chief says there is no military solution in Syria''' ,src_lang='''eng_Latn''' ,tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids ,[256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple ): # Load configuration defined in the metadata file with open(lowerCamelCase_ ) as metadata_file: __lowercase = json.load(lowerCamelCase_ ) __lowercase = LukeConfig(use_entity_aware_attention=lowerCamelCase_ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) # Load the entity vocab file __lowercase = load_entity_vocab(lowerCamelCase_ ) __lowercase = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __lowercase = AddedToken('''<ent>''' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) __lowercase = AddedToken('''<ent2>''' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = LukeTokenizer.from_pretrained(lowerCamelCase_ ) # Initialize the embeddings of the special tokens __lowercase = state_dict['''embeddings.word_embeddings.weight'''] __lowercase = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) __lowercase = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) __lowercase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowercase = f"encoder.layer.{layer_index}.attention.self." __lowercase = state_dict[prefix + matrix_name] __lowercase = state_dict[prefix + matrix_name] __lowercase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowercase = state_dict['''entity_embeddings.entity_embeddings.weight'''] __lowercase = entity_emb[entity_vocab['''[MASK]''']] __lowercase = LukeModel(config=lowerCamelCase_ ).eval() __lowercase , __lowercase = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) if not (len(lowerCamelCase_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"Missing keys {', '.join(lowerCamelCase_ )}. Expected only missing embeddings.position_ids" ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' f" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}" ) # Check outputs __lowercase = LukeTokenizer.from_pretrained(lowerCamelCase_ , task='''entity_classification''' ) __lowercase = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) __lowercase = (3_9, 4_2) __lowercase = tokenizer(lowerCamelCase_ , entity_spans=[span] , add_prefix_space=lowerCamelCase_ , return_tensors='''pt''' ) __lowercase = model(**lowerCamelCase_ ) # Verify word hidden states if model_size == "large": __lowercase = torch.Size((1, 4_2, 1_0_2_4) ) __lowercase = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base __lowercase = torch.Size((1, 4_2, 7_6_8) ) __lowercase = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __lowercase = torch.Size((1, 1, 1_0_2_4) ) __lowercase = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base __lowercase = torch.Size((1, 1, 7_6_8) ) __lowercase = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowerCamelCase_ ) ) model.save_pretrained(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = {} with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(lowerCamelCase_ ): __lowercase , __lowercase = line.rstrip().split('''\t''' ) __lowercase = index return entity_vocab if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = None ,_lowerCamelCase = PILImageResampling.BICUBIC ,_lowerCamelCase = True ,_lowerCamelCase = True ,_lowerCamelCase = 1 / 255 ,_lowerCamelCase = None ,_lowerCamelCase = True ,_lowerCamelCase = None ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = size if size is not None else {'''height''': 224, '''width''': 224} __lowercase = get_size_dict(_lowerCamelCase ) __lowercase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowercase = get_size_dict(_lowerCamelCase ,default_to_square=_lowerCamelCase ,param_name='''crop_size''' ) __lowercase = do_resize __lowercase = do_rescale __lowercase = do_normalize __lowercase = do_center_crop __lowercase = crop_size __lowercase = size __lowercase = resample __lowercase = rescale_factor __lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = PILImageResampling.BILINEAR ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> np.ndarray: '''simple docstring''' __lowercase = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: __lowercase = get_resize_output_image_size(_lowerCamelCase ,size=size['''shortest_edge'''] ,default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __lowercase = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(_lowerCamelCase ,size=_lowerCamelCase ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> np.ndarray: '''simple docstring''' __lowercase = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_lowerCamelCase ,size=(size['''height'''], size['''width''']) ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(_lowerCamelCase ,mean=_lowerCamelCase ,std=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(_lowerCamelCase ,param_name='''crop_size''' ,default_to_square=_lowerCamelCase ) __lowercase = resample if resample is not None else self.resample __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): __lowercase = [images] if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_lowerCamelCase ,size=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=_lowerCamelCase ,size=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_lowerCamelCase ,mean=_lowerCamelCase ,std=_lowerCamelCase ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _lowerCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ): __lowercase = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir('''fixtures''') class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = mock.Mock() __lowercase = 500 __lowercase = {} __lowercase = HTTPError __lowercase = {} # Download this model to make sure it's in the cache. __lowercase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' ,return_value=_lowerCamelCase ) as mock_head: __lowercase = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class __lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def _UpperCAmelCase (cls ) -> Optional[Any]: '''simple docstring''' __lowercase = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _UpperCAmelCase (cls ) -> Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' ,use_auth_token=self._token ) __lowercase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase ,getattr(_lowerCamelCase ,_lowerCamelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase ,repo_id='''test-feature-extractor''' ,push_to_hub=_lowerCamelCase ,use_auth_token=self._token ) __lowercase = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase ,getattr(_lowerCamelCase ,_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' ,use_auth_token=self._token ) __lowercase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase ,getattr(_lowerCamelCase ,_lowerCamelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase ,repo_id='''valid_org/test-feature-extractor-org''' ,push_to_hub=_lowerCamelCase ,use_auth_token=self._token ) __lowercase = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase ,getattr(_lowerCamelCase ,_lowerCamelCase ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __lowercase = CustomFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map ,{'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} ,) __lowercase = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" ,trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ ,'''CustomFeatureExtractor''' )
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): def get_matched_characters(lowerCamelCase_ : str , lowerCamelCase_ : str ) -> str: __lowercase = [] __lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowercase = int(max(0 , i - limit ) ) __lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase_ ) __lowercase = f"{_stra[0:_stra.index(lowerCamelCase_ )]} {_stra[_stra.index(lowerCamelCase_ ) + 1:]}" return "".join(lowerCamelCase_ ) # matching characters __lowercase = get_matched_characters(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = get_matched_characters(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase_ , lowerCamelCase_ ) if ca != ca] ) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(lowerCamelCase_ ) + match_count / len(lowerCamelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __lowercase : '''simple docstring''' pass
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' import random class __lowercase : '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> tuple[list[int], list[int]]: '''simple docstring''' __lowercase = [ord(_lowerCamelCase ) for i in text] __lowercase = [] __lowercase = [] for i in plain: __lowercase = random.randint(1 ,300 ) __lowercase = (i + k) * k cipher.append(_lowerCamelCase ) key.append(_lowerCamelCase ) return cipher, key @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = [] for i in range(len(_lowerCamelCase ) ): __lowercase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_lowerCamelCase ) ) return "".join(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def _lowerCAmelCase ( ): __lowercase = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] ): __lowercase = '''imagenet-1k-id2label.json''' __lowercase = 1_0_0_0 __lowercase = '''huggingface/label-files''' __lowercase = num_labels __lowercase = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) ) , '''r''' ) ) __lowercase = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = __lowercase = CvtConfig(num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __lowercase = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __lowercase = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __lowercase = [2, 2, 2_0] __lowercase = [3, 1_2, 1_6] __lowercase = [1_9_2, 7_6_8, 1_0_2_4] __lowercase = CvtForImageClassification(lowerCamelCase_ ) __lowercase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __lowercase = image_size __lowercase = torch.load(lowerCamelCase_ , map_location=torch.device('''cpu''' ) ) __lowercase = OrderedDict() __lowercase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __lowercase = list_of_state_dict + cls_token(lowerCamelCase_ ) __lowercase = list_of_state_dict + embeddings(lowerCamelCase_ ) for cnt in range(config.depth[idx] ): __lowercase = list_of_state_dict + attention(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = list_of_state_dict + final() for gg in list_of_state_dict: print(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): __lowercase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) image_processor.save_pretrained(lowerCamelCase_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github _SCREAMING_SNAKE_CASE = [ '''good first issue''', '''feature request''', '''wip''', ] def _lowerCAmelCase ( ): __lowercase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowercase = g.get_repo('''huggingface/accelerate''' ) __lowercase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowercase = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) __lowercase = comments[0] if len(lowerCamelCase_ ) > 0 else None __lowercase = dt.utcnow() __lowercase = (current_time - issue.updated_at).days __lowercase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[str] = ShapEPipeline a : str = ["prompt"] a : Tuple = ["prompt"] a : Optional[int] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] a : int = False @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return 8 @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModelWithProjection(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowercase = PriorTransformer(**_lowerCamelCase ) return model @property def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __lowercase = ShapERenderer(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.dummy_prior __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_renderer __lowercase = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1024 ,prediction_type='''sample''' ,use_karras_sigmas=_lowerCamelCase ,clip_sample=_lowerCamelCase ,clip_sample_range=1.0 ,) __lowercase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> Union[str, Any]: '''simple docstring''' if str(_lowerCamelCase ).startswith('''mps''' ): __lowercase = torch.manual_seed(_lowerCamelCase ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowercase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCamelCase ) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) __lowercase = output.images[0] __lowercase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> str: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = torch_device == '''cpu''' __lowercase = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=_lowerCamelCase ,relax_max_difference=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCamelCase ) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = 1 __lowercase = 2 __lowercase = self.get_dummy_inputs(_lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: __lowercase = batch_size * [inputs[key]] __lowercase = pipe(**_lowerCamelCase ,num_images_per_prompt=_lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) __lowercase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( '''a shark''' ,generator=_lowerCamelCase ,guidance_scale=1_5.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='''np''' ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCamelCase ,_lowerCamelCase )
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "camembert" def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,_lowerCamelCase=2 ,_lowerCamelCase="absolute" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = "instructblip_vision_model" def __init__(self ,_lowerCamelCase=1408 ,_lowerCamelCase=6144 ,_lowerCamelCase=39 ,_lowerCamelCase=16 ,_lowerCamelCase=224 ,_lowerCamelCase=14 ,_lowerCamelCase="gelu" ,_lowerCamelCase=1E-6 ,_lowerCamelCase=0.0 ,_lowerCamelCase=1E-1_0 ,_lowerCamelCase=True ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "instructblip_qformer" def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=0 ,_lowerCamelCase="absolute" ,_lowerCamelCase=2 ,_lowerCamelCase=1408 ,**_lowerCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": __lowercase = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[str] = "instructblip" a : str = True def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=32 ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: __lowercase = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: __lowercase = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __lowercase = InstructBlipVisionConfig(**_lowerCamelCase ) __lowercase = InstructBlipQFormerConfig(**_lowerCamelCase ) __lowercase = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __lowercase = CONFIG_MAPPING[text_model_type](**_lowerCamelCase ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.0_2 @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): assert x is not None assert y is not None __lowercase = len(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) # declaring the array for storing the dp values __lowercase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowercase = 1 if x[i - 1] == y[j - 1] else 0 __lowercase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowercase = '''''' __lowercase , __lowercase = m, n while i > 0 and j > 0: __lowercase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowercase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _SCREAMING_SNAKE_CASE = '''AGGTAB''' _SCREAMING_SNAKE_CASE = '''GXTXAYB''' _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = '''GTAB''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__() __lowercase = value_function __lowercase = unet __lowercase = scheduler __lowercase = env __lowercase = env.get_dataset() __lowercase = {} for key in self.data.keys(): try: __lowercase = self.data[key].mean() except: # noqa: E722 pass __lowercase = {} for key in self.data.keys(): try: __lowercase = self.data[key].std() except: # noqa: E722 pass __lowercase = env.observation_space.shape[0] __lowercase = env.action_space.shape[0] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' if type(_lowerCamelCase ) is dict: return {k: self.to_torch(_lowerCamelCase ) for k, v in x_in.items()} elif torch.is_tensor(_lowerCamelCase ): return x_in.to(self.unet.device ) return torch.tensor(_lowerCamelCase ,device=self.unet.device ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' for key, val in cond.items(): __lowercase = val.clone() return x_in def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = x.shape[0] __lowercase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __lowercase = torch.full((batch_size,) ,_lowerCamelCase ,device=self.unet.device ,dtype=torch.long ) for _ in range(_lowerCamelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __lowercase = self.value_function(x.permute(0 ,2 ,1 ) ,_lowerCamelCase ).sample __lowercase = torch.autograd.grad([y.sum()] ,[x] )[0] __lowercase = self.scheduler._get_variance(_lowerCamelCase ) __lowercase = torch.exp(0.5 * posterior_variance ) __lowercase = model_std * grad __lowercase = 0 __lowercase = x.detach() __lowercase = x + scale * grad __lowercase = self.reset_xa(_lowerCamelCase ,_lowerCamelCase ,self.action_dim ) __lowercase = self.unet(x.permute(0 ,2 ,1 ) ,_lowerCamelCase ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg __lowercase = self.scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,predict_epsilon=_lowerCamelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) __lowercase = self.reset_xa(_lowerCamelCase ,_lowerCamelCase ,self.action_dim ) __lowercase = self.to_torch(_lowerCamelCase ) return x, y def __call__(self ,_lowerCamelCase ,_lowerCamelCase=64 ,_lowerCamelCase=32 ,_lowerCamelCase=2 ,_lowerCamelCase=0.1 ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.normalize(_lowerCamelCase ,'''observations''' ) __lowercase = obs[None].repeat(_lowerCamelCase ,axis=0 ) __lowercase = {0: self.to_torch(_lowerCamelCase )} __lowercase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __lowercase = randn_tensor(_lowerCamelCase ,device=self.unet.device ) __lowercase = self.reset_xa(_lowerCamelCase ,_lowerCamelCase ,self.action_dim ) __lowercase = self.to_torch(_lowerCamelCase ) # run the diffusion process __lowercase , __lowercase = self.run_diffusion(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # sort output trajectories by value __lowercase = y.argsort(0 ,descending=_lowerCamelCase ).squeeze() __lowercase = x[sorted_idx] __lowercase = sorted_values[:, :, : self.action_dim] __lowercase = actions.detach().cpu().numpy() __lowercase = self.de_normalize(_lowerCamelCase ,key='''actions''' ) # select the action with the highest value if y is not None: __lowercase = 0 else: # if we didn't run value guiding, select a random action __lowercase = np.random.randint(0 ,_lowerCamelCase ) __lowercase = denorm_actions[selected_index, 0] return denorm_actions
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' from __future__ import annotations _SCREAMING_SNAKE_CASE = '''Muhammad Umer Farooq''' _SCREAMING_SNAKE_CASE = '''MIT''' _SCREAMING_SNAKE_CASE = '''1.0.0''' _SCREAMING_SNAKE_CASE = '''Muhammad Umer Farooq''' _SCREAMING_SNAKE_CASE = '''contact@muhammadumerfarooq.me''' _SCREAMING_SNAKE_CASE = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' super().__init__() __lowercase = [] __lowercase = domain def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowercase = parse.urljoin(self.domain ,_lowerCamelCase ) self.urls.append(_lowerCamelCase ) def _lowerCAmelCase ( lowerCamelCase_ : str ): return ".".join(get_sub_domain_name(lowerCamelCase_ ).split('''.''' )[-2:] ) def _lowerCAmelCase ( lowerCamelCase_ : str ): return parse.urlparse(lowerCamelCase_ ).netloc def _lowerCAmelCase ( lowerCamelCase_ : str = "https://github.com" ): __lowercase = get_domain_name(lowerCamelCase_ ) # Initialize the parser __lowercase = Parser(lowerCamelCase_ ) try: # Open URL __lowercase = requests.get(lowerCamelCase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowercase = requests.get(lowerCamelCase_ ) # Get the valid email. __lowercase = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowerCamelCase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = emails_from_url('''https://github.com''') print(f'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = "altclip_text_model" def __init__(self ,_lowerCamelCase=250002 ,_lowerCamelCase=1024 ,_lowerCamelCase=24 ,_lowerCamelCase=16 ,_lowerCamelCase=4096 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=514 ,_lowerCamelCase=1 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-0_5 ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,_lowerCamelCase=2 ,_lowerCamelCase="absolute" ,_lowerCamelCase=True ,_lowerCamelCase=768 ,**_lowerCamelCase ,) -> Any: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = project_dim class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = "altclip_vision_model" def __init__(self ,_lowerCamelCase=768 ,_lowerCamelCase=3072 ,_lowerCamelCase=512 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3 ,_lowerCamelCase=224 ,_lowerCamelCase=32 ,_lowerCamelCase="quick_gelu" ,_lowerCamelCase=1E-5 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1.0 ,**_lowerCamelCase ,) -> str: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = projection_dim __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = initializer_factor __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = "altclip" a : Union[str, Any] = True def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=768 ,_lowerCamelCase=2.6_5_9_2 ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = kwargs.pop('''text_config_dict''' ,_lowerCamelCase ) __lowercase = kwargs.pop('''vision_config_dict''' ,_lowerCamelCase ) super().__init__(**_lowerCamelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowercase = {} # This is the complete result when using `text_config_dict`. __lowercase = AltCLIPTextConfig(**_lowerCamelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowercase = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowercase = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(_lowerCamelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowercase = {} # This is the complete result when using `vision_config_dict`. __lowercase = AltCLIPVisionConfig(**_lowerCamelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowercase = { str(_lowerCamelCase ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowercase = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowercase = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(_lowerCamelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowercase = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: __lowercase = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) __lowercase = AltCLIPTextConfig(**_lowerCamelCase ) __lowercase = AltCLIPVisionConfig(**_lowerCamelCase ) __lowercase = projection_dim __lowercase = logit_scale_init_value __lowercase = 1.0 @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _SCREAMING_SNAKE_CASE = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = VOCAB_FILES_NAMES a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = VOCAB_FILES_NAMES a : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _SCREAMING_SNAKE_CASE = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _SCREAMING_SNAKE_CASE = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(lowerCAmelCase__ ) class __lowercase : '''simple docstring''' def __call__(self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = False ,_lowerCamelCase = False ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( _lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=_lowerCamelCase ,return_tensors=_lowerCamelCase ,return_attention_mask=_lowerCamelCase ,**_lowerCamelCase ,) elif titles is None or texts is None: __lowercase = titles if texts is None else texts return super().__call__( _lowerCamelCase ,_lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,max_length=_lowerCamelCase ,return_tensors=_lowerCamelCase ,return_attention_mask=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = titles if not isinstance(_lowerCamelCase ,_lowerCamelCase ) else [titles] __lowercase = texts if not isinstance(_lowerCamelCase ,_lowerCamelCase ) else [texts] __lowercase = len(_lowerCamelCase ) __lowercase = questions if not isinstance(_lowerCamelCase ,_lowerCamelCase ) else [questions] * n_passages if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts." ) __lowercase = super().__call__(_lowerCamelCase ,_lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase )['''input_ids'''] __lowercase = super().__call__(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ,padding=_lowerCamelCase ,truncation=_lowerCamelCase )['''input_ids'''] __lowercase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase ,_lowerCamelCase ) ] } if return_attention_mask is not False: __lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase = attention_mask return self.pad(_lowerCamelCase ,padding=_lowerCamelCase ,max_length=_lowerCamelCase ,return_tensors=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 16 ,_lowerCamelCase = 64 ,_lowerCamelCase = 4 ,) -> List[DPRSpanPrediction]: '''simple docstring''' __lowercase = reader_input['''input_ids'''] __lowercase , __lowercase , __lowercase = reader_output[:3] __lowercase = len(_lowerCamelCase ) __lowercase = sorted(range(_lowerCamelCase ) ,reverse=_lowerCamelCase ,key=relevance_logits.__getitem__ ) __lowercase = [] for doc_id in sorted_docs: __lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase = sequence_ids.index(self.pad_token_id ) else: __lowercase = len(_lowerCamelCase ) __lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_lowerCamelCase ,top_spans=_lowerCamelCase ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_lowerCamelCase ,start_index=_lowerCamelCase ,end_index=_lowerCamelCase ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> List[DPRSpanPrediction]: '''simple docstring''' __lowercase = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase = sorted(_lowerCamelCase ,key=lambda _lowerCamelCase : x[1] ,reverse=_lowerCamelCase ) __lowercase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) __lowercase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCAmelCase__ ) class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' a : Tuple = VOCAB_FILES_NAMES a : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION a : int = ["input_ids", "attention_mask"]
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _SCREAMING_SNAKE_CASE = '''src/transformers''' _SCREAMING_SNAKE_CASE = '''docs/source/en''' _SCREAMING_SNAKE_CASE = '''.''' def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int ): with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowercase = f.readlines() # Find the start prompt. __lowercase = 0 while not lines[start_index].startswith(lowerCamelCase_ ): start_index += 1 start_index += 1 __lowercase = start_index while not lines[end_index].startswith(lowerCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _SCREAMING_SNAKE_CASE = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. _SCREAMING_SNAKE_CASE = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _SCREAMING_SNAKE_CASE = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _SCREAMING_SNAKE_CASE = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , lowerCamelCase_ ) return [m.group(0 ) for m in matches] def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ): __lowercase = 2 if text == '''✅''' or text == '''❌''' else len(lowerCamelCase_ ) __lowercase = (width - text_length) // 2 __lowercase = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowerCAmelCase ( ): __lowercase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowercase = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __lowercase = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __lowercase = collections.defaultdict(lowerCamelCase_ ) __lowercase = collections.defaultdict(lowerCamelCase_ ) __lowercase = collections.defaultdict(lowerCamelCase_ ) __lowercase = collections.defaultdict(lowerCamelCase_ ) __lowercase = collections.defaultdict(lowerCamelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase_ ): __lowercase = None if attr_name.endswith('''Tokenizer''' ): __lowercase = slow_tokenizers __lowercase = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): __lowercase = fast_tokenizers __lowercase = attr_name[:-1_3] elif _re_tf_models.match(lowerCamelCase_ ) is not None: __lowercase = tf_models __lowercase = _re_tf_models.match(lowerCamelCase_ ).groups()[0] elif _re_flax_models.match(lowerCamelCase_ ) is not None: __lowercase = flax_models __lowercase = _re_flax_models.match(lowerCamelCase_ ).groups()[0] elif _re_pt_models.match(lowerCamelCase_ ) is not None: __lowercase = pt_models __lowercase = _re_pt_models.match(lowerCamelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): __lowercase = True break # Try again after removing the last word in the name __lowercase = ''''''.join(camel_case_split(lowerCamelCase_ )[:-1] ) # Let's build that table! __lowercase = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __lowercase = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __lowercase = [len(lowerCamelCase_ ) + 2 for c in columns] __lowercase = max([len(lowerCamelCase_ ) for name in model_names] ) + 2 # Build the table per se __lowercase = '''|''' + '''|'''.join([_center_text(lowerCamelCase_ , lowerCamelCase_ ) for c, w in zip(lowerCamelCase_ , lowerCamelCase_ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" __lowercase = {True: '''✅''', False: '''❌'''} for name in model_names: __lowercase = model_name_to_prefix[name] __lowercase = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase_ , lowerCamelCase_ ) for l, w in zip(lowerCamelCase_ , lowerCamelCase_ )] ) + "|\n" return table def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any]=False ): __lowercase , __lowercase , __lowercase , __lowercase = _find_text_in_file( filename=os.path.join(lowerCamelCase_ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) __lowercase = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase_ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _SCREAMING_SNAKE_CASE = parser.parse_args() check_model_table(args.fix_and_overwrite)
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _SCREAMING_SNAKE_CASE = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = True ,) -> Optional[int]: '''simple docstring''' __lowercase = [file for file in os.listdir(_lowerCamelCase ) if os.path.isfile(os.path.join(_lowerCamelCase ,_lowerCamelCase ) )] if identifier is not None: __lowercase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCamelCase ,_lowerCamelCase ): for n_ in n_identifier: __lowercase = [file for file in files if n_ not in file] else: __lowercase = [file for file in files if n_identifier not in file] __lowercase = ignore_files or [] ignore_files.append('''__init__.py''' ) __lowercase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' ,_lowerCamelCase ) if only_modules: __lowercase = file.split('''.''' )[0] try: __lowercase = getattr(_lowerCamelCase ,_lowerCamelCase ) __lowercase = doctest.DocTestSuite(_lowerCamelCase ) __lowercase = unittest.TextTestRunner().run(_lowerCamelCase ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(f"{module_identifier} is not a module." ) else: __lowercase = doctest.testfile(str('''..''' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = '''modeling''' __lowercase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(_lowerCamelCase ,identifier=_lowerCamelCase ,ignore_files=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = '''tokenization''' self.analyze_directory(_lowerCamelCase ,identifier=_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = '''configuration''' self.analyze_directory(_lowerCamelCase ,identifier=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = Path('''src/transformers''' ) __lowercase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(_lowerCamelCase ,n_identifier=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = Path('''docs/source''' ) __lowercase = ['''favicon.ico'''] self.analyze_directory(_lowerCamelCase ,ignore_files=_lowerCamelCase ,only_modules=_lowerCamelCase )
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowercase ( pl.LightningModule ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size ,self.num_labels ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : str ): # load longformer model from model identifier __lowercase = LongformerModel.from_pretrained(lowerCamelCase_ ) __lowercase = LightningModel(lowerCamelCase_ ) __lowercase = torch.load(lowerCamelCase_ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase_ ) print(f"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _SCREAMING_SNAKE_CASE = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _SCREAMING_SNAKE_CASE = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''distilbert-base-uncased''': 5_1_2, '''distilbert-base-uncased-distilled-squad''': 5_1_2, '''distilbert-base-cased''': 5_1_2, '''distilbert-base-cased-distilled-squad''': 5_1_2, '''distilbert-base-german-cased''': 5_1_2, '''distilbert-base-multilingual-cased''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict = PRETRAINED_INIT_CONFIGURATION a : Optional[int] = ["input_ids", "attention_mask"] a : Tuple = DistilBertTokenizer def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase="[UNK]" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[PAD]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> str: '''simple docstring''' super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,do_lower_case=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,tokenize_chinese_chars=_lowerCamelCase ,strip_accents=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_lowerCamelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCamelCase ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCamelCase ) __lowercase = do_lower_case def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> int: '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase )
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = {f'''funnel-transformer/{name}''': 5_1_2 for name in _model_names} _SCREAMING_SNAKE_CASE = {f'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : str = PRETRAINED_INIT_CONFIGURATION a : List[Any] = FunnelTokenizer a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : int = 2 def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<sep>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase="<cls>" ,_lowerCamelCase="<mask>" ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=None ,_lowerCamelCase="##" ,**_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,do_lower_case=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,clean_text=_lowerCamelCase ,tokenize_chinese_chars=_lowerCamelCase ,strip_accents=_lowerCamelCase ,wordpieces_prefix=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_lowerCamelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCamelCase ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCamelCase ) __lowercase = do_lower_case def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> int: '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase )
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = "git_vision_model" def __init__(self ,_lowerCamelCase=768 ,_lowerCamelCase=3072 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3 ,_lowerCamelCase=224 ,_lowerCamelCase=16 ,_lowerCamelCase="quick_gelu" ,_lowerCamelCase=1E-5 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "git" def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=6 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=1024 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=0 ,_lowerCamelCase="absolute" ,_lowerCamelCase=True ,_lowerCamelCase=False ,_lowerCamelCase=101 ,_lowerCamelCase=102 ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' super().__init__(bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,pad_token_id=_lowerCamelCase ,**_lowerCamelCase ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) __lowercase = GitVisionConfig(**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = tie_word_embeddings __lowercase = num_image_with_embedding __lowercase = bos_token_id __lowercase = eos_token_id def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): '''simple docstring''' a : str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : Dict = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = TextaTextGenerationPipeline(model=_lowerCamelCase ,tokenizer=_lowerCamelCase ) return generator, ["Something to write", "Something else"] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = generator('''Something there''' ) self.assertEqual(_lowerCamelCase ,[{'''generated_text''': ANY(_lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __lowercase = generator(['''This is great !''', '''Something else'''] ,num_return_sequences=2 ,do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase ,[ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] ,) __lowercase = generator( ['''This is great !''', '''Something else'''] ,num_return_sequences=2 ,batch_size=2 ,do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase ,[ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] ,) with self.assertRaises(_lowerCamelCase ): generator(4 ) @require_torch def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = pipeline('''text2text-generation''' ,model='''patrickvonplaten/t5-tiny-random''' ,framework='''pt''' ) # do_sample=False necessary for reproducibility __lowercase = generator('''Something there''' ,do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,[{'''generated_text''': ''''''}] ) __lowercase = 3 __lowercase = generator( '''Something there''' ,num_return_sequences=_lowerCamelCase ,num_beams=_lowerCamelCase ,) __lowercase = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = generator('''This is a test''' ,do_sample=_lowerCamelCase ,num_return_sequences=2 ,return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase ,[ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] ,) __lowercase = generator.model.config.eos_token_id __lowercase = '''<pad>''' __lowercase = generator( ['''This is a test''', '''This is a second test'''] ,do_sample=_lowerCamelCase ,num_return_sequences=2 ,batch_size=2 ,return_tensors=_lowerCamelCase ,) self.assertEqual( _lowerCamelCase ,[ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] ,) @require_tf def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = pipeline('''text2text-generation''' ,model='''patrickvonplaten/t5-tiny-random''' ,framework='''tf''' ) # do_sample=False necessary for reproducibility __lowercase = generator('''Something there''' ,do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,[{'''generated_text''': ''''''}] )
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = "SpeechT5FeatureExtractor" a : Dict = "SpeechT5Tokenizer" def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' super().__init__(_lowerCamelCase ,_lowerCamelCase ) def __call__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = kwargs.pop('''audio''' ,_lowerCamelCase ) __lowercase = kwargs.pop('''text''' ,_lowerCamelCase ) __lowercase = kwargs.pop('''text_target''' ,_lowerCamelCase ) __lowercase = kwargs.pop('''audio_target''' ,_lowerCamelCase ) __lowercase = kwargs.pop('''sampling_rate''' ,_lowerCamelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __lowercase = self.feature_extractor(_lowerCamelCase ,*_lowerCamelCase ,sampling_rate=_lowerCamelCase ,**_lowerCamelCase ) elif text is not None: __lowercase = self.tokenizer(_lowerCamelCase ,**_lowerCamelCase ) else: __lowercase = None if audio_target is not None: __lowercase = self.feature_extractor(audio_target=_lowerCamelCase ,*_lowerCamelCase ,sampling_rate=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = targets['''input_values'''] elif text_target is not None: __lowercase = self.tokenizer(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = targets['''input_ids'''] else: __lowercase = None if inputs is None: return targets if targets is not None: __lowercase = labels __lowercase = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __lowercase = decoder_attention_mask return inputs def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = kwargs.pop('''input_values''' ,_lowerCamelCase ) __lowercase = kwargs.pop('''input_ids''' ,_lowerCamelCase ) __lowercase = kwargs.pop('''labels''' ,_lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __lowercase = self.feature_extractor.pad(_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) elif input_ids is not None: __lowercase = self.tokenizer.pad(_lowerCamelCase ,**_lowerCamelCase ) else: __lowercase = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCamelCase ,_lowerCamelCase ) and "input_ids" in labels[0]): __lowercase = self.tokenizer.pad(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = targets['''input_ids'''] else: __lowercase = self.feature_extractor.feature_size __lowercase = self.feature_extractor.num_mel_bins __lowercase = self.feature_extractor.pad(_lowerCamelCase ,*_lowerCamelCase ,**_lowerCamelCase ) __lowercase = feature_size_hack __lowercase = targets['''input_values'''] else: __lowercase = None if inputs is None: return targets if targets is not None: __lowercase = labels __lowercase = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __lowercase = decoder_attention_mask return inputs def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*_lowerCamelCase ,**_lowerCamelCase )
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = int(lowerCamelCase_ ) if n_element < 1: __lowercase = ValueError('''a should be a positive number''' ) raise my_error __lowercase = [1] __lowercase , __lowercase , __lowercase = (0, 0, 0) __lowercase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') _SCREAMING_SNAKE_CASE = hamming(int(n)) print('''-----------------------------------------------------''') print(f'''The list with nth numbers is: {hamming_numbers}''') print('''-----------------------------------------------------''')
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowercase = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" __lowercase = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" __lowercase = max(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ) , b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase_ , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase_ , filename='''pytorch_model.bin''' ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): __lowercase = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = int(number**0.5 ) return number == sq * sq def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __lowercase = x_den * y_den * z_den __lowercase = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def _lowerCAmelCase ( lowerCamelCase_ : int = 3_5 ): __lowercase = set() __lowercase = 42 __lowercase = Fraction(0 ) __lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __lowercase = x_num * y_den + x_den * y_num __lowercase = x_den * y_den __lowercase = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 __lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __lowercase = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): __lowercase = int(sqrt(lowerCamelCase_ ) ) __lowercase = int(sqrt(lowerCamelCase_ ) ) __lowercase = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 __lowercase = x_num * y_num __lowercase = x_den * y_num + x_num * y_den __lowercase = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 __lowercase = x_num * x_num * y_num * y_num __lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): __lowercase = int(sqrt(lowerCamelCase_ ) ) __lowercase = int(sqrt(lowerCamelCase_ ) ) __lowercase = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = "convbert" def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,_lowerCamelCase=2 ,_lowerCamelCase=768 ,_lowerCamelCase=2 ,_lowerCamelCase=9 ,_lowerCamelCase=1 ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = embedding_size __lowercase = head_ratio __lowercase = conv_kernel_size __lowercase = num_groups __lowercase = classifier_dropout class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' from __future__ import annotations _SCREAMING_SNAKE_CASE = list[tuple[int, int]] _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = abs(self.pos_x - self.goal_x ) __lowercase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __lowercase = True return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> Path: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path if __name__ == "__main__": _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') _SCREAMING_SNAKE_CASE = GreedyBestFirst(init, goal) _SCREAMING_SNAKE_CASE = greedy_bf.search() if path: for pos_x, pos_y in path: _SCREAMING_SNAKE_CASE = 2 for elem in grid: print(elem)
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase ( ): __lowercase = HfArgumentParser(lowerCamelCase_ ) __lowercase = parser.parse_args_into_dataclasses()[0] __lowercase = TensorFlowBenchmark(args=lowerCamelCase_ ) try: __lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowercase = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __lowercase = ''' '''.join(str(lowerCamelCase_ ).split(''' ''' )[:-1] ) __lowercase = '''''' __lowercase = eval(str(lowerCamelCase_ ).split(''' ''' )[-1] ) __lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: __lowercase = full_error_msg + begin_error_msg + str(lowerCamelCase_ ) raise ValueError(lowerCamelCase_ ) benchmark.run() if __name__ == "__main__": main()
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[str] = "owlvit_text_model" def __init__(self ,_lowerCamelCase=49408 ,_lowerCamelCase=512 ,_lowerCamelCase=2048 ,_lowerCamelCase=12 ,_lowerCamelCase=8 ,_lowerCamelCase=16 ,_lowerCamelCase="quick_gelu" ,_lowerCamelCase=1E-5 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1.0 ,_lowerCamelCase=0 ,_lowerCamelCase=49406 ,_lowerCamelCase=49407 ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = max_position_embeddings __lowercase = hidden_act __lowercase = layer_norm_eps __lowercase = attention_dropout __lowercase = initializer_range __lowercase = initializer_factor @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = "owlvit_vision_model" def __init__(self ,_lowerCamelCase=768 ,_lowerCamelCase=3072 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3 ,_lowerCamelCase=768 ,_lowerCamelCase=32 ,_lowerCamelCase="quick_gelu" ,_lowerCamelCase=1E-5 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1.0 ,**_lowerCamelCase ,) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = num_channels __lowercase = image_size __lowercase = patch_size __lowercase = hidden_act __lowercase = layer_norm_eps __lowercase = attention_dropout __lowercase = initializer_range __lowercase = initializer_factor @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = "owlvit" a : str = True def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=512 ,_lowerCamelCase=2.6_5_9_2 ,_lowerCamelCase=True ,**_lowerCamelCase ,) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) if text_config is None: __lowercase = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __lowercase = OwlViTTextConfig(**_lowerCamelCase ) __lowercase = OwlViTVisionConfig(**_lowerCamelCase ) __lowercase = projection_dim __lowercase = logit_scale_init_value __lowercase = return_dict __lowercase = 1.0 @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,**_lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCamelCase ) __lowercase , __lowercase = cls.get_config_dict(_lowerCamelCase ,**_lowerCamelCase ) if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = {} __lowercase = text_config __lowercase = vision_config return cls.from_dict(_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def _UpperCAmelCase (self ) -> float: '''simple docstring''' return 1E-4 def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = -1 ,_lowerCamelCase = -1 ,_lowerCamelCase = None ,) -> Mapping[str, Any]: '''simple docstring''' __lowercase = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_lowerCamelCase ,seq_length=_lowerCamelCase ,framework=_lowerCamelCase ) __lowercase = super().generate_dummy_inputs( processor.image_processor ,batch_size=_lowerCamelCase ,framework=_lowerCamelCase ) return {**text_input_dict, **image_input_dict} @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 14
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : str = AutoencoderKL a : Dict = "sample" a : List[str] = 1e-2 @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = 4 __lowercase = 3 __lowercase = (32, 32) __lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) return {"sample": image} @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' return (3, 32, 32) @property def _UpperCAmelCase (self ) -> Any: '''simple docstring''' return (3, 32, 32) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __lowercase = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' ,'''Gradient checkpointing skipped on MPS''' ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.model_class(**_lowerCamelCase ) model.to(_lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training __lowercase = model(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __lowercase = torch.randn_like(_lowerCamelCase ) __lowercase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __lowercase = self.model_class(**_lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __lowercase = model_a(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __lowercase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __lowercase = dict(model.named_parameters() ) __lowercase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5E-5 ) ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase , __lowercase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ,output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(_lowerCamelCase ) __lowercase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __lowercase = model.to(_lowerCamelCase ) model.eval() if torch_device == "mps": __lowercase = torch.manual_seed(0 ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) __lowercase = image.to(_lowerCamelCase ) with torch.no_grad(): __lowercase = model(_lowerCamelCase ,sample_posterior=_lowerCamelCase ,generator=_lowerCamelCase ).sample __lowercase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __lowercase = torch.tensor( [ -4.0_0_7_8E-0_1, -3.8_3_2_3E-0_4, -1.2_6_8_1E-0_1, -1.1_4_6_2E-0_1, 2.0_0_9_5E-0_1, 1.0_8_9_3E-0_1, -8.8_2_4_7E-0_2, -3.0_3_6_1E-0_1, -9.8_6_4_4E-0_3, ] ) elif torch_device == "cpu": __lowercase = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __lowercase = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(_lowerCamelCase ,_lowerCamelCase ,rtol=1E-2 ) ) @slow class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCamelCase ) for s in shape] )}.npy" def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ,_lowerCamelCase=0 ,_lowerCamelCase=(4, 3, 512, 512) ,_lowerCamelCase=False ) -> str: '''simple docstring''' __lowercase = torch.floataa if fpaa else torch.floataa __lowercase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCamelCase ,_lowerCamelCase ) ) ).to(_lowerCamelCase ).to(_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase="CompVis/stable-diffusion-v1-4" ,_lowerCamelCase=False ) -> List[str]: '''simple docstring''' __lowercase = '''fp16''' if fpaa else None __lowercase = torch.floataa if fpaa else torch.floataa __lowercase = AutoencoderKL.from_pretrained( _lowerCamelCase ,subfolder='''vae''' ,torch_dtype=_lowerCamelCase ,revision=_lowerCamelCase ,) model.to(_lowerCamelCase ).eval() return model def _UpperCAmelCase (self ,_lowerCamelCase=0 ) -> Optional[Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_lowerCamelCase ) return torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = self.get_sd_vae_model() __lowercase = self.get_sd_image(_lowerCamelCase ) __lowercase = self.get_generator(_lowerCamelCase ) with torch.no_grad(): __lowercase = model(_lowerCamelCase ,generator=_lowerCamelCase ,sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape __lowercase = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowercase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_sd_vae_model(fpaa=_lowerCamelCase ) __lowercase = self.get_sd_image(_lowerCamelCase ,fpaa=_lowerCamelCase ) __lowercase = self.get_generator(_lowerCamelCase ) with torch.no_grad(): __lowercase = model(_lowerCamelCase ,generator=_lowerCamelCase ,sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape __lowercase = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowercase = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.get_sd_vae_model() __lowercase = self.get_sd_image(_lowerCamelCase ) with torch.no_grad(): __lowercase = model(_lowerCamelCase ).sample assert sample.shape == image.shape __lowercase = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowercase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = self.get_sd_vae_model() __lowercase = self.get_sd_image(_lowerCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowercase = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __lowercase = sample[-1, -2:, :2, -2:].flatten().cpu() __lowercase = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = self.get_sd_vae_model(fpaa=_lowerCamelCase ) __lowercase = self.get_sd_image(_lowerCamelCase ,shape=(3, 4, 64, 64) ,fpaa=_lowerCamelCase ) with torch.no_grad(): __lowercase = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] __lowercase = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowercase = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = self.get_sd_vae_model(fpaa=_lowerCamelCase ) __lowercase = self.get_sd_image(_lowerCamelCase ,shape=(3, 4, 64, 64) ,fpaa=_lowerCamelCase ) with torch.no_grad(): __lowercase = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowercase = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='''xformers is not required when using PyTorch 2.0.''' ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.get_sd_vae_model() __lowercase = self.get_sd_image(_lowerCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowercase = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowercase = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_sd_vae_model() __lowercase = self.get_sd_image(_lowerCamelCase ) __lowercase = self.get_generator(_lowerCamelCase ) with torch.no_grad(): __lowercase = model.encode(_lowerCamelCase ).latent_dist __lowercase = dist.sample(generator=_lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __lowercase = sample[0, -1, -3:, -3:].flatten().cpu() __lowercase = torch.tensor(_lowerCamelCase ) __lowercase = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(_lowerCamelCase ,_lowerCamelCase ,atol=_lowerCamelCase )
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' from collections.abc import Sequence def _lowerCAmelCase ( lowerCamelCase_ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) __lowercase = nums[0] for i in range(1 , len(lowerCamelCase_ ) ): __lowercase = nums[i] __lowercase = max(lowerCamelCase_ , ans + num , lowerCamelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _SCREAMING_SNAKE_CASE = int(input('''Enter number of elements : ''').strip()) _SCREAMING_SNAKE_CASE = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int = 0 , lowerCamelCase_ : int = 0 ): __lowercase = right or len(lowerCamelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCamelCase_ , lowerCamelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _SCREAMING_SNAKE_CASE = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _SCREAMING_SNAKE_CASE = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] ): __lowercase = [] for i in range(len(lowerCamelCase_ ) ): __lowercase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowercase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowercase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase_ ) return next_generation def _lowerCAmelCase ( lowerCamelCase_ : list[list[int]] , lowerCamelCase_ : int ): __lowercase = [] for _ in range(lowerCamelCase_ ): # Create output image __lowercase = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase_ )) ) __lowercase = img.load() # Save cells to image for x in range(len(lowerCamelCase_ ) ): for y in range(len(cells[0] ) ): __lowercase = 2_5_5 - cells[y][x] * 2_5_5 __lowercase = (colour, colour, colour) # Save image images.append(lowerCamelCase_ ) __lowercase = new_generation(lowerCamelCase_ ) return images if __name__ == "__main__": _SCREAMING_SNAKE_CASE = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE = { '''unc-nlp/lxmert-base-uncased''': 5_1_2, } _SCREAMING_SNAKE_CASE = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = VOCAB_FILES_NAMES a : List[str] = PRETRAINED_VOCAB_FILES_MAP a : Any = PRETRAINED_INIT_CONFIGURATION a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[int] = LxmertTokenizer def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase="[UNK]" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[PAD]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> Dict: '''simple docstring''' super().__init__( _lowerCamelCase ,tokenizer_file=_lowerCamelCase ,do_lower_case=_lowerCamelCase ,unk_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,tokenize_chinese_chars=_lowerCamelCase ,strip_accents=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_lowerCamelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCamelCase ,normalizer_state.pop('''type''' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCamelCase ) __lowercase = do_lower_case def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase )
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _SCREAMING_SNAKE_CASE = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _SCREAMING_SNAKE_CASE = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = "xlm" a : Tuple = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__(self ,_lowerCamelCase=30145 ,_lowerCamelCase=2048 ,_lowerCamelCase=12 ,_lowerCamelCase=16 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=True ,_lowerCamelCase=False ,_lowerCamelCase=False ,_lowerCamelCase=False ,_lowerCamelCase=1 ,_lowerCamelCase=True ,_lowerCamelCase=512 ,_lowerCamelCase=2048**-0.5 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=0 ,_lowerCamelCase=1 ,_lowerCamelCase=2 ,_lowerCamelCase=3 ,_lowerCamelCase=5 ,_lowerCamelCase=True ,_lowerCamelCase="first" ,_lowerCamelCase=True ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase=0.1 ,_lowerCamelCase=5 ,_lowerCamelCase=5 ,_lowerCamelCase=0 ,_lowerCamelCase=0 ,_lowerCamelCase=2 ,_lowerCamelCase=0 ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' __lowercase = vocab_size __lowercase = emb_dim __lowercase = n_layers __lowercase = n_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = gelu_activation __lowercase = sinusoidal_embeddings __lowercase = causal __lowercase = asm __lowercase = n_langs __lowercase = use_lang_emb __lowercase = layer_norm_eps __lowercase = bos_index __lowercase = eos_index __lowercase = pad_index __lowercase = unk_index __lowercase = mask_index __lowercase = is_encoder __lowercase = max_position_embeddings __lowercase = embed_init_std __lowercase = init_std __lowercase = summary_type __lowercase = summary_use_proj __lowercase = summary_activation __lowercase = summary_proj_to_labels __lowercase = summary_first_dropout __lowercase = start_n_top __lowercase = end_n_top __lowercase = mask_token_id __lowercase = lang_id if "n_words" in kwargs: __lowercase = kwargs['''n_words'''] super().__init__(pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,**_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''ViTFeatureExtractor'''] _SCREAMING_SNAKE_CASE = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "timesformer" def __init__(self ,_lowerCamelCase=224 ,_lowerCamelCase=16 ,_lowerCamelCase=3 ,_lowerCamelCase=8 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-6 ,_lowerCamelCase=True ,_lowerCamelCase="divided_space_time" ,_lowerCamelCase=0 ,**_lowerCamelCase ,) -> List[str]: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = num_frames __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = qkv_bias __lowercase = attention_type __lowercase = drop_path_rate
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a : Optional[int] = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : bool = field( default=lowerCAmelCase__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' if self.train_file is not None: __lowercase = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowercase = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any ): with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: __lowercase = [json.loads(lowerCamelCase_ ) for line in f.read().splitlines() if (len(lowerCamelCase_ ) > 0 and not line.isspace())] assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) __lowercase = {c: dataset[c] for c in dataset.column_names} __lowercase = refs return Dataset.from_dict(lowerCamelCase_ ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[:{data_args.validation_split_percentage}%]" , ) __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[{data_args.validation_split_percentage}%:]" , ) else: __lowercase = {} if data_args.train_file is not None: __lowercase = data_args.train_file if data_args.validation_file is not None: __lowercase = data_args.validation_file __lowercase = data_args.train_file.split('''.''' )[-1] if extension == "txt": __lowercase = '''text''' __lowercase = load_dataset(lowerCamelCase_ , data_files=lowerCamelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase_ ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) __lowercase = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase_ ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: __lowercase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelForMaskedLM.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowercase = datasets['''train'''].column_names else: __lowercase = datasets['''validation'''].column_names __lowercase = '''text''' if '''text''' in column_names else column_names[0] __lowercase = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase_ : int ): # Remove empty lines __lowercase = [line for line in examples['''text'''] if len(lowerCamelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=data_args.max_seq_length ) __lowercase = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowercase = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowercase = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowercase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowercase = False # Data collator # This one will take care of randomly masking the tokens. __lowercase = DataCollatorForWholeWordMask(tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowercase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowercase = model_args.model_name_or_path else: __lowercase = None __lowercase = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowercase = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = perplexity __lowercase = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) return results def _lowerCAmelCase ( lowerCamelCase_ : Any ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline a : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] a : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] a : List[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Optional[int] = False @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' return self.time_input_dim @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 100 @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __lowercase = UNetaDConditionModel(**_lowerCamelCase ) return model @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.dummy_unet __lowercase = self.dummy_movq __lowercase = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __lowercase = DDIMScheduler(**_lowerCamelCase ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> Any: '''simple docstring''' __lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image __lowercase = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 )[0] __lowercase = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __lowercase = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): __lowercase = torch.manual_seed(_lowerCamelCase ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowercase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCamelCase ) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) __lowercase = output.images __lowercase = pipe( **self.get_dummy_inputs(_lowerCamelCase ) ,return_dict=_lowerCamelCase ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __lowercase = init_image.resize((512, 512) ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __lowercase = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 __lowercase = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) __lowercase = '''A robot, 4k photo''' __lowercase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) __lowercase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' ,torch_dtype=torch.floataa ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase , __lowercase = pipe_prior( _lowerCamelCase ,image=_lowerCamelCase ,strength=0.8_5 ,generator=_lowerCamelCase ,negative_prompt='''''' ,).to_tuple() __lowercase = pipeline( image=_lowerCamelCase ,image_embeds=_lowerCamelCase ,negative_image_embeds=_lowerCamelCase ,hint=_lowerCamelCase ,generator=_lowerCamelCase ,num_inference_steps=100 ,height=512 ,width=512 ,strength=0.5 ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase ,_lowerCamelCase )
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _SCREAMING_SNAKE_CASE = (3, 9, -1_1, 0, 7, 5, 1, -1) _SCREAMING_SNAKE_CASE = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class __lowercase : '''simple docstring''' a : int a : Node | None class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = None for i in sorted(_lowerCamelCase ,reverse=_lowerCamelCase ): __lowercase = Node(_lowerCamelCase ,self.head ) def __iter__(self ) -> Iterator[int]: '''simple docstring''' __lowercase = self.head while node: yield node.data __lowercase = node.next_node def __len__(self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__(self ) -> str: '''simple docstring''' return " -> ".join([str(_lowerCamelCase ) for node in self] ) def _lowerCAmelCase ( lowerCamelCase_ : SortedLinkedList , lowerCamelCase_ : SortedLinkedList ): return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __lowercase = 0 __lowercase = 0 __lowercase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class __lowercase : '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> str: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' pass def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCamelCase ,_lowerCamelCase ,f"Difference between torch and flax is {diff} (>= {tol})." ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase ,_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.get_vision_text_model(_lowerCamelCase ,_lowerCamelCase ) __lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> str: '''simple docstring''' __lowercase , __lowercase = self.get_vision_text_model(_lowerCamelCase ,_lowerCamelCase ) __lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) __lowercase = model(input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = after_output[0] __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase ,1E-3 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase , __lowercase = self.get_vision_text_model(_lowerCamelCase ,_lowerCamelCase ) __lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) __lowercase = model( input_ids=_lowerCamelCase ,pixel_values=_lowerCamelCase ,attention_mask=_lowerCamelCase ,output_attentions=_lowerCamelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCamelCase ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCamelCase ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' pt_model.to(_lowerCamelCase ) pt_model.eval() # prepare inputs __lowercase = inputs_dict __lowercase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase = pt_model(**_lowerCamelCase ).to_tuple() __lowercase = fx_model(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase ,pt_output.numpy() ,4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ,from_pt=_lowerCamelCase ) __lowercase = fx_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase ,pt_output.numpy() ,4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCamelCase ) __lowercase = VisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ,from_flax=_lowerCamelCase ) pt_model_loaded.to(_lowerCamelCase ) pt_model_loaded.eval() with torch.no_grad(): __lowercase = pt_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCamelCase ,pt_output_loaded.numpy() ,4E-2 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase ,_lowerCamelCase ) __lowercase = VisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,_lowerCamelCase ) __lowercase = fx_state self.check_pt_flax_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase ,_lowerCamelCase ) __lowercase = VisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) __lowercase = load_flax_weights_in_pytorch_model(_lowerCamelCase ,fx_model.params ) self.check_pt_flax_equivalence(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCamelCase ) @is_pt_flax_cross_test def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase = config_inputs_dict.pop('''vision_config''' ) __lowercase = config_inputs_dict.pop('''text_config''' ) __lowercase = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) self.check_equivalence_flax_to_pt(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCamelCase ) __lowercase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCamelCase ) __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) __lowercase = model_a(**_lowerCamelCase ) __lowercase = after_outputs[0] __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase ,1E-5 ) @require_flax class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=_lowerCamelCase ,text_from_pt=_lowerCamelCase ,) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = FlaxViTModel(_lowerCamelCase ) __lowercase = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = FlaxViTModelTester(self ) __lowercase = FlaxBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=_lowerCamelCase ,text_from_pt=_lowerCamelCase ,) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = FlaxCLIPVisionModel(_lowerCamelCase ) __lowercase = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = FlaxCLIPVisionModelTester(self ) __lowercase = FlaxBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowercase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''np''' ) __lowercase = model(**_lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) __lowercase = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,_lowerCamelCase ,atol=1E-3 ) )
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): '''simple docstring''' a : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING a : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = AudioClassificationPipeline(model=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) # test with a raw waveform __lowercase = np.zeros((34000,) ) __lowercase = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase , __lowercase = examples __lowercase = audio_classifier(_lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( _lowerCamelCase ,[ {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, ] ,) __lowercase = audio_classifier(_lowerCamelCase ,top_k=1 ) self.assertEqual( _lowerCamelCase ,[ {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, ] ,) self.run_torchaudio(_lowerCamelCase ) @require_torchaudio def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' import datasets # test with a local file __lowercase = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) __lowercase = dataset[0]['''audio''']['''array'''] __lowercase = audio_classifier(_lowerCamelCase ) self.assertEqual( _lowerCamelCase ,[ {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase )}, ] ,) @require_torch def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = '''anton-l/wav2vec2-random-tiny-classifier''' __lowercase = pipeline('''audio-classification''' ,model=_lowerCamelCase ) __lowercase = np.ones((8000,) ) __lowercase = audio_classifier(_lowerCamelCase ,top_k=4 ) __lowercase = [ {'''score''': 0.0_8_4_2, '''label''': '''no'''}, {'''score''': 0.0_8_3_8, '''label''': '''up'''}, {'''score''': 0.0_8_3_7, '''label''': '''go'''}, {'''score''': 0.0_8_3_4, '''label''': '''right'''}, ] __lowercase = [ {'''score''': 0.0_8_4_5, '''label''': '''stop'''}, {'''score''': 0.0_8_4_4, '''label''': '''on'''}, {'''score''': 0.0_8_4_1, '''label''': '''right'''}, {'''score''': 0.0_8_3_4, '''label''': '''left'''}, ] self.assertIn(nested_simplify(_lowerCamelCase ,decimals=4 ) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) __lowercase = {'''array''': np.ones((8000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} __lowercase = audio_classifier(_lowerCamelCase ,top_k=4 ) self.assertIn(nested_simplify(_lowerCamelCase ,decimals=4 ) ,[EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _UpperCAmelCase (self ) -> Any: '''simple docstring''' import datasets __lowercase = '''superb/wav2vec2-base-superb-ks''' __lowercase = pipeline('''audio-classification''' ,model=_lowerCamelCase ) __lowercase = datasets.load_dataset('''anton-l/superb_dummy''' ,'''ks''' ,split='''test''' ) __lowercase = np.array(dataset[3]['''speech'''] ,dtype=np.floataa ) __lowercase = audio_classifier(_lowerCamelCase ,top_k=4 ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=3 ) ,[ {'''score''': 0.9_8_1, '''label''': '''go'''}, {'''score''': 0.0_0_7, '''label''': '''up'''}, {'''score''': 0.0_0_6, '''label''': '''_unknown_'''}, {'''score''': 0.0_0_1, '''label''': '''down'''}, ] ,) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '''T5Config''' def _lowerCAmelCase ( lowerCamelCase_ : jnp.array , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase = jnp.zeros_like(lowerCamelCase_ ) __lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase = shifted_input_ids.at[:, 0].set(lowerCamelCase_ ) __lowercase = jnp.where(shifted_input_ids == -1_0_0 , lowerCamelCase_ , lowerCamelCase_ ) return shifted_input_ids class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = "mt5" a : Optional[Any] = MTaConfig class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = "mt5" a : int = MTaConfig class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = "mt5" a : Tuple = MTaConfig
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = os.path.join(args.tf_model_dir , '''parameters.json''' ) __lowercase = json.loads(open(lowerCamelCase_ ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): __lowercase = args.output + '''.pt''' __lowercase = OrderedDict() with tf.device('''/CPU:0''' ): __lowercase = tf.train.load_checkpoint(args.tf_model_dir ) __lowercase = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __lowercase = reader.get_tensor(lowerCamelCase_ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): __lowercase = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): __lowercase = 8 __lowercase = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.startswith('''model/moe''' ): __lowercase = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): __lowercase = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/softmlp/kernel''' ): __lowercase = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): __lowercase = key_name[-9:-7] for i in range(1_6 ): __lowercase = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) __lowercase = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.startswith('''model/mlp''' ): __lowercase = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): __lowercase = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/p1/bias''' ): __lowercase = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/p2/kernel''' ): __lowercase = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/p2/bias''' ): __lowercase = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.startswith('''model/ln''' ): __lowercase = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __lowercase = '''model.blocks.%d.feed_forward.norm.bias''' % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/g''' ): __lowercase = '''model.blocks.%d.feed_forward.norm.weight''' % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.startswith('''model/att''' ): __lowercase = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): __lowercase = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __lowercase = state[:, 0, :, :] __lowercase = state[:, 1, :, :] __lowercase = state[:, 2, :, :] __lowercase = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player __lowercase = torch.tensor(lowerCamelCase_ ) __lowercase = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player __lowercase = torch.tensor(lowerCamelCase_ ) __lowercase = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/o/kernel''' ): __lowercase = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player __lowercase = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.startswith('''model/an''' ): __lowercase = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __lowercase = '''model.blocks.%d.self_attn.norm.bias''' % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.endswith('''/g''' ): __lowercase = '''model.blocks.%d.self_attn.norm.weight''' % player __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(lowerCamelCase_ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): __lowercase = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] __lowercase = '''model.%s.weight''' % nlayer __lowercase = vnp.copy() # same in embedded __lowercase = torch.tensor(lowerCamelCase_ ) if key_name.startswith('''model/wte''' ): __lowercase = '''lm_head.weight''' __lowercase = vnp.copy() # same in embedded __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name.startswith('''model/wob''' ): __lowercase = '''final_logits_bias''' __lowercase = vnp.copy() # same in embedded __lowercase = state.reshape((1, -1) ) __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name == "model/dense/kernel": __lowercase = '''model.last_project.weight''' __lowercase = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __lowercase = torch.tensor(lowerCamelCase_ ) elif key_name == "model/dense_1/bias": __lowercase = '''model.last_project.bias''' __lowercase = vnp.copy() # same because it is one dimensional __lowercase = torch.tensor(lowerCamelCase_ ) torch.save(lowerCamelCase_ , args.output ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_gptsan_to_pt(args)
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' from collections import deque def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = len(lowerCamelCase_ ) __lowercase = deque() __lowercase = [False for _ in range(lowerCamelCase_ )] __lowercase = [-1 for _ in range(lowerCamelCase_ )] __lowercase = index_of[:] def strong_connect(lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): __lowercase = index # the number when this node is seen __lowercase = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase_ ) __lowercase = True for w in g[v]: if index_of[w] == -1: __lowercase = strong_connect(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowercase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowercase = [] __lowercase = stack.pop() __lowercase = False component.append(lowerCamelCase_ ) while w != v: __lowercase = stack.pop() __lowercase = False component.append(lowerCamelCase_ ) components.append(lowerCamelCase_ ) return index __lowercase = [] for v in range(lowerCamelCase_ ): if index_of[v] == -1: strong_connect(lowerCamelCase_ , 0 , lowerCamelCase_ ) return components def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ): __lowercase = [[] for _ in range(lowerCamelCase_ )] for u, v in edges: g[u].append(lowerCamelCase_ ) return g if __name__ == "__main__": # Test _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = [0, 0, 1, 2, 3, 3, 4, 4, 6] _SCREAMING_SNAKE_CASE = [1, 3, 2, 0, 1, 4, 5, 6, 5] _SCREAMING_SNAKE_CASE = [(u, v) for u, v in zip(source, target)] _SCREAMING_SNAKE_CASE = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _lowerCAmelCase ( lowerCamelCase_ : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _lowerCAmelCase ( ): with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" __lowercase = [1, 2, 3] with pytest.raises(lowerCamelCase_ ): with parallel_backend('''unsupported backend''' ): map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=2 ) with pytest.raises(lowerCamelCase_ ): with parallel_backend('''unsupported backend''' ): map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): __lowercase = [1, 2] __lowercase = {'''a''': 1, '''b''': 2} __lowercase = {'''a''': [1, 2], '''b''': [3, 4]} __lowercase = {'''a''': {'''1''': 1}, '''b''': 2} __lowercase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __lowercase = [2, 3] __lowercase = {'''a''': 2, '''b''': 3} __lowercase = {'''a''': [2, 3], '''b''': [4, 5]} __lowercase = {'''a''': {'''1''': 2}, '''b''': 3} __lowercase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa assert map_nested(lowerCamelCase_ , lowerCamelCase_ , num_proc=lowerCamelCase_ ) == expected_map_nested_sa
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=7 ,_lowerCamelCase=3 ,_lowerCamelCase=18 ,_lowerCamelCase=30 ,_lowerCamelCase=400 ,_lowerCamelCase=True ,_lowerCamelCase=None ,_lowerCamelCase=True ,_lowerCamelCase=False ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=[0.5, 0.5, 0.5] ,_lowerCamelCase=[0.5, 0.5, 0.5] ,) -> List[Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size if size is not None else {'''height''': 18, '''width''': 20} __lowercase = do_thumbnail __lowercase = do_align_axis __lowercase = do_pad __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = DonutImageProcessor if is_vision_available() else None def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = DonutImageProcessingTester(self ) @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''image_std''' ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' pass @is_flaky() def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __lowercase = image_processing(_lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCamelCase ,numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __lowercase = image_processing(_lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCamelCase ,torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __lowercase = image_processing(_lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Dict=7 ): __lowercase = None if token is not None: __lowercase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"Bearer {token}"} # The id of a workflow (not of a workflow run) __lowercase = '''636036''' __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" __lowercase = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() return result["workflow_runs"] def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = get_daily_ci_runs(lowerCamelCase_ ) __lowercase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __lowercase = workflow_run['''id'''] break return workflow_run_id def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): __lowercase = get_last_daily_ci_runs(lowerCamelCase_ ) if workflow_run_id is not None: __lowercase = get_artifacts_links(worflow_run_id=lowerCamelCase_ , token=lowerCamelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __lowercase = artifacts_links[artifact_name] download_artifact( artifact_name=lowerCamelCase_ , artifact_url=lowerCamelCase_ , output_dir=lowerCamelCase_ , token=lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ): get_last_daily_ci_artifacts(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = {} for artifact_name in artifact_names: __lowercase = os.path.join(lowerCamelCase_ , f"{artifact_name}.zip" ) if os.path.isfile(lowerCamelCase_ ): __lowercase = {} with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file with z.open(lowerCamelCase_ ) as f: __lowercase = f.read().decode('''UTF-8''' ) return results
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') _SCREAMING_SNAKE_CASE = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) a : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the training data."} ) a : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) a : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) a : int = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} ) a : float = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = {} if self.train_dir is not None: __lowercase = self.train_dir if self.validation_dir is not None: __lowercase = self.validation_dir __lowercase = data_files if data_files else None @dataclass class __lowercase : '''simple docstring''' a : str = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a : str = field(default=lowerCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) a : bool = field( default=lowerCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={"help": "Stride to use for the encoder."} , ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase=192 ,_lowerCamelCase=32 ,_lowerCamelCase=4 ,_lowerCamelCase=0.6 ) -> str: '''simple docstring''' __lowercase = input_size __lowercase = mask_patch_size __lowercase = model_patch_size __lowercase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) __lowercase = self.input_size // self.mask_patch_size __lowercase = self.mask_patch_size // self.model_patch_size __lowercase = self.rand_size**2 __lowercase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__(self ) -> Optional[Any]: '''simple docstring''' __lowercase = np.random.permutation(self.token_count )[: self.mask_count] __lowercase = np.zeros(self.token_count ,dtype=_lowerCamelCase ) __lowercase = 1 __lowercase = mask.reshape((self.rand_size, self.rand_size) ) __lowercase = mask.repeat(self.scale ,axis=0 ).repeat(self.scale ,axis=1 ) return torch.tensor(mask.flatten() ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = torch.stack([example['''pixel_values'''] for example in examples] ) __lowercase = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , lowerCamelCase_ , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase_ ) and data_args.train_val_split > 0.0: __lowercase = ds['''train'''].train_test_split(data_args.train_val_split ) __lowercase = split['''train'''] __lowercase = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowerCamelCase_ ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowerCamelCase_ , '''decoder_type''' ): __lowercase = '''simmim''' # adapt config __lowercase = model_args.image_size if model_args.image_size is not None else config.image_size __lowercase = model_args.patch_size if model_args.patch_size is not None else config.patch_size __lowercase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __lowercase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCamelCase_ ) elif model_args.model_name_or_path: __lowercase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCamelCase_ ) else: __lowercase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __lowercase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __lowercase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelForMaskedImageModeling.from_config(lowerCamelCase_ ) if training_args.do_train: __lowercase = ds['''train'''].column_names else: __lowercase = ds['''validation'''].column_names if data_args.image_column_name is not None: __lowercase = data_args.image_column_name elif "image" in column_names: __lowercase = '''image''' elif "img" in column_names: __lowercase = '''img''' else: __lowercase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __lowercase = Compose( [ Lambda(lambda lowerCamelCase_ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator __lowercase = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowerCamelCase_ : Any ): __lowercase = [transforms(lowerCamelCase_ ) for image in examples[image_column_name]] __lowercase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __lowercase = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __lowercase = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase_ ) # Initialize our trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCamelCase_ ) trainer.save_metrics('''eval''' , lowerCamelCase_ ) # Write model card and (optionally) push to hub __lowercase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) if __name__ == "__main__": main()
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Any = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Tuple = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : List[str] = ["torch", "transformers", "onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' requires_backends(cls ,['''torch''', '''transformers''', '''onnx'''] )
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = ["vqvae"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ,mel=_lowerCamelCase ,vqvae=_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler ,_lowerCamelCase ) else 1000 @torch.no_grad() def __call__(self ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = 0 ,_lowerCamelCase = 0 ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = 0 ,_lowerCamelCase = 0 ,_lowerCamelCase = None ,_lowerCamelCase = 0 ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=True ,) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_lowerCamelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_lowerCamelCase ,device=self.device ,) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowerCamelCase ,_lowerCamelCase ) __lowercase = self.mel.audio_slice_to_image(_lowerCamelCase ) __lowercase = np.frombuffer(input_image.tobytes() ,dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 255) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_lowerCamelCase ,0 ) ).latent_dist.sample( generator=_lowerCamelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_lowerCamelCase ,_lowerCamelCase ,self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_lowerCamelCase ,_lowerCamelCase ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_lowerCamelCase ): __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )['''sample'''] else: __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase )['''sample'''] if isinstance(self.scheduler ,_lowerCamelCase ): __lowercase = self.scheduler.step( model_output=_lowerCamelCase ,timestep=_lowerCamelCase ,sample=_lowerCamelCase ,eta=_lowerCamelCase ,generator=_lowerCamelCase ,)['''prev_sample'''] else: __lowercase = self.scheduler.step( model_output=_lowerCamelCase ,timestep=_lowerCamelCase ,sample=_lowerCamelCase ,generator=_lowerCamelCase ,)['''prev_sample'''] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_lowerCamelCase )['''sample'''] __lowercase = (images / 2 + 0.5).clamp(0 ,1 ) __lowercase = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() __lowercase = (images * 255).round().astype('''uint8''' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowerCamelCase ,mode='''RGB''' ).convert('''L''' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowerCamelCase )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_lowerCamelCase ) ) @torch.no_grad() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler ,_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() ,dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 255) * 2 - 1 __lowercase = torch.Tensor(_lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase )['''sample'''] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> torch.Tensor: '''simple docstring''' __lowercase = acos(torch.dot(torch.flatten(_lowerCamelCase ) ,torch.flatten(_lowerCamelCase ) ) / torch.norm(_lowerCamelCase ) / torch.norm(_lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowerCamelCase ) + sin(alpha * theta ) * xa / sin(_lowerCamelCase )
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): return int(input_a == input_a == 0 ) def _lowerCAmelCase ( ): print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _SCREAMING_SNAKE_CASE = '''Usage of script: script_name <size_of_canvas:int>''' _SCREAMING_SNAKE_CASE = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [[False for i in range(lowerCamelCase_ )] for j in range(lowerCamelCase_ )] return canvas def _lowerCAmelCase ( lowerCamelCase_ : list[list[bool]] ): for i, row in enumerate(lowerCamelCase_ ): for j, _ in enumerate(lowerCamelCase_ ): __lowercase = bool(random.getrandbits(1 ) ) def _lowerCAmelCase ( lowerCamelCase_ : list[list[bool]] ): __lowercase = np.array(lowerCamelCase_ ) __lowercase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCamelCase_ ): for c, pt in enumerate(lowerCamelCase_ ): __lowercase = __judge_point( lowerCamelCase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __lowercase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __lowercase = current_canvas.tolist() return return_canvas def _lowerCAmelCase ( lowerCamelCase_ : bool , lowerCamelCase_ : list[list[bool]] ): __lowercase = 0 __lowercase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __lowercase = pt if pt: if alive < 2: __lowercase = False elif alive == 2 or alive == 3: __lowercase = True elif alive > 3: __lowercase = False else: if alive == 3: __lowercase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _SCREAMING_SNAKE_CASE = int(sys.argv[1]) # main working structure of this module. _SCREAMING_SNAKE_CASE = create_canvas(canvas_size) seed(c) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = plt.subplots() fig.show() _SCREAMING_SNAKE_CASE = ListedColormap(['''w''', '''k''']) try: while True: _SCREAMING_SNAKE_CASE = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0 ): __lowercase = -1 __lowercase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowercase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowercase = n - a - b if c * c == (a * a + b * b): __lowercase = a * b * c if candidate >= product: __lowercase = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): if height >= 1: move_tower(height - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) move_disk(lowerCamelCase_ , lowerCamelCase_ ) move_tower(height - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): print('''moving disk from''' , lowerCamelCase_ , '''to''' , lowerCamelCase_ ) def _lowerCAmelCase ( ): __lowercase = int(input('''Height of hanoi: ''' ).strip() ) move_tower(lowerCamelCase_ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = data __lowercase = None class __lowercase : '''simple docstring''' def __init__(self ) -> Dict: '''simple docstring''' __lowercase = None def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.head while temp is not None: print(temp.data ,end=''' ''' ) __lowercase = temp.next print() def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = Node(_lowerCamelCase ) __lowercase = self.head __lowercase = new_node def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' if node_data_a == node_data_a: return else: __lowercase = self.head while node_a is not None and node_a.data != node_data_a: __lowercase = node_a.next __lowercase = self.head while node_a is not None and node_a.data != node_data_a: __lowercase = node_a.next if node_a is None or node_a is None: return __lowercase , __lowercase = node_a.data, node_a.data if __name__ == "__main__": _SCREAMING_SNAKE_CASE = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _SCREAMING_SNAKE_CASE = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def _lowerCAmelCase ( ): __lowercase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase = get_sagemaker_input() else: __lowercase = get_cluster_input() return config def _lowerCAmelCase ( lowerCamelCase_ : List[Any]=None ): if subparsers is not None: __lowercase = subparsers.add_parser('''config''' , description=lowerCamelCase_ ) else: __lowercase = argparse.ArgumentParser('''Accelerate config command''' , description=lowerCamelCase_ ) parser.add_argument( '''--config_file''' , default=lowerCamelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = get_user_input() if args.config_file is not None: __lowercase = args.config_file else: if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) __lowercase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(lowerCamelCase_ ) else: config.to_yaml_file(lowerCamelCase_ ) print(f"accelerate configuration saved at {config_file}" ) def _lowerCAmelCase ( ): __lowercase = config_command_parser() __lowercase = parser.parse_args() config_command(lowerCamelCase_ ) if __name__ == "__main__": main()
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Dict = MobileBertTokenizer a : str = MobileBertTokenizerFast a : Tuple = True a : Any = True a : Union[str, Any] = filter_non_english a : Optional[int] = "google/mobilebert-uncased" def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' super().setUp() __lowercase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowercase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = '''UNwant\u00E9d,running''' __lowercase = '''unwanted, running''' return input_text, output_text def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowerCamelCase ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[9, 6, 7, 12, 10, 11] ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = '''UNwant\u00E9d,running''' __lowercase = tokenizer.tokenize(_lowerCamelCase ) __lowercase = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = rust_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(_lowerCamelCase ) __lowercase = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) # With lower casing __lowercase = self.get_tokenizer(do_lower_case=_lowerCamelCase ) __lowercase = self.get_rust_tokenizer(do_lower_case=_lowerCamelCase ) __lowercase = '''UNwant\u00E9d,running''' __lowercase = tokenizer.tokenize(_lowerCamelCase ) __lowercase = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = rust_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(_lowerCamelCase ) __lowercase = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) ,['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ,strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''h\u00E9llo'''] ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ,strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ,strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ,strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = BasicTokenizer(do_lower_case=_lowerCamelCase ,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __lowercase = {} for i, token in enumerate(_lowerCamelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_lowerCamelCase ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) ,['''[UNK]''', '''runn''', '''##ing'''] ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __lowercase = tokenizer.encode('''sequence builders''' ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ,_lowerCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __lowercase = tokenizer_r.encode_plus( _lowerCamelCase ,return_attention_mask=_lowerCamelCase ,return_token_type_ids=_lowerCamelCase ,return_offsets_mapping=_lowerCamelCase ,add_special_tokens=_lowerCamelCase ,) __lowercase = tokenizer_r.do_lower_case if hasattr(_lowerCamelCase ,'''do_lower_case''' ) else False __lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['''offset_mapping'''] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = ['''的''', '''人''', '''有'''] __lowercase = ''''''.join(_lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = True __lowercase = self.tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = tokenizer_p.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer_r.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = self.tokenizer_class.from_pretrained(_lowerCamelCase ,**_lowerCamelCase ) __lowercase = tokenizer_r.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer_p.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". __lowercase = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_lowerCamelCase ) ] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase )
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _SCREAMING_SNAKE_CASE = 8 def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple=BITS ): __lowercase = x.device __lowercase = (x * 2_5_5).int().clamp(0 , 2_5_5 ) __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase_ ) __lowercase = rearrange(lowerCamelCase_ , '''d -> d 1 1''' ) __lowercase = rearrange(lowerCamelCase_ , '''b c h w -> b c 1 h w''' ) __lowercase = ((x & mask) != 0).float() __lowercase = rearrange(lowerCamelCase_ , '''b c d h w -> b (c d) h w''' ) __lowercase = bits * 2 - 1 return bits def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : List[str]=BITS ): __lowercase = x.device __lowercase = (x > 0).int() __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase_ , dtype=torch.intaa ) __lowercase = rearrange(lowerCamelCase_ , '''d -> d 1 1''' ) __lowercase = rearrange(lowerCamelCase_ , '''b (c d) h w -> b c d h w''' , d=8 ) __lowercase = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def _lowerCAmelCase ( self : Tuple , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : bool = True , ): if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowercase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowercase = self.alphas_cumprod[timestep] __lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowercase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(lowerCamelCase_ , -scale , lowerCamelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowercase = self._get_variance(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowercase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowercase = model_output.device if torch.is_tensor(lowerCamelCase_ ) else '''cpu''' __lowercase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase_ ).to(lowerCamelCase_ ) __lowercase = self._get_variance(lowerCamelCase_ , lowerCamelCase_ ) ** 0.5 * eta * noise __lowercase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def _lowerCAmelCase ( self : str , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[int]="epsilon" , lowerCamelCase_ : Dict=None , lowerCamelCase_ : bool = True , ): __lowercase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = torch.split(lowerCamelCase_ , sample.shape[1] , dim=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = self.alphas_cumprod[t] __lowercase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowercase = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(lowerCamelCase_ , -scale , lowerCamelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowercase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowercase = 0 if t > 0: __lowercase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCamelCase_ ).to(model_output.device ) __lowercase = (self._get_variance(lowerCamelCase_ , predicted_variance=lowerCamelCase_ ) ** 0.5) * noise __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 1.0 ,) -> int: '''simple docstring''' super().__init__() __lowercase = bit_scale __lowercase = ( ddim_bit_scheduler_step if isinstance(_lowerCamelCase ,_lowerCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ) @torch.no_grad() def __call__(self ,_lowerCamelCase = 256 ,_lowerCamelCase = 256 ,_lowerCamelCase = 50 ,_lowerCamelCase = None ,_lowerCamelCase = 1 ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' __lowercase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=_lowerCamelCase ,) __lowercase = decimal_to_bits(_lowerCamelCase ) * self.bit_scale __lowercase = latents.to(self.device ) self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ).prev_sample __lowercase = bits_to_decimal(_lowerCamelCase ) if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = int(lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple=3_0_0 ): # docstyle-ignore return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowercase = f"{elt:.6f}" if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else str(lowerCamelCase_ ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __lowercase : '''simple docstring''' a : Optional[Any] = 5 a : str = 0.2 def __init__(self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = True ,_lowerCamelCase = None ,_lowerCamelCase = 300 ,) -> List[str]: '''simple docstring''' __lowercase = total __lowercase = '''''' if prefix is None else prefix __lowercase = leave __lowercase = parent __lowercase = width __lowercase = None __lowercase = None __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ,_lowerCamelCase = None ) -> int: '''simple docstring''' __lowercase = value if comment is not None: __lowercase = comment if self.last_value is None: __lowercase = __lowercase = time.time() __lowercase = __lowercase = value __lowercase = __lowercase = None __lowercase = self.warmup __lowercase = 1 self.update_bar(_lowerCamelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for ,self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowercase = time.time() __lowercase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowercase = self.elapsed_time / (value - self.start_value) else: __lowercase = None if value >= self.total: __lowercase = self.total __lowercase = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowercase = self.average_time_per_item * (self.total - value) self.update_bar(_lowerCamelCase ) __lowercase = value __lowercase = current_time if self.average_time_per_item is None: __lowercase = 1 else: __lowercase = max(int(self.update_every / self.average_time_per_item ) ,1 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Dict: '''simple docstring''' __lowercase = ''' ''' * (len(str(self.total ) ) - len(str(_lowerCamelCase ) )) + str(_lowerCamelCase ) if self.elapsed_time is None: __lowercase = f"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: __lowercase = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}" else: __lowercase = ( f"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <" f" {format_time(self.predicted_remaining )}" ) self.label += f", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f", {self.comment}]" self.display() def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowercase = disp.display(disp.HTML(self.html_code ) ,display_id=_lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Any: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = None if column_names is None else [column_names] __lowercase = None def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowercase = disp.display(disp.HTML(self.html_code ) ,display_id=_lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if self.inner_table is None: __lowercase = [list(values.keys() ), list(values.values() )] else: __lowercase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_lowerCamelCase ) __lowercase = columns self.inner_table.append([values[c] for c in columns] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ,_lowerCamelCase=300 ) -> int: '''simple docstring''' __lowercase = NotebookProgressBar(_lowerCamelCase ,prefix=_lowerCamelCase ,parent=self ,width=_lowerCamelCase ) return self.child_bar def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = None self.display() class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ) -> List[Any]: '''simple docstring''' __lowercase = None __lowercase = None __lowercase = False def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __lowercase = 0 __lowercase = 0 __lowercase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) __lowercase = NotebookTrainingTracker(state.max_steps ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 ,comment=f"Epoch {epoch}/{state.num_train_epochs}" ,force_update=self._force_next_update ,) __lowercase = False def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if not has_length(_lowerCamelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowercase = self.training_tracker.add_child(len(_lowerCamelCase ) ) else: __lowercase = NotebookProgressBar(len(_lowerCamelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowercase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __lowercase = state.global_step self.training_tracker.write_line(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Any: '''simple docstring''' if self.training_tracker is not None: __lowercase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: __lowercase = log['''loss'''] break if self.first_column == "Epoch": __lowercase = int(state.epoch ) else: __lowercase = state.global_step __lowercase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): __lowercase = re.sub(R'''\_loss$''' ,'''''' ,_lowerCamelCase ) __lowercase = metrics.pop('''total_flos''' ,_lowerCamelCase ) __lowercase = metrics.pop('''epoch''' ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_runtime" ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_samples_per_second" ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_steps_per_second" ,_lowerCamelCase ) __lowercase = metrics.pop(f"{metric_key_prefix}_jit_compilation_time" ,_lowerCamelCase ) for k, v in metrics.items(): if k == f"{metric_key_prefix}_loss": __lowercase = v else: __lowercase = k.split('''_''' ) __lowercase = ''' '''.join([part.capitalize() for part in splits[1:]] ) __lowercase = v self.training_tracker.write_line(_lowerCamelCase ) self.training_tracker.remove_child() __lowercase = None # Evaluation takes a long time so we should force the next update. __lowercase = True def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' self.training_tracker.update( state.global_step ,comment=f"Epoch {int(state.epoch )}/{state.num_train_epochs}" ,force_update=_lowerCamelCase ) __lowercase = None
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=sys.maxsize ) -> str: '''simple docstring''' __lowercase = '''bilinear''' __lowercase = max_size __lowercase = short_edge_length def __call__(self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = [] for img in imgs: __lowercase , __lowercase = img.shape[:2] # later: provide list and randomly choose index for resize __lowercase = np.random.randint(self.short_edge_length[0] ,self.short_edge_length[1] + 1 ) if size == 0: return img __lowercase = size * 1.0 / min(_lowerCamelCase ,_lowerCamelCase ) if h < w: __lowercase , __lowercase = size, scale * w else: __lowercase , __lowercase = scale * h, size if max(_lowerCamelCase ,_lowerCamelCase ) > self.max_size: __lowercase = self.max_size * 1.0 / max(_lowerCamelCase ,_lowerCamelCase ) __lowercase = newh * scale __lowercase = neww * scale __lowercase = int(neww + 0.5 ) __lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: __lowercase = Image.fromarray(_lowerCamelCase ) __lowercase = pil_image.resize((neww, newh) ,PILImageResampling.BILINEAR ) __lowercase = np.asarray(_lowerCamelCase ) else: __lowercase = img.permute(2 ,0 ,1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __lowercase = nn.functional.interpolate( _lowerCamelCase ,(newh, neww) ,mode=self.interp_method ,align_corners=_lowerCamelCase ).squeeze(0 ) img_augs.append(_lowerCamelCase ) return img_augs class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] ,cfg.INPUT.MAX_SIZE_TEST ) __lowercase = cfg.INPUT.FORMAT __lowercase = cfg.SIZE_DIVISIBILITY __lowercase = cfg.PAD_VALUE __lowercase = cfg.INPUT.MAX_SIZE_TEST __lowercase = cfg.MODEL.DEVICE __lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = lambda _lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = tuple(max(_lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) __lowercase = [im.shape[-2:] for im in images] __lowercase = [ nn.functional.pad( _lowerCamelCase ,[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] ,value=self.pad_value ,) for size, im in zip(_lowerCamelCase ,_lowerCamelCase ) ] return torch.stack(_lowerCamelCase ), torch.tensor(_lowerCamelCase ) def __call__(self ,_lowerCamelCase ,_lowerCamelCase=False ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [images] if single_image: assert len(_lowerCamelCase ) == 1 for i in range(len(_lowerCamelCase ) ): if isinstance(images[i] ,torch.Tensor ): images.insert(_lowerCamelCase ,images.pop(_lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] ,torch.Tensor ): images.insert( _lowerCamelCase ,torch.as_tensor(img_tensorize(images.pop(_lowerCamelCase ) ,input_format=self.input_format ) ) .to(self.device ) .float() ,) # resize smallest edge __lowercase = torch.tensor([im.shape[:2] for im in images] ) __lowercase = self.aug(_lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowercase = [self.normalizer(_lowerCamelCase ) for x in images] # now pad them to do the following operations __lowercase , __lowercase = self.pad(_lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowercase = torch.true_divide(_lowerCamelCase ,_lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple[int, int] ): assert torch.isfinite(lowerCamelCase_ ).all(), "Box tensor contains infinite or NaN!" __lowercase , __lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCamelCase_ )
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase=None ) -> Any: '''simple docstring''' if not conversation_id: __lowercase = uuid.uuida() if past_user_inputs is None: __lowercase = [] if generated_responses is None: __lowercase = [] __lowercase = conversation_id __lowercase = past_user_inputs __lowercase = generated_responses __lowercase = text def __eq__(self ,_lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase ,_lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ) -> Optional[int]: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " f"with: \"{text}\"." ) __lowercase = text else: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " f"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __lowercase = text def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' self.generated_responses.append(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> int: '''simple docstring''' __lowercase = f"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __lowercase = '''user''' if is_user else '''bot''' output += f"{name} >> {text} \n" return output @add_end_docstrings( lowerCAmelCase__ , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' super().__init__(*_lowerCamelCase ,**_lowerCamelCase ) if self.tokenizer.pad_token_id is None: __lowercase = self.tokenizer.eos_token def _UpperCAmelCase (self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = {} __lowercase = {} __lowercase = {} if min_length_for_response is not None: __lowercase = min_length_for_response if minimum_tokens is not None: __lowercase = minimum_tokens if "max_length" in generate_kwargs: __lowercase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowercase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self ,_lowerCamelCase ,_lowerCamelCase=0 ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = super().__call__(_lowerCamelCase ,num_workers=_lowerCamelCase ,**_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) and len(_lowerCamelCase ) == 1: return outputs[0] return outputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=32 ) -> Dict[str, Any]: '''simple docstring''' if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer ,'''_build_conversation_input_ids''' ): __lowercase = self.tokenizer._build_conversation_input_ids(_lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowercase = self._legacy_parse_and_tokenize(_lowerCamelCase ) if self.framework == "pt": __lowercase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowercase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=10 ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = generate_kwargs.get('''max_length''' ,self.model.config.max_length ) __lowercase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __lowercase = max_length - minimum_tokens __lowercase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowercase = model_inputs['''attention_mask'''][:, -trim:] __lowercase = model_inputs.pop('''conversation''' ) __lowercase = max_length __lowercase = self.model.generate(**_lowerCamelCase ,**_lowerCamelCase ) if self.model.config.is_encoder_decoder: __lowercase = 1 else: __lowercase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=True ) -> Dict: '''simple docstring''' __lowercase = model_outputs['''output_ids'''] __lowercase = self.tokenizer.decode( output_ids[0] ,skip_special_tokens=_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ,) __lowercase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_lowerCamelCase ) return conversation def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer.eos_token_id __lowercase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) ) if len(_lowerCamelCase ) > self.tokenizer.model_max_length: __lowercase = input_ids[-self.tokenizer.model_max_length :] return input_ids
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' super().__init__(*_lowerCamelCase ,**_lowerCamelCase ) self.check_model_type(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase = {}, {} if padding is not None: __lowercase = padding if truncation is not None: __lowercase = truncation if top_k is not None: __lowercase = top_k return preprocess_params, {}, postprocess_params def __call__(self ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> str: '''simple docstring''' if isinstance(_lowerCamelCase ,(Image.Image, str) ) and isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = {'''image''': image, '''question''': question} else: __lowercase = image __lowercase = super().__call__(_lowerCamelCase ,**_lowerCamelCase ) return results def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=False ,_lowerCamelCase=False ) -> Tuple: '''simple docstring''' __lowercase = load_image(inputs['''image'''] ) __lowercase = self.tokenizer( inputs['''question'''] ,return_tensors=self.framework ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ) __lowercase = self.image_processor(images=_lowerCamelCase ,return_tensors=self.framework ) model_inputs.update(_lowerCamelCase ) return model_inputs def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.model(**_lowerCamelCase ) return model_outputs def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=5 ) -> Tuple: '''simple docstring''' if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.sigmoid()[0] __lowercase , __lowercase = probs.topk(_lowerCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase ,_lowerCamelCase )]
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , ): __lowercase = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } __lowercase , __lowercase = input_paths_and_base_extractors[compression_format] if input_path is None: __lowercase = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) assert base_extractor.is_extractable(lowerCamelCase_ ) __lowercase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __lowercase = file_path.read_text(encoding='''utf-8''' ) else: __lowercase = output_path.read_text(encoding='''utf-8''' ) __lowercase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , ): __lowercase = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } __lowercase = input_paths[compression_format] if input_path is None: __lowercase = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase_ ) __lowercase = Extractor.infer_extractor_format(lowerCamelCase_ ) assert extractor_format is not None __lowercase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __lowercase = file_path.read_text(encoding='''utf-8''' ) else: __lowercase = output_path.read_text(encoding='''utf-8''' ) __lowercase = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any ): import tarfile __lowercase = tmp_path / '''data_dot_dot''' directory.mkdir() __lowercase = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): import tarfile __lowercase = tmp_path / '''data_sym_link''' directory.mkdir() __lowercase = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=lowerCamelCase_ ) with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple ): __lowercase = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } __lowercase = insecure_tar_files[insecure_tar_file] __lowercase = tmp_path / '''extracted''' TarExtractor.extract(lowerCamelCase_ , lowerCamelCase_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _lowerCAmelCase ( lowerCamelCase_ : str ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __lowercase = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 __lowercase = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(lowerCamelCase_ ) assert zipfile.is_zipfile(str(lowerCamelCase_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase_ ) # but we're right
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir('''fixtures/test_sentencepiece.model''') _SCREAMING_SNAKE_CASE = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} _SCREAMING_SNAKE_CASE = '''>>zh<<''' _SCREAMING_SNAKE_CASE = '''Helsinki-NLP/''' if is_torch_available(): _SCREAMING_SNAKE_CASE = '''pt''' elif is_tf_available(): _SCREAMING_SNAKE_CASE = '''tf''' else: _SCREAMING_SNAKE_CASE = '''jax''' @require_sentencepiece class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : int = MarianTokenizer a : Dict = False a : int = True def _UpperCAmelCase (self ) -> int: '''simple docstring''' super().setUp() __lowercase = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_lowerCamelCase ,save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_lowerCamelCase ,save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_lowerCamelCase ,save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_lowerCamelCase ,save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) __lowercase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = '''</s>''' __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''</s>''' ) self.assertEqual(vocab_keys[1] ,'''<unk>''' ) self.assertEqual(vocab_keys[-1] ,'''<pad>''' ) self.assertEqual(len(_lowerCamelCase ) ,9 ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) __lowercase = en_de_tokenizer(['''I am a small frog'''] ,return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) __lowercase = [38, 121, 14, 697, 38848, 0] self.assertListEqual(_lowerCamelCase ,batch.input_ids[0] ) __lowercase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = [x.name for x in Path(_lowerCamelCase ).glob('''*''' )] self.assertIn('''source.spm''' ,_lowerCamelCase ) MarianTokenizer.from_pretrained(_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] ,padding=_lowerCamelCase ,truncation=_lowerCamelCase ,return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual(batch.input_ids.shape ,(2, 512) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tok(['''I am a tiny frog''', '''I am a small frog'''] ,padding=_lowerCamelCase ,return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = {'''input_ids''': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase ,model_name='''Helsinki-NLP/opus-mt-en-de''' ,revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' ,decode_kwargs={'''use_source_tokenizer''': True} ,) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) __lowercase = '''Tämä on testi''' __lowercase = '''This is a test''' __lowercase = [76, 7, 2047, 2] __lowercase = [69, 12, 11, 940, 2] __lowercase = tokenizer(_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = tokenizer(text_target=_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase )
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase=0.0_1 ,_lowerCamelCase=1000 ) -> List[Any]: '''simple docstring''' __lowercase = p_stop __lowercase = max_length def __iter__(self ) -> Optional[Any]: '''simple docstring''' __lowercase = 0 __lowercase = False while not stop and count < self.max_length: yield count count += 1 __lowercase = random.random() < self.p_stop class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=False ,_lowerCamelCase=True ) -> Tuple: '''simple docstring''' __lowercase = [ BatchSamplerShard(_lowerCamelCase ,2 ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) for i in range(2 ) ] __lowercase = [list(_lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowerCamelCase ) for shard in batch_sampler_shards] ,[len(_lowerCamelCase ) for e in expected] ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) __lowercase = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) __lowercase = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) __lowercase = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) __lowercase = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_lowerCamelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,even_batches=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_lowerCamelCase ,_lowerCamelCase ,split_batches=_lowerCamelCase ,even_batches=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowercase = [BatchSamplerShard(_lowerCamelCase ,2 ,_lowerCamelCase ,even_batches=_lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) ,3 ) self.assertEqual(len(batch_sampler_shards[1] ) ,2 ) self.assertListEqual(list(batch_sampler_shards[0] ) ,[[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) ,[[3, 4], [9, 10, 11]] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=False ,_lowerCamelCase=2 ,_lowerCamelCase=False ) -> str: '''simple docstring''' random.seed(_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) __lowercase = [ IterableDatasetShard( _lowerCamelCase ,batch_size=_lowerCamelCase ,drop_last=_lowerCamelCase ,num_processes=_lowerCamelCase ,process_index=_lowerCamelCase ,split_batches=_lowerCamelCase ,) for i in range(_lowerCamelCase ) ] __lowercase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowerCamelCase ) iterable_dataset_lists.append(list(_lowerCamelCase ) ) __lowercase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowercase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ) self.assertTrue(len(_lowerCamelCase ) % shard_batch_size == 0 ) __lowercase = [] for idx in range(0 ,len(_lowerCamelCase ) ,_lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowerCamelCase ) < len(_lowerCamelCase ): reference += reference self.assertListEqual(_lowerCamelCase ,reference[: len(_lowerCamelCase )] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = 42 __lowercase = RandomIterableDataset() self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) # Edge case with a very small dataset __lowercase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) self.check_iterable_dataset_shards(_lowerCamelCase ,_lowerCamelCase ,batch_size=4 ,drop_last=_lowerCamelCase ,split_batches=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = BatchSampler(range(16 ) ,batch_size=4 ,drop_last=_lowerCamelCase ) __lowercase = SkipBatchSampler(_lowerCamelCase ,2 ) self.assertListEqual(list(_lowerCamelCase ) ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = SkipDataLoader(list(range(16 ) ) ,batch_size=4 ,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = DataLoader(list(range(16 ) ) ,batch_size=4 ) __lowercase = skip_first_batches(_lowerCamelCase ,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = DataLoaderShard(list(range(16 ) ) ,batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' Accelerator() __lowercase = DataLoaderDispatcher(range(16 ) ,batch_size=4 ) for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = [int(lowerCamelCase_ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowerCamelCase_ ) == 4 and all(0 <= int(lowerCamelCase_ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input().strip() _SCREAMING_SNAKE_CASE = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = "roberta-prelayernorm" def __init__(self ,_lowerCamelCase=50265 ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=1 ,_lowerCamelCase=0 ,_lowerCamelCase=2 ,_lowerCamelCase="absolute" ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> str: '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Dict = "open-llama" def __init__(self ,_lowerCamelCase=100000 ,_lowerCamelCase=4096 ,_lowerCamelCase=11008 ,_lowerCamelCase=32 ,_lowerCamelCase=32 ,_lowerCamelCase="silu" ,_lowerCamelCase=2048 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-6 ,_lowerCamelCase=True ,_lowerCamelCase=0 ,_lowerCamelCase=1 ,_lowerCamelCase=2 ,_lowerCamelCase=False ,_lowerCamelCase=True ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> int: '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_range __lowercase = rms_norm_eps __lowercase = use_cache __lowercase = kwargs.pop( '''use_memorry_efficient_attention''' ,_lowerCamelCase ) __lowercase = hidden_dropout_prob __lowercase = attention_dropout_prob __lowercase = use_stable_embedding __lowercase = shared_input_output_embedding __lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,tie_word_embeddings=_lowerCamelCase ,**_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) __lowercase = self.rope_scaling.get('''type''' ,_lowerCamelCase ) __lowercase = self.rope_scaling.get('''factor''' ,_lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase ,_lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path __lowercase = quote(lowerCamelCase_ ) return hfh.hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' , revision=lowerCamelCase_ )
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1