code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , UpperCamelCase__=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , UpperCamelCase__=True , ): A__ = size if size is not None else {'''height''': 224, '''width''': 224} A__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_convert_rgb def __snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __snake_case ( self , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: A__ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: A__ = [] for i in range(self.batch_size ): A__ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension A__ = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] if torchify: A__ = [torch.from_numpy(UpperCamelCase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __snake_case ( self ): A__ = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase__ ) @property def __snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self ): A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_convert_rgb''' ) ) def __snake_case ( self ): A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __snake_case ( self ): pass def __snake_case ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __snake_case ( self ): A__ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase__ ) A__ = 3 @property def __snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self ): A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_convert_rgb''' ) ) def __snake_case ( self ): pass def __snake_case ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : str ) -> int: """simple docstring""" def get_masked_lm_array(__UpperCamelCase : str ): A__ : Any = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ : Union[str, Any] = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) if "kernel" in name: A__ : str = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_array(__UpperCamelCase : str ): A__ : Dict = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ : List[str] = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) if "kernel" in name: A__ : Any = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_layer_array(__UpperCamelCase : int , __UpperCamelCase : str ): A__ : Dict = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ : List[str] = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) if "kernel" in name: A__ : List[str] = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_attention_layer_array(__UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : str ): A__ : Any = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" A__ : List[Any] = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) A__ : Optional[int] = array.reshape(__UpperCamelCase ) if "kernel" in name: A__ : Optional[Any] = array.transpose() return torch.from_numpy(__UpperCamelCase ) print(F"Loading model based on config from {config_path}..." ) A__ : List[Any] = BertConfig.from_json_file(__UpperCamelCase ) A__ : Tuple = BertForMaskedLM(__UpperCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention A__ : BertSelfAttention = layer.attention.self A__ : str = get_encoder_attention_layer_array( __UpperCamelCase , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) A__ : Optional[Any] = get_encoder_attention_layer_array( __UpperCamelCase , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) A__ : Dict = get_encoder_attention_layer_array( __UpperCamelCase , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) A__ : Optional[Any] = get_encoder_attention_layer_array( __UpperCamelCase , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) A__ : Dict = get_encoder_attention_layer_array( __UpperCamelCase , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) A__ : int = get_encoder_attention_layer_array( __UpperCamelCase , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output A__ : BertSelfOutput = layer.attention.output A__ : Optional[int] = get_encoder_attention_layer_array( __UpperCamelCase , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) A__ : Tuple = get_encoder_attention_layer_array( __UpperCamelCase , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) A__ : Tuple = get_encoder_layer_array(__UpperCamelCase , '''_attention_layer_norm/gamma''' ) A__ : Union[str, Any] = get_encoder_layer_array(__UpperCamelCase , '''_attention_layer_norm/beta''' ) # Intermediate A__ : BertIntermediate = layer.intermediate A__ : Tuple = get_encoder_layer_array(__UpperCamelCase , '''_intermediate_dense/kernel''' ) A__ : int = get_encoder_layer_array(__UpperCamelCase , '''_intermediate_dense/bias''' ) # Output A__ : BertOutput = layer.output A__ : Any = get_encoder_layer_array(__UpperCamelCase , '''_output_dense/kernel''' ) A__ : Union[str, Any] = get_encoder_layer_array(__UpperCamelCase , '''_output_dense/bias''' ) A__ : Optional[Any] = get_encoder_layer_array(__UpperCamelCase , '''_output_layer_norm/gamma''' ) A__ : Union[str, Any] = get_encoder_layer_array(__UpperCamelCase , '''_output_layer_norm/beta''' ) # Embeddings A__ : Dict = get_encoder_array('''_position_embedding_layer/embeddings''' ) A__ : int = get_encoder_array('''_type_embedding_layer/embeddings''' ) A__ : Any = get_encoder_array('''_embedding_norm_layer/gamma''' ) A__ : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head A__ : str = model.cls.predictions.transform A__ : List[Any] = get_masked_lm_array('''dense/kernel''' ) A__ : Tuple = get_masked_lm_array('''dense/bias''' ) A__ : List[Any] = get_masked_lm_array('''layer_norm/gamma''' ) A__ : str = get_masked_lm_array('''layer_norm/beta''' ) A__ : Any = get_masked_lm_array('''embedding_table''' ) # Pooling A__ : Optional[int] = BertPooler(config=__UpperCamelCase ) A__ : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) A__ : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__UpperCamelCase ) # Integration test - should load without any errors ;) A__ : Any = BertForMaskedLM.from_pretrained(__UpperCamelCase ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCamelCase__ ): A__ : str = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[Any] = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCamelCase__ ): A__ : Dict = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: A__ : str = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() @slow def __snake_case ( self ): for model_name in ["roberta-base", "roberta-large"]: A__ : Any = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A__ : List[str] = FlaxRobertaModel.from_pretrained(UpperCamelCase__ ) A__ : Optional[int] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() def __snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase__ , '''bert-base is not a local folder and is not a valid model identifier''' ): A__ : Union[str, Any] = FlaxAutoModel.from_pretrained('''bert-base''' ) def __snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A__ : Dict = FlaxAutoModel.from_pretrained(UpperCamelCase__ , revision='''aaaaaa''' ) def __snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase__ , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): A__ : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __snake_case ( self ): with self.assertRaisesRegex(UpperCamelCase__ , '''Use `from_pt=True` to load this model''' ): A__ : Optional[int] = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 60_08_51_47_51_43 ) -> int: """simple docstring""" try: A__ : Any = int(__UpperCamelCase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) A__ : Tuple = 2 A__ : Dict = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ : List[Any] = i while n % i == 0: A__ : Optional[int] = n // i i += 1 return int(__UpperCamelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] ) -> list[int]: """simple docstring""" A__ : int = len(__UpperCamelCase ) for i in range(__UpperCamelCase ): for j in range(i + 1 , __UpperCamelCase ): if numbers[j] < numbers[i]: A__ : Optional[int] = numbers[j], numbers[i] return numbers if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() _SCREAMING_SNAKE_CASE : int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
from __future__ import annotations import math import random from typing import Any class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : list[Any] = [] A__ : int = 0 A__ : int = 0 def __snake_case ( self ): return self.head == self.tail def __snake_case ( self , UpperCamelCase__ ): self.data.append(UpperCamelCase__ ) A__ : List[Any] = self.tail + 1 def __snake_case ( self ): A__ : Tuple = self.data[self.head] A__ : List[str] = self.head + 1 return ret def __snake_case ( self ): return self.tail - self.head def __snake_case ( self ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ): A__ : Union[str, Any] = data A__ : MyNode | None = None A__ : MyNode | None = None A__ : int = 1 def __snake_case ( self ): return self.data def __snake_case ( self ): return self.left def __snake_case ( self ): return self.right def __snake_case ( self ): return self.height def __snake_case ( self , UpperCamelCase__ ): A__ : int = data def __snake_case ( self , UpperCamelCase__ ): A__ : Any = node def __snake_case ( self , UpperCamelCase__ ): A__ : Union[str, Any] = node def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = height def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode | None ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" if a > b: return a return b def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" print('''left rotation node:''' , node.get_data() ) A__ : Optional[int] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__UpperCamelCase ) A__ : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) A__ : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" print('''right rotation node:''' , node.get_data() ) A__ : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__UpperCamelCase ) A__ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) A__ : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" A__ : Dict = node.get_left() assert left_child is not None node.set_left(left_rotation(__UpperCamelCase ) ) return right_rotation(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" A__ : List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(__UpperCamelCase ) ) return left_rotation(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode | None , __UpperCamelCase : Any ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(__UpperCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __UpperCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected A__ : List[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child A__ : int = right_rotation(__UpperCamelCase ) else: A__ : Dict = lr_rotation(__UpperCamelCase ) else: node.set_right(insert_node(node.get_right() , __UpperCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: A__ : List[Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): A__ : List[Any] = rl_rotation(__UpperCamelCase ) else: A__ : Optional[Any] = left_rotation(__UpperCamelCase ) A__ : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) return node def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> Any: """simple docstring""" while True: A__ : Optional[Any] = root.get_right() if right_child is None: break A__ : Union[str, Any] = right_child return root.get_data() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> Any: """simple docstring""" while True: A__ : str = root.get_left() if left_child is None: break A__ : List[str] = left_child return root.get_data() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode , __UpperCamelCase : Any ) -> MyNode | None: """simple docstring""" A__ : str = root.get_left() A__ : Optional[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: A__ : str = get_left_most(__UpperCamelCase ) root.set_data(__UpperCamelCase ) root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) elif left_child is not None: A__ : str = left_child elif right_child is not None: A__ : Any = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(__UpperCamelCase , __UpperCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) if get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): A__ : int = left_rotation(__UpperCamelCase ) else: A__ : Any = rl_rotation(__UpperCamelCase ) elif get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): A__ : Dict = right_rotation(__UpperCamelCase ) else: A__ : Optional[Any] = lr_rotation(__UpperCamelCase ) A__ : int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__UpperCamelCase ) return root class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : MyNode | None = None def __snake_case ( self ): return get_height(self.root ) def __snake_case ( self , UpperCamelCase__ ): print('''insert:''' + str(UpperCamelCase__ ) ) A__ : Tuple = insert_node(self.root , UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): print('''delete:''' + str(UpperCamelCase__ ) ) if self.root is None: print('''Tree is empty!''' ) return A__ : Union[str, Any] = del_node(self.root , UpperCamelCase__ ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree A__ : Union[str, Any] = '''''' A__ : Union[str, Any] = MyQueue() q.push(self.root ) A__ : int = self.get_height() if layer == 0: return output A__ : List[Any] = 0 while not q.is_empty(): A__ : Optional[int] = q.pop() A__ : int = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase__ ) q.push(UpperCamelCase__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space A__ : Dict = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , UpperCamelCase__ ) - 1: A__ : Tuple = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() _SCREAMING_SNAKE_CASE : List[str] = AVLtree() _SCREAMING_SNAKE_CASE : Optional[Any] = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "nllb-moe" _lowerCAmelCase = ["past_key_values"] _lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase__=12_8112 , UpperCamelCase__=1024 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=0.0_5 , UpperCamelCase__=0.0_5 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=1024 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="float32" , UpperCamelCase__=False , UpperCamelCase__=128 , UpperCamelCase__=64 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=0.0_0_1 , UpperCamelCase__=0.0_0_1 , UpperCamelCase__="all" , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=1.0 , UpperCamelCase__=0.2 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=False , **UpperCamelCase__ , ): A__ : List[str] = vocab_size A__ : str = max_position_embeddings A__ : Dict = d_model A__ : int = encoder_ffn_dim A__ : Optional[Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : int = decoder_ffn_dim A__ : Dict = decoder_layers A__ : Optional[int] = decoder_attention_heads A__ : Dict = dropout A__ : int = attention_dropout A__ : List[str] = activation_dropout A__ : Union[str, Any] = activation_function A__ : int = init_std A__ : Optional[Any] = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : int = use_cache A__ : int = encoder_layers A__ : str = scale_embedding # scale factor will be sqrt(d_model) if True A__ : Any = router_z_loss_coef A__ : str = router_aux_loss_coef A__ : Dict = decoder_sparse_step A__ : int = encoder_sparse_step A__ : Any = num_experts A__ : Tuple = expert_capacity A__ : Any = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) A__ : Dict = router_dtype A__ : Optional[Any] = router_ignore_padding_tokens A__ : Optional[Any] = batch_prioritized_routing A__ : Optional[int] = second_expert_policy A__ : List[Any] = normalize_router_prob_before_dropping A__ : Optional[int] = moe_eval_capacity_token_fraction A__ : Tuple = moe_token_dropout A__ : Optional[Any] = output_router_logits super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') _SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) _lowerCAmelCase = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = field(default=SCREAMING_SNAKE_CASE_, metadata={"help": "The input training data file (a text file)."} ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "Overwrite the cached training and evaluation sets"} ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "The number of processes to use for the preprocessing."}, ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) def __snake_case ( self ): if self.train_file is not None: A__ : List[str] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: A__ : Optional[int] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = True _lowerCAmelCase = None _lowerCAmelCase = None def __call__( self , UpperCamelCase__ ): A__ : int = '''label''' if '''label''' in features[0].keys() else '''labels''' A__ : List[str] = [feature.pop(UpperCamelCase__ ) for feature in features] A__ : Optional[Any] = len(UpperCamelCase__ ) A__ : int = len(features[0]['''input_ids'''] ) A__ : Optional[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCamelCase__ )] for feature in features ] A__ : Tuple = list(chain(*UpperCamelCase__ ) ) A__ : List[str] = self.tokenizer.pad( UpperCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten A__ : Optional[int] = {k: v.view(UpperCamelCase__ , UpperCamelCase__ , -1 ) for k, v in batch.items()} # Add back labels A__ : str = torch.tensor(UpperCamelCase__ , dtype=torch.intaa ) return batch def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ : int = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) datasets.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. A__ : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: A__ : List[str] = {} if data_args.train_file is not None: A__ : Optional[Any] = data_args.train_file if data_args.validation_file is not None: A__ : Tuple = data_args.validation_file A__ : Dict = data_args.train_file.split('''.''' )[-1] A__ : Optional[Any] = load_dataset( __UpperCamelCase , data_files=__UpperCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. A__ : Optional[Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. A__ : Union[str, Any] = [F"ending{i}" for i in range(4 )] A__ : Any = '''sent1''' A__ : int = '''sent2''' if data_args.max_seq_length is None: A__ : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) A__ : Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) A__ : Dict = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCamelCase : int ): A__ : Tuple = [[context] * 4 for context in examples[context_name]] A__ : Optional[int] = examples[question_header_name] A__ : Any = [ [F"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(__UpperCamelCase ) ] # Flatten out A__ : Tuple = list(chain(*__UpperCamelCase ) ) A__ : Dict = list(chain(*__UpperCamelCase ) ) # Tokenize A__ : Any = tokenizer( __UpperCamelCase , __UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) A__ : Dict = raw_datasets['''train'''] if data_args.max_train_samples is not None: A__ : Dict = min(len(__UpperCamelCase ) , data_args.max_train_samples ) A__ : List[str] = train_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): A__ : str = train_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) A__ : Optional[int] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: A__ : Any = min(len(__UpperCamelCase ) , data_args.max_eval_samples ) A__ : str = eval_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): A__ : Optional[Any] = eval_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator A__ : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCamelCase : List[Any] ): A__ : int = eval_predictions A__ : Tuple = np.argmax(__UpperCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer A__ : Optional[Any] = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , compute_metrics=__UpperCamelCase , ) # Training if training_args.do_train: A__ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: A__ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ : Dict = last_checkpoint A__ : List[str] = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload A__ : str = train_result.metrics A__ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCamelCase ) ) A__ : int = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics('''train''' , __UpperCamelCase ) trainer.save_metrics('''train''' , __UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A__ : Any = trainer.evaluate() A__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCamelCase ) A__ : str = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics('''eval''' , __UpperCamelCase ) trainer.save_metrics('''eval''' , __UpperCamelCase ) A__ : Any = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" main() if __name__ == "__main__": main()
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : int = logging.get_logger() @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[str] = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def __snake_case ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 0 _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) def __call__( self , UpperCamelCase__ ): A__ : Any = Tracker(self.dest )(UpperCamelCase__ ).parametrized A__ : Optional[Any] = Tracker(self.src )(UpperCamelCase__ ).parametrized A__ : Tuple = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) A__ : Union[str, Any] = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise Exception( F"Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while" F" destination module has {len(UpperCamelCase__ )}." ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : ResNetConfig , __UpperCamelCase : Path , __UpperCamelCase : bool = True ) -> Union[str, Any]: """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): A__ : List[str] = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ).eval() A__ : List[str] = ResNetForImageClassification(__UpperCamelCase ).eval() A__ : List[Any] = ModuleTransfer(src=__UpperCamelCase , dest=__UpperCamelCase ) A__ : Any = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__UpperCamelCase ) assert torch.allclose(from_model(__UpperCamelCase ) , our_model(__UpperCamelCase ).logits ), "The model logits don't match the original one." A__ : Union[str, Any] = F"resnet{'-'.join(name.split('resnet' ) )}" print(__UpperCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCamelCase , ) # we can use the convnext one A__ : int = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCamelCase , ) print(F"Pushed {checkpoint_name}" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Path , __UpperCamelCase : str = None , __UpperCamelCase : bool = True ) -> Dict: """simple docstring""" A__ : Optional[int] = '''imagenet-1k-id2label.json''' A__ : Optional[int] = 10_00 A__ : Optional[int] = (1, num_labels) A__ : Dict = '''huggingface/label-files''' A__ : List[Any] = num_labels A__ : str = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Any = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : str = idalabel A__ : List[str] = {v: k for k, v in idalabel.items()} A__ : Dict = partial(__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) A__ : str = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCamelCase , names_to_config[model_name] , __UpperCamelCase , __UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, expected_shape if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__=None , UpperCamelCase__=None ): if not conversation_id: A__ : Any = uuid.uuida() if past_user_inputs is None: A__ : List[str] = [] if generated_responses is None: A__ : Union[str, Any] = [] A__ : uuid.UUID = conversation_id A__ : List[str] = past_user_inputs A__ : List[str] = generated_responses A__ : Optional[str] = text def __eq__( self , UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = False ): if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) A__ : Dict = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: A__ : Optional[int] = text def __snake_case ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A__ : List[str] = None def __snake_case ( self , UpperCamelCase__ ): self.generated_responses.append(UpperCamelCase__ ) def __snake_case ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): A__ : Tuple = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): A__ : str = '''user''' if is_user else '''bot''' output += F"{name} >> {text} \n" return output @add_end_docstrings( SCREAMING_SNAKE_CASE_, R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ", ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) if self.tokenizer.pad_token_id is None: A__ : Tuple = self.tokenizer.eos_token def __snake_case ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): A__ : str = {} A__ : Optional[int] = {} A__ : Optional[int] = {} if min_length_for_response is not None: A__ : Dict = min_length_for_response if minimum_tokens is not None: A__ : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: A__ : Union[str, Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A__ : Optional[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCamelCase__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , UpperCamelCase__ , UpperCamelCase__=0 , **UpperCamelCase__ ): A__ : List[str] = super().__call__(UpperCamelCase__ , num_workers=UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) == 1: return outputs[0] return outputs def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=32 ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): A__ : List[Any] = self.tokenizer._build_conversation_input_ids(UpperCamelCase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version A__ : Any = self._legacy_parse_and_tokenize(UpperCamelCase__ ) if self.framework == "pt": A__ : Optional[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": A__ : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=10 , **UpperCamelCase__ ): A__ : str = generate_kwargs.get('''max_length''' , self.model.config.max_length ) A__ : List[Any] = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) A__ : Any = max_length - minimum_tokens A__ : List[Any] = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: A__ : List[str] = model_inputs['''attention_mask'''][:, -trim:] A__ : List[str] = model_inputs.pop('''conversation''' ) A__ : List[str] = max_length A__ : Any = self.model.generate(**UpperCamelCase__ , **UpperCamelCase__ ) if self.model.config.is_encoder_decoder: A__ : Any = 1 else: A__ : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=True ): A__ : Dict = model_outputs['''output_ids'''] A__ : List[Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) A__ : Union[str, Any] = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(UpperCamelCase__ ) return conversation def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = self.tokenizer.eos_token_id A__ : str = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) if len(UpperCamelCase__ ) > self.tokenizer.model_max_length: A__ : Dict = input_ids[-self.tokenizer.model_max_length :] return input_ids
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
_SCREAMING_SNAKE_CASE : str = [0, 2, 4, 6, 8] _SCREAMING_SNAKE_CASE : int = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 A__ : Tuple = 0 for digit in range(10 ): A__ : int = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __UpperCamelCase , __UpperCamelCase ) return result A__ : List[str] = 0 for digita in range(10 ): A__ : List[Any] = digita if (remainder + digita) % 2 == 0: A__ : str = ODD_DIGITS else: A__ : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: A__ : Optional[Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __UpperCamelCase , __UpperCamelCase , ) return result def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 9 ) -> int: """simple docstring""" A__ : Any = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__UpperCamelCase , 0 , [0] * length , __UpperCamelCase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ["image_processor", "tokenizer"] _lowerCAmelCase = "BlipImageProcessor" _lowerCAmelCase = "AutoTokenizer" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) # add QFormer tokenizer A__ : Tuple = qformer_tokenizer def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) A__ : Optional[int] = BatchFeature() if text is not None: A__ : str = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) encoding.update(UpperCamelCase__ ) A__ : str = self.qformer_tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Tuple = qformer_text_encoding.pop('''input_ids''' ) A__ : str = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: A__ : List[str] = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self ): A__ : Optional[Any] = self.tokenizer.model_input_names A__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __snake_case ( self , UpperCamelCase__ , **UpperCamelCase__ ): if os.path.isfile(UpperCamelCase__ ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ : List[str] = os.path.join(UpperCamelCase__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(UpperCamelCase__ ) return super().save_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def __snake_case ( cls , UpperCamelCase__ , **UpperCamelCase__ ): A__ : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ , subfolder='''qformer_tokenizer''' ) A__ : Optional[int] = cls._get_arguments_from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) args.append(UpperCamelCase__ ) return cls(*UpperCamelCase__ )
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = CLIPConfig _lowerCAmelCase = ["CLIPEncoderLayer"] def __init__( self , UpperCamelCase__ ): super().__init__(UpperCamelCase__ ) A__ : str = CLIPVisionModelWithProjection(config.vision_config ) A__ : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) A__ : str = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0.5 , UpperCamelCase__=0.5 ): A__ : Optional[Any] = self.vision_model(UpperCamelCase__ )[0] A__ : int = self.p_head(UpperCamelCase__ ) A__ : int = nsfw_detected.flatten() A__ : List[Any] = nsfw_detected > p_threshold A__ : Dict = nsfw_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase__ ): if nsfw_detected_: A__ : List[str] = np.zeros(images[idx].shape ) A__ : Union[str, Any] = self.w_head(UpperCamelCase__ ) A__ : List[Any] = watermark_detected.flatten() A__ : Optional[int] = watermark_detected > w_threshold A__ : Optional[int] = watermark_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase__ ): if watermark_detected_: A__ : int = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): _lowerCAmelCase = BertJapaneseTokenizer _lowerCAmelCase = False _lowerCAmelCase = True def __snake_case ( self ): super().setUp() A__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] A__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self , UpperCamelCase__ ): A__ : Any = '''こんにちは、世界。 \nこんばんは、世界。''' A__ : Dict = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __snake_case ( self , UpperCamelCase__ ): A__ : Dict = self.get_input_output_texts(UpperCamelCase__ ) A__ : List[str] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return text, ids def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): A__ : int = self.tokenizer_class(self.vocab_file ) A__ : Any = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __snake_case ( self ): A__ : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(UpperCamelCase__ ) A__ : Dict = '''こんにちは、世界。\nこんばんは、世界。''' A__ : Dict = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A__ : Optional[int] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''rb''' ) as handle: A__ : Tuple = pickle.load(UpperCamelCase__ ) A__ : str = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): try: A__ : Tuple = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): try: A__ : Optional[int] = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): A__ : Tuple = MecabTokenizer(do_lower_case=UpperCamelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __snake_case ( self ): try: A__ : Dict = MecabTokenizer( do_lower_case=UpperCamelCase__ , normalize_text=UpperCamelCase__ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __snake_case ( self ): A__ : Optional[Any] = MecabTokenizer(normalize_text=UpperCamelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __snake_case ( self ): A__ : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(UpperCamelCase__ ) A__ : int = '''こんにちは、世界。\nこんばんは、世界。''' A__ : Any = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A__ : str = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''rb''' ) as handle: A__ : Optional[int] = pickle.load(UpperCamelCase__ ) A__ : Any = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_sudachi def __snake_case ( self ): A__ : str = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __snake_case ( self ): A__ : Optional[Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __snake_case ( self ): A__ : Tuple = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __snake_case ( self ): A__ : str = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __snake_case ( self ): A__ : Optional[int] = SudachiTokenizer(do_lower_case=UpperCamelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __snake_case ( self ): A__ : Optional[int] = SudachiTokenizer(normalize_text=UpperCamelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __snake_case ( self ): A__ : Optional[int] = SudachiTokenizer(trim_whitespace=UpperCamelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): A__ : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(UpperCamelCase__ ) A__ : Dict = '''こんにちは、世界。\nこんばんは、世界。''' A__ : List[str] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A__ : Dict = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''rb''' ) as handle: A__ : Dict = pickle.load(UpperCamelCase__ ) A__ : Any = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_jumanpp def __snake_case ( self ): A__ : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): A__ : Union[str, Any] = JumanppTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): A__ : int = JumanppTokenizer(normalize_text=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): A__ : Dict = JumanppTokenizer(trim_whitespace=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __snake_case ( self ): A__ : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __snake_case ( self ): A__ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] A__ : str = {} for i, token in enumerate(UpperCamelCase__ ): A__ : str = i A__ : Union[str, Any] = WordpieceTokenizer(vocab=UpperCamelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __snake_case ( self ): A__ : Optional[Any] = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) A__ : str = tokenizer.subword_tokenizer A__ : Tuple = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(UpperCamelCase__ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) A__ : Tuple = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(UpperCamelCase__ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __snake_case ( self ): A__ : Dict = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) A__ : Optional[int] = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase__ ) A__ : Any = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase__ ) A__ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A__ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): _lowerCAmelCase = BertJapaneseTokenizer _lowerCAmelCase = False def __snake_case ( self ): super().setUp() A__ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] A__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self , **UpperCamelCase__ ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : int = '''こんにちは、世界。 \nこんばんは、世界。''' A__ : Dict = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): pass # TODO add if relevant def __snake_case ( self ): A__ : Tuple = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) A__ : str = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( UpperCamelCase__ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __snake_case ( self ): A__ : List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] A__ : Optional[int] = {} for i, token in enumerate(UpperCamelCase__ ): A__ : Optional[Any] = i A__ : Dict = CharacterTokenizer(vocab=UpperCamelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __snake_case ( self ): A__ : List[Any] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) A__ : Any = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase__ ) A__ : str = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase__ ) A__ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A__ : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCamelCase__ ( unittest.TestCase ): def __snake_case ( self ): A__ : Tuple = '''cl-tohoku/bert-base-japanese''' A__ : str = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): def __snake_case ( self ): A__ : str = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(UpperCamelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) A__ : Any = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): debug_launcher(test_script.main ) def __snake_case ( self ): debug_launcher(test_ops.main )
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase__ ( pl.LightningModule ): '''simple docstring''' def __init__( self , UpperCamelCase__ ): super().__init__() A__ = model A__ = 2 A__ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __snake_case ( self ): pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : str ) -> Tuple: """simple docstring""" A__ = LongformerModel.from_pretrained(__UpperCamelCase ) A__ = LightningModel(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model A__ = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : str = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _SCREAMING_SNAKE_CASE : Optional[Any] = 2_5_0_0_0_4 _SCREAMING_SNAKE_CASE : Optional[Any] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = MBartTokenizer _lowerCAmelCase = MBartTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def __snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing A__ : str = MBartTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self ): A__ : List[str] = MBartTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A__ : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A__ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __snake_case ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A__ : Optional[int] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Tuple = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : int = tempfile.mkdtemp() A__ : List[str] = tokenizer_r.save_pretrained(UpperCamelCase__ ) A__ : str = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) A__ : List[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ ) # Checks everything loads correctly in the same way A__ : Optional[Any] = tokenizer_r.from_pretrained(UpperCamelCase__ ) A__ : Dict = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase__ ) # Save tokenizer rust, legacy_format=True A__ : List[str] = tempfile.mkdtemp() A__ : List[Any] = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ ) A__ : Any = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase__ , UpperCamelCase__ ) # Checks everything loads correctly in the same way A__ : str = tokenizer_r.from_pretrained(UpperCamelCase__ ) A__ : Tuple = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) shutil.rmtree(UpperCamelCase__ ) # Save tokenizer rust, legacy_format=False A__ : Optional[Any] = tempfile.mkdtemp() A__ : Dict = tokenizer_r.save_pretrained(UpperCamelCase__ , legacy_format=UpperCamelCase__ ) A__ : List[str] = tokenizer_p.save_pretrained(UpperCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ : List[Any] = tokenizer_r.from_pretrained(UpperCamelCase__ ) A__ : List[Any] = tokenizer_p.from_pretrained(UpperCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase__ , UpperCamelCase__ ) ) shutil.rmtree(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = "facebook/mbart-large-en-ro" _lowerCAmelCase = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _lowerCAmelCase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _lowerCAmelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __snake_case ( cls ): A__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) A__ : List[Any] = 1 return cls def __snake_case ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_0020 ) def __snake_case ( self ): A__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) def __snake_case ( self ): self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids ) A__ : List[str] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] A__ : Union[str, Any] = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) A__ : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , UpperCamelCase__ ) A__ : List[str] = 10 A__ : Optional[Any] = self.tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) def __snake_case ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_0026, 25_0001] ) def __snake_case ( self ): A__ : Optional[int] = tempfile.mkdtemp() A__ : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase__ ) A__ : Any = MBartTokenizer.from_pretrained(UpperCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase__ ) @require_torch def __snake_case ( self ): A__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors='''pt''' ) A__ : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __snake_case ( self ): A__ : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) A__ : List[str] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) A__ : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __snake_case ( self ): A__ : Union[str, Any] = self.tokenizer(self.src_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=3 , return_tensors='''pt''' ) A__ : Tuple = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=10 , return_tensors='''pt''' ) A__ : Union[str, Any] = targets['''input_ids'''] A__ : Any = shift_tokens_right(UpperCamelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __snake_case ( self ): A__ : Optional[int] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 25_0004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_0001, } , )
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False A__ : Optional[Any] = range(3 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[Any]=1 , **__UpperCamelCase : str ) -> str: """simple docstring""" A__ : Union[str, Any] = factor * value A__ : str = value while not is_prime(__UpperCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__UpperCamelCase ) return value
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
import string def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): A__ : Tuple = '''''' for symbol in message: if symbol in string.ascii_uppercase: A__ : List[Any] = string.ascii_uppercase.find(__UpperCamelCase ) A__ : Any = num - key if num < 0: A__ : Union[str, Any] = num + len(string.ascii_uppercase ) A__ : Optional[int] = translated + string.ascii_uppercase[num] else: A__ : Dict = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" A__ : Optional[Any] = input('''Encrypted message: ''' ) A__ : Tuple = message.upper() decrypt(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): super().__init__() self.register_modules( vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def __snake_case ( self , UpperCamelCase__ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def __snake_case ( self ): self.enable_attention_slicing(UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = None , **UpperCamelCase__ , ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = 1 elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = len(UpperCamelCase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(UpperCamelCase__ )}." ) # get prompt text embeddings A__ : Any = self.tokenizer( UpperCamelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) A__ : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A__ : Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ : Dict = text_embeddings.shape A__ : Any = text_embeddings.repeat(1 , UpperCamelCase__ , 1 ) A__ : Any = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCamelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ : List[str] if negative_prompt is None: A__ : Dict = [''''''] elif type(UpperCamelCase__ ) is not type(UpperCamelCase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase__ )} !=" F" {type(UpperCamelCase__ )}." ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = [negative_prompt] elif batch_size != len(UpperCamelCase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: A__ : Optional[Any] = negative_prompt A__ : int = text_input_ids.shape[-1] A__ : Dict = self.tokenizer( UpperCamelCase__ , padding='''max_length''' , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' , ) A__ : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ : int = uncond_embeddings.shape[1] A__ : List[str] = uncond_embeddings.repeat(UpperCamelCase__ , UpperCamelCase__ , 1 ) A__ : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCamelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A__ : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ : Any = torch.randn( UpperCamelCase__ , generator=UpperCamelCase__ , device='''cpu''' , dtype=UpperCamelCase__ ).to(self.device ) A__ : Dict = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device='''cpu''' , dtype=UpperCamelCase__ ).to( self.device ) else: A__ : Any = torch.randn( UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) A__ : Optional[Any] = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A__ : Union[str, Any] = latents_reference.to(self.device ) A__ : List[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A__ : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A__ : Dict = (latents_shape[2] - latents_shape_reference[2]) // 2 A__ : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A__ : Optional[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A__ : Dict = 0 if dx < 0 else dx A__ : Optional[Any] = 0 if dy < 0 else dy A__ : Union[str, Any] = max(-dx , 0 ) A__ : str = max(-dy , 0 ) # import pdb # pdb.set_trace() A__ : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(UpperCamelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ : int = {} if accepts_eta: A__ : Optional[Any] = eta for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance A__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : List[str] = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual A__ : List[Any] = self.unet(UpperCamelCase__ , UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ).sample # perform guidance if do_classifier_free_guidance: A__ : List[Any] = noise_pred.chunk(2 ) A__ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ : List[Any] = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[Any] = 1 / 0.1_8_2_1_5 * latents A__ : List[Any] = self.vae.decode(UpperCamelCase__ ).sample A__ : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A__ : Optional[int] = self.feature_extractor(self.numpy_to_pil(UpperCamelCase__ ) , return_tensors='''pt''' ).to( self.device ) A__ : List[Any] = self.safety_checker( images=UpperCamelCase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A__ : List[Any] = None if output_type == "pil": A__ : Any = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=UpperCamelCase__ , nsfw_content_detected=UpperCamelCase__ )
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
import pytest import datasets # Import fixture modules as plugins _SCREAMING_SNAKE_CASE : Dict = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ) -> List[str]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> List[str]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" A__ : str = tmp_path_factory.getbasetemp() / '''cache''' A__ : str = test_hf_cache_home / '''datasets''' A__ : str = test_hf_cache_home / '''metrics''' A__ : Optional[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(__UpperCamelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(__UpperCamelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(__UpperCamelCase ) ) A__ : int = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(__UpperCamelCase ) ) A__ : str = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__UpperCamelCase ) ) @pytest.fixture(autouse=__UpperCamelCase , scope='''session''' ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , __UpperCamelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> int: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , __UpperCamelCase )
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str=10_24 , __UpperCamelCase : int=10_24 , __UpperCamelCase : Optional[int]=False , **__UpperCamelCase : Any ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) A__ : Tuple = SeqaSeqDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , type_path='''train''' , **__UpperCamelCase ) A__ : Any = tok.pad_token_id def get_lens(__UpperCamelCase : Optional[Any] ): A__ : int = tqdm( DataLoader(__UpperCamelCase , batch_size=5_12 , num_workers=8 , shuffle=__UpperCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) A__ : List[str] = [] for batch in dl: A__ : str = batch['''input_ids'''].ne(__UpperCamelCase ).sum(1 ).tolist() A__ : Any = batch['''labels'''].ne(__UpperCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__UpperCamelCase , __UpperCamelCase ): max_lens.append(max(__UpperCamelCase , __UpperCamelCase ) ) else: max_lens.extend(__UpperCamelCase ) return max_lens A__ : Dict = get_lens(__UpperCamelCase ) A__ : Tuple = SeqaSeqDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , type_path='''val''' , **__UpperCamelCase ) A__ : Any = get_lens(__UpperCamelCase ) pickle_save(__UpperCamelCase , train_ds.len_file ) pickle_save(__UpperCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : Any = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = PegasusTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def __snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing A__ : List[str] = PegasusTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __snake_case ( self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __snake_case ( self , **UpperCamelCase__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): return ("This is a test", "This is a test") def __snake_case ( self ): A__ : List[Any] = '''</s>''' A__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(UpperCamelCase__ ) , 1103 ) def __snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __snake_case ( self ): A__ : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A__ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) A__ : List[Any] = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) A__ : str = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] A__ : List[str] = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A__ : List[str] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' A__ : List[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] A__ : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 A__ : List[Any] = '''To ensure a smooth flow of bank resolutions.''' A__ : Union[str, Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] A__ : List[str] = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __snake_case ( self ): A__ : Union[str, Any] = ['''This is going to be way too long.''' * 150, '''short example'''] A__ : Tuple = ['''not super long but more than 5 tokens''', '''tiny'''] A__ : Tuple = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) A__ : Any = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. @slow def __snake_case ( self ): # fmt: off A__ : Optional[Any] = {'''input_ids''': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = PegasusTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def __snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing A__ : Optional[int] = PegasusTokenizer(UpperCamelCase__ , offset=0 , mask_token_sent=UpperCamelCase__ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __snake_case ( self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __snake_case ( self , **UpperCamelCase__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): return ("This is a test", "This is a test") def __snake_case ( self ): A__ : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A__ : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) A__ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) A__ : List[str] = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] A__ : str = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_torch def __snake_case ( self ): A__ : Dict = ['''This is going to be way too long.''' * 1000, '''short example'''] A__ : str = ['''not super long but more than 5 tokens''', '''tiny'''] A__ : List[Any] = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) A__ : Dict = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. def __snake_case ( self ): A__ : Tuple = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) A__ : List[str] = self._large_tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual( UpperCamelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _SCREAMING_SNAKE_CASE : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Tuple: """simple docstring""" inspect_dataset(__UpperCamelCase , __UpperCamelCase ) A__ : Any = path + '''.py''' assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" inspect_metric(__UpperCamelCase , __UpperCamelCase ) A__ : List[str] = path + '''.py''' assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) -> int: """simple docstring""" A__ : Tuple = get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict ) -> int: """simple docstring""" A__ : Any = get_dataset_config_names(__UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" A__ : Tuple = get_dataset_infos(__UpperCamelCase ) assert list(infos.keys() ) == expected_configs A__ : int = expected_configs[0] assert expected_config in infos A__ : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" A__ : Dict = get_dataset_infos(__UpperCamelCase ) assert expected_config in infos A__ : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_split_names(__UpperCamelCase , config_name=__UpperCamelCase )
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) _lowerCAmelCase = "CIDAS/clipseg-rd64-refined" _lowerCAmelCase = "image_segmenter" _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ["image", "text"] _lowerCAmelCase = ["image"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): requires_backends(self , ['''vision'''] ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): return self.pre_processor(text=[label] , images=[image] , padding=UpperCamelCase__ , return_tensors='''pt''' ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): A__ : Dict = self.model(**UpperCamelCase__ ).logits return logits def __snake_case ( self , UpperCamelCase__ ): A__ : Union[str, Any] = outputs.cpu().detach().numpy() A__ : Dict = 0 A__ : Dict = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
from timeit import timeit def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) A__ : int = 0 while number: number &= number - 1 result += 1 return result def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) A__ : Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" def do_benchmark(__UpperCamelCase : int ) -> None: A__ : List[str] = '''import __main__ as z''' print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(__UpperCamelCase ) = }" ) A__ : int = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__UpperCamelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCamelCase ) = }" ) A__ : Any = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__UpperCamelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _SCREAMING_SNAKE_CASE : Union[str, Any] = object() # For specifying empty leaf dict `{}` _SCREAMING_SNAKE_CASE : Optional[Any] = object() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ) -> List[str]: """simple docstring""" A__ : Optional[int] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): A__ : Tuple = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase , ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" def replace(__UpperCamelCase : Any , __UpperCamelCase : Tuple ): for rule, replacement in rules: if _match(__UpperCamelCase , __UpperCamelCase ): return replacement return val return replace def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __UpperCamelCase )), (("transformer", "wte", "embedding"), P('''mp''' , __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Any: """simple docstring""" A__ : Optional[Any] = _get_partition_rules() A__ : Dict = _replacement_rules(__UpperCamelCase ) A__ : Optional[int] = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} A__ : Tuple = {k: replace(__UpperCamelCase , __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=False , ): A__ : Union[str, Any] = size if size is not None else {'''height''': 20, '''width''': 20} A__ : Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} A__ : Any = parent A__ : List[Any] = batch_size A__ : Tuple = num_channels A__ : int = image_size A__ : List[Any] = min_resolution A__ : List[Any] = max_resolution A__ : List[Any] = do_resize A__ : int = size A__ : int = do_center_crop A__ : int = crop_size A__ : Tuple = do_normalize A__ : List[str] = image_mean A__ : Any = image_std A__ : Union[str, Any] = do_reduce_labels def __snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def SCREAMING_SNAKE_CASE ( ): """simple docstring""" A__ : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) A__ : Any = Image.open(dataset[0]['''file'''] ) A__ : List[Any] = Image.open(dataset[1]['''file'''] ) return image, map def SCREAMING_SNAKE_CASE ( ): """simple docstring""" A__ : Tuple = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) A__ : List[str] = Image.open(ds[0]['''file'''] ) A__ : int = Image.open(ds[1]['''file'''] ) A__ : Any = Image.open(ds[2]['''file'''] ) A__ : Dict = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = BeitImageProcessor if is_vision_available() else None def __snake_case ( self ): A__ : str = BeitImageProcessingTester(self ) @property def __snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self ): A__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) def __snake_case ( self ): A__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase__ ) A__ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCamelCase__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase__ ) def __snake_case ( self ): pass def __snake_case ( self ): # Initialize image_processing A__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ : List[Any] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self ): # Initialize image_processing A__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ : Dict = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self ): # Initialize image_processing A__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A__ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ : Tuple = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self ): # Initialize image_processing A__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) A__ : int = [] for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A__ : Tuple = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched A__ : Any = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) A__ : Optional[Any] = prepare_semantic_single_inputs() A__ : Dict = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) A__ : List[str] = prepare_semantic_batch_inputs() A__ : List[str] = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def __snake_case ( self ): # Initialize image_processing A__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A__ : List[Any] = prepare_semantic_single_inputs() A__ : int = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) A__ : Optional[int] = True A__ : str = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): super().__init__() self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ = 1 , UpperCamelCase__ = 2000 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , **UpperCamelCase__ , ): A__ : Tuple = self.unet.config.sample_size A__ : List[Any] = (batch_size, 3, img_size, img_size) A__ : Tuple = self.unet A__ : Union[str, Any] = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ ) * self.scheduler.init_noise_sigma A__ : Tuple = sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) self.scheduler.set_sigmas(UpperCamelCase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A__ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): A__ : Optional[Any] = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample A__ : Any = self.scheduler.step_correct(UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample # prediction step A__ : Any = model(UpperCamelCase__ , UpperCamelCase__ ).sample A__ : Dict = self.scheduler.step_pred(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A__ : str = output.prev_sample, output.prev_sample_mean A__ : List[str] = sample_mean.clamp(0 , 1 ) A__ : Optional[int] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ : Optional[int] = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase__ )
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Any = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "efficientnet" def __init__( self , UpperCamelCase__ = 3 , UpperCamelCase__ = 600 , UpperCamelCase__ = 2.0 , UpperCamelCase__ = 3.1 , UpperCamelCase__ = 8 , UpperCamelCase__ = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ = [] , UpperCamelCase__ = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ = 0.2_5 , UpperCamelCase__ = "swish" , UpperCamelCase__ = 2560 , UpperCamelCase__ = "mean" , UpperCamelCase__ = 0.0_2 , UpperCamelCase__ = 0.0_0_1 , UpperCamelCase__ = 0.9_9 , UpperCamelCase__ = 0.5 , UpperCamelCase__ = 0.2 , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ ) A__ : Optional[Any] = num_channels A__ : str = image_size A__ : int = width_coefficient A__ : Optional[int] = depth_coefficient A__ : str = depth_divisor A__ : Tuple = kernel_sizes A__ : List[str] = in_channels A__ : List[Any] = out_channels A__ : Optional[Any] = depthwise_padding A__ : Union[str, Any] = strides A__ : Optional[int] = num_block_repeats A__ : Any = expand_ratios A__ : Optional[Any] = squeeze_expansion_ratio A__ : Optional[Any] = hidden_act A__ : Union[str, Any] = hidden_dim A__ : Any = pooling_type A__ : Union[str, Any] = initializer_range A__ : Tuple = batch_norm_eps A__ : Union[str, Any] = batch_norm_momentum A__ : Union[str, Any] = dropout_rate A__ : Dict = drop_connect_rate A__ : Tuple = sum(UpperCamelCase__ ) * 4 class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = version.parse("1.11" ) @property def __snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __snake_case ( self ): return 1e-5
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' from math import isqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> list[int]: """simple docstring""" A__ : Optional[int] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __UpperCamelCase , __UpperCamelCase ): A__ : List[str] = False return [i for i in range(2 , __UpperCamelCase ) if is_prime[i]] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**8 ) -> int: """simple docstring""" A__ : Optional[int] = calculate_prime_numbers(max_number // 2 ) A__ : str = 0 A__ : str = 0 A__ : List[Any] = len(__UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,**_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) requires_backends(self ,'''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__(self ,_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return super().__call__(_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = {} if "candidate_labels" in kwargs: __lowercase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __lowercase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ,_lowerCamelCase="This is a photo of {}." ) -> Optional[Any]: '''simple docstring''' __lowercase = load_image(_lowerCamelCase ) __lowercase = self.image_processor(images=[image] ,return_tensors=self.framework ) __lowercase = candidate_labels __lowercase = [hypothesis_template.format(_lowerCamelCase ) for x in candidate_labels] __lowercase = self.tokenizer(_lowerCamelCase ,return_tensors=self.framework ,padding=_lowerCamelCase ) __lowercase = [text_inputs] return inputs def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = model_inputs.pop('''candidate_labels''' ) __lowercase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,_lowerCamelCase ): __lowercase = text_inputs[0] else: # Batching case. __lowercase = text_inputs[0][0] __lowercase = self.model(**_lowerCamelCase ,**_lowerCamelCase ) __lowercase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = model_outputs.pop('''candidate_labels''' ) __lowercase = model_outputs['''logits'''][0] if self.framework == "pt": __lowercase = logits.softmax(dim=-1 ).squeeze(-1 ) __lowercase = probs.tolist() if not isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [scores] elif self.framework == "tf": __lowercase = stable_softmax(_lowerCamelCase ,axis=-1 ) __lowercase = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowercase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_lowerCamelCase ,_lowerCamelCase ) ,key=lambda _lowerCamelCase : -x[0] ) ] return result
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' from collections.abc import Generator from math import sin def _lowerCAmelCase ( lowerCamelCase_ : bytes ): if len(lowerCamelCase_ ) != 3_2: raise ValueError('''Input must be of length 32''' ) __lowercase = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowerCAmelCase ( lowerCamelCase_ : int ): if i < 0: raise ValueError('''Input must be non-negative''' ) __lowercase = format(lowerCamelCase_ , '''08x''' )[-8:] __lowercase = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def _lowerCAmelCase ( lowerCamelCase_ : bytes ): __lowercase = b'''''' for char in message: bit_string += format(lowerCamelCase_ , '''08b''' ).encode('''utf-8''' ) __lowercase = format(len(lowerCamelCase_ ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCamelCase_ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _lowerCAmelCase ( lowerCamelCase_ : bytes ): if len(lowerCamelCase_ ) % 5_1_2 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(lowerCamelCase_ ) , 5_1_2 ): __lowercase = bit_string[pos : pos + 5_1_2] __lowercase = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _lowerCAmelCase ( lowerCamelCase_ : int ): if i < 0: raise ValueError('''Input must be non-negative''' ) __lowercase = format(lowerCamelCase_ , '''032b''' ) __lowercase = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCamelCase_ , 2 ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): return (a + b) % 2**3_2 def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _lowerCAmelCase ( lowerCamelCase_ : bytes ): __lowercase = preprocess(lowerCamelCase_ ) __lowercase = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __lowercase = 0x6745_2301 __lowercase = 0xefcd_ab89 __lowercase = 0x98ba_dcfe __lowercase = 0x1032_5476 __lowercase = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCamelCase_ ): __lowercase = aa __lowercase = ba __lowercase = ca __lowercase = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowercase = d ^ (b & (c ^ d)) __lowercase = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowercase = c ^ (d & (b ^ c)) __lowercase = (5 * i + 1) % 1_6 elif i <= 4_7: __lowercase = b ^ c ^ d __lowercase = (3 * i + 5) % 1_6 else: __lowercase = c ^ (b | not_aa(lowerCamelCase_ )) __lowercase = (7 * i) % 1_6 __lowercase = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __lowercase = d __lowercase = c __lowercase = b __lowercase = sum_aa(lowerCamelCase_ , left_rotate_aa(lowerCamelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowercase = sum_aa(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = sum_aa(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = sum_aa(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = sum_aa(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = reformat_hex(lowerCamelCase_ ) + reformat_hex(lowerCamelCase_ ) + reformat_hex(lowerCamelCase_ ) + reformat_hex(lowerCamelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _SCREAMING_SNAKE_CASE = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): __lowercase = [image] __lowercase = [trans(img.convert('''RGB''' ) ) for img in image] __lowercase = torch.stack(lowerCamelCase_ ) return image class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __lowercase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = min(int(num_inference_steps * strength ) ,_lowerCamelCase ) __lowercase = max(num_inference_steps - init_timestep ,0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowerCamelCase )}" ) __lowercase = image.to(device=_lowerCamelCase ,dtype=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowercase = init_latents.shape __lowercase = randn_tensor(_lowerCamelCase ,generator=_lowerCamelCase ,device=_lowerCamelCase ,dtype=_lowerCamelCase ) # get latents print('''add noise to latents at timestep''' ,_lowerCamelCase ) __lowercase = self.scheduler.add_noise(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = init_latents return latents @torch.no_grad() def __call__(self ,_lowerCamelCase = None ,_lowerCamelCase = 0.8 ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,_lowerCamelCase = 0.0 ,_lowerCamelCase = 50 ,_lowerCamelCase = None ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(_lowerCamelCase ) # 2. Preprocess image __lowercase = preprocess(_lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(_lowerCamelCase ,device=self.device ) __lowercase , __lowercase = self.get_timesteps(_lowerCamelCase ,_lowerCamelCase ,self.device ) __lowercase = timesteps[:1].repeat(_lowerCamelCase ) # 4. Prepare latent variables __lowercase = self.prepare_latents(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,self.unet.dtype ,self.device ,_lowerCamelCase ) __lowercase = latents # 5. Denoising loop for t in self.progress_bar(_lowerCamelCase ): # 1. predict noise model_output __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowercase = self.scheduler.step( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,eta=_lowerCamelCase ,use_clipped_model_output=_lowerCamelCase ,generator=_lowerCamelCase ,).prev_sample __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowerCamelCase )
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') _SCREAMING_SNAKE_CASE = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _lowerCAmelCase ( lowerCamelCase_ : str ): with open(lowerCamelCase_ , '''rb''' ) as f: __lowercase = Image.open(lowerCamelCase_ ) return im.convert('''RGB''' ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the training data."} ) a : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) a : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __lowercase : '''simple docstring''' a : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a : str = field(default=lowerCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) a : bool = field( default=lowerCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = torch.stack([example['''pixel_values'''] for example in examples] ) __lowercase = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , lowerCamelCase_ , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowercase = {} if data_args.train_dir is not None: __lowercase = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: __lowercase = os.path.join(data_args.validation_dir , '''**''' ) __lowercase = load_dataset( '''imagefolder''' , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase_ ) and data_args.train_val_split > 0.0: __lowercase = dataset['''train'''].train_test_split(data_args.train_val_split ) __lowercase = split['''train'''] __lowercase = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowercase = dataset['''train'''].features['''labels'''].names __lowercase , __lowercase = {}, {} for i, label in enumerate(lowerCamelCase_ ): __lowercase = str(lowerCamelCase_ ) __lowercase = label # Load the accuracy metric from the datasets package __lowercase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ : Dict ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase_ ) , labelaid=lowerCamelCase_ , idalabel=lowerCamelCase_ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowercase = image_processor.size['''shortest_edge'''] else: __lowercase = (image_processor.size['''height'''], image_processor.size['''width''']) __lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowercase = Compose( [ RandomResizedCrop(lowerCamelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowercase = Compose( [ Resize(lowerCamelCase_ ), CenterCrop(lowerCamelCase_ ), ToTensor(), normalize, ] ) def train_transforms(lowerCamelCase_ : List[str] ): __lowercase = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(lowerCamelCase_ : List[Any] ): __lowercase = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __lowercase = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCamelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __lowercase = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCamelCase_ ) # Initalize our trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCamelCase_ ) trainer.save_metrics('''eval''' , lowerCamelCase_ ) # Write model card and (optionally) push to hub __lowercase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) if __name__ == "__main__": main()
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = RoFormerTokenizer a : List[Any] = RoFormerTokenizerFast a : Tuple = True a : Any = True def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().setUp() def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = '''永和服装饰品有限公司,今天天气非常好''' __lowercase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase , __lowercase = self.get_chinese_input_output_texts() __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,output_text.split() ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_rust_tokenizer() __lowercase , __lowercase = self.get_chinese_input_output_texts() __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,output_text.split() ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' pass
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): __lowercase = 1_0 __lowercase = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) __lowercase = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [9_7], '''text''': ['''1976''']}] * 1_0, '''id''': list(range(lowerCamelCase_ ) ), } , features=lowerCamelCase_ , ) return dataset @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=lowerCamelCase_ ) return filename # FILE_CONTENT + files _SCREAMING_SNAKE_CASE = '''\ Text data. Second line of data.''' @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' __lowercase = FILE_CONTENT with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return filename @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict ): import bza __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with bza.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): import gzip __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with gzip.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict ): if datasets.config.LZ4_AVAILABLE: import lza.frame __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with lza.frame.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(lowerCamelCase_ , '''w''' ) as archive: archive.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ): import tarfile __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): import lzma __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with lzma.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ): import zipfile __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' __lowercase = bytes(lowerCamelCase_ , '''utf-8''' ) with zstd.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' __lowercase = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return filename _SCREAMING_SNAKE_CASE = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] _SCREAMING_SNAKE_CASE = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] _SCREAMING_SNAKE_CASE = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } _SCREAMING_SNAKE_CASE = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] _SCREAMING_SNAKE_CASE = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = datasets.Dataset.from_dict(lowerCamelCase_ ) __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(lowerCamelCase_ ) ) as con: __lowercase = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(lowerCamelCase_ , '''w''' , newline='''''' ) as f: __lowercase = csv.DictWriter(lowerCamelCase_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(lowerCamelCase_ , '''w''' , newline='''''' ) as f: __lowercase = csv.DictWriter(lowerCamelCase_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): import bza __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(lowerCamelCase_ , '''rb''' ) as f: __lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase_ , '''wb''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) __lowercase = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(lowerCamelCase_ , '''wb''' ) as f: __lowercase = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_ ) __lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase_ ) )] for k in DATA[0]} , schema=lowerCamelCase_ ) writer.write_table(lowerCamelCase_ ) writer.close() return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __lowercase = {'''data''': DATA} with open(lowerCamelCase_ , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __lowercase = {'''data''': DATA_DICT_OF_LISTS} with open(lowerCamelCase_ , '''w''' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): import gzip __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(lowerCamelCase_ , '''rb''' ) as orig_file: with gzip.open(lowerCamelCase_ , '''wb''' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ): import gzip __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(lowerCamelCase_ , '''rb''' ) as orig_file: with gzip.open(lowerCamelCase_ , '''wb''' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''nested''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Any ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(lowerCamelCase_ , '''w''' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('''nested''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = ['''0''', '''1''', '''2''', '''3'''] __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = ['''0''', '''1''', '''2''', '''3'''] __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(lowerCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = ['''0''', '''1''', '''2''', '''3'''] __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(lowerCamelCase_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Any ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('''main_dir''' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(lowerCamelCase_ , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) __lowercase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): __lowercase = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) return data_dir
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _SCREAMING_SNAKE_CASE = '''scheduler_config.json''' class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = 1 a : Dict = 2 a : Optional[Any] = 3 a : List[str] = 4 a : Any = 5 @dataclass class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : jnp.ndarray class __lowercase : '''simple docstring''' a : str = SCHEDULER_CONFIG_NAME a : Union[str, Any] = ["dtype"] a : str = [] a : List[Any] = True @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase , __lowercase = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase ,subfolder=_lowerCamelCase ,return_unused_kwargs=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase , __lowercase = cls.from_config(_lowerCamelCase ,return_unused_kwargs=_lowerCamelCase ,**_lowerCamelCase ) if hasattr(_lowerCamelCase ,'''create_state''' ) and getattr(_lowerCamelCase ,'''has_state''' ,_lowerCamelCase ): __lowercase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ,**_lowerCamelCase ) -> str: '''simple docstring''' self.save_config(save_directory=_lowerCamelCase ,push_to_hub=_lowerCamelCase ,**_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return self._get_compatibles() @classmethod def _UpperCAmelCase (cls ) -> int: '''simple docstring''' __lowercase = list(set([cls.__name__] + cls._compatibles ) ) __lowercase = importlib.import_module(__name__.split('''.''' )[0] ) __lowercase = [ getattr(_lowerCamelCase ,_lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase ,_lowerCamelCase ) ] return compatible_classes def _lowerCAmelCase ( lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : Tuple[int] ): assert len(lowerCamelCase_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCamelCase_ ) - x.ndim) ) , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any]=0.9_99 , lowerCamelCase_ : Union[str, Any]=jnp.floataa ): def alpha_bar(lowerCamelCase_ : Any ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 __lowercase = [] for i in range(lowerCamelCase_ ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCamelCase_ ) / alpha_bar(lowerCamelCase_ ) , lowerCamelCase_ ) ) return jnp.array(lowerCamelCase_ , dtype=lowerCamelCase_ ) @flax.struct.dataclass class __lowercase : '''simple docstring''' a : jnp.ndarray a : jnp.ndarray a : jnp.ndarray @classmethod def _UpperCAmelCase (cls ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = scheduler.config if config.trained_betas is not None: __lowercase = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowercase = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) __lowercase = 1.0 - betas __lowercase = jnp.cumprod(_lowerCamelCase ,axis=0 ) return cls( alphas=_lowerCamelCase ,betas=_lowerCamelCase ,alphas_cumprod=_lowerCamelCase ,) def _lowerCAmelCase ( lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): __lowercase = state.alphas_cumprod __lowercase = alphas_cumprod[timesteps] ** 0.5 __lowercase = sqrt_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) __lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowercase = sqrt_one_minus_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _lowerCAmelCase ( lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): __lowercase , __lowercase = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _lowerCAmelCase ( lowerCamelCase_ : CommonSchedulerState , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray , lowerCamelCase_ : jnp.ndarray ): __lowercase , __lowercase = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[int]] ): def update_area_of_max_square(lowerCamelCase_ : int , lowerCamelCase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowercase = update_area_of_max_square(lowerCamelCase_ , col + 1 ) __lowercase = update_area_of_max_square(row + 1 , col + 1 ) __lowercase = update_area_of_max_square(row + 1 , lowerCamelCase_ ) if mat[row][col]: __lowercase = 1 + min([right, diagonal, down] ) __lowercase = max(largest_square_area[0] , lowerCamelCase_ ) return sub_problem_sol else: return 0 __lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowercase = update_area_of_max_square_using_dp_array(lowerCamelCase_ , col + 1 , lowerCamelCase_ ) __lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCamelCase_ ) __lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowerCamelCase_ , lowerCamelCase_ ) if mat[row][col]: __lowercase = 1 + min([right, diagonal, down] ) __lowercase = max(largest_square_area[0] , lowerCamelCase_ ) __lowercase = sub_problem_sol return sub_problem_sol else: return 0 __lowercase = [0] __lowercase = [[-1] * cols for _ in range(lowerCamelCase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCamelCase_ ) return largest_square_area[0] def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[int]] ): __lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowercase = dp_array[row][col + 1] __lowercase = dp_array[row + 1][col + 1] __lowercase = dp_array[row + 1][col] if mat[row][col] == 1: __lowercase = 1 + min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = max(dp_array[row][col] , lowerCamelCase_ ) else: __lowercase = 0 return largest_square_area def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : list[list[int]] ): __lowercase = [0] * (cols + 1) __lowercase = [0] * (cols + 1) __lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowercase = current_row[col + 1] __lowercase = next_row[col + 1] __lowercase = next_row[col] if mat[row][col] == 1: __lowercase = 1 + min(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase = max(current_row[col] , lowerCamelCase_ ) else: __lowercase = 0 __lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = (DDPMScheduler,) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_lowerCamelCase ) return config def _UpperCAmelCase (self ) -> int: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] ,[0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase ,beta_end=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase ,prediction_type=_lowerCamelCase ,sample_max_value=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = len(_lowerCamelCase ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual __lowercase = model(_lowerCamelCase ,_lowerCamelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = len(_lowerCamelCase ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual __lowercase = model(_lowerCamelCase ,_lowerCamelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) __lowercase = scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: __lowercase = -1 else: __lowercase = timesteps[i + 1] __lowercase = scheduler.previous_timestep(_lowerCamelCase ) __lowercase = prev_t.item() self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase ,msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [100, 87, 50, 1, 0] __lowercase = len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase ,timesteps=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCamelCase ) __lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=_lowerCamelCase )
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): __lowercase = 0 __lowercase = len(lowerCamelCase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowercase = i + 1 else: __lowercase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } _SCREAMING_SNAKE_CASE = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ): for attribute in key.split('''.''' ): __lowercase = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: __lowercase = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Dict ): __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase = True else: for key, mapped_key in MAPPING.items(): __lowercase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowercase = True if "*" in mapped_key: __lowercase = name.split(lowerCamelCase_ )[0].split('''.''' )[-2] __lowercase = mapped_key.replace('''*''' , lowerCamelCase_ ) if "weight_g" in name: __lowercase = '''weight_g''' elif "weight_v" in name: __lowercase = '''weight_v''' elif "bias" in name: __lowercase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = '''weight''' else: __lowercase = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] ): __lowercase = full_name.split('''conv_layers.''' )[-1] __lowercase = name.split('''.''' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : str=True ): if config_path is not None: __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = UniSpeechSatConfig() __lowercase = '''''' if is_finetuned: __lowercase = UniSpeechSatForCTC(lowerCamelCase_ ) else: __lowercase = UniSpeechSatForPreTraining(lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowercase = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''spm_char.model'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _SCREAMING_SNAKE_CASE = { '''microsoft/speecht5_asr''': 1_0_2_4, '''microsoft/speecht5_tts''': 1_0_2_4, '''microsoft/speecht5_vc''': 1_0_2_4, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Any = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Any: '''simple docstring''' return self.sp_model.get_piece_size() def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> int: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__(self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase ,out_type=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = [] __lowercase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token __lowercase = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase ,token_ids_a=_lowerCamelCase ,already_has_special_tokens=_lowerCamelCase ) __lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCamelCase )) + suffix_ones return ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : int ): __lowercase = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) __lowercase = DatasetInfosDict.from_directory(lowerCamelCase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=4_2 , ), ] , ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : DatasetInfo ): __lowercase = str(lowerCamelCase_ ) dataset_info.write_to_directory(lowerCamelCase_ ) __lowercase = DatasetInfo.from_directory(lowerCamelCase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase_ , '''dataset_info.json''' ) ) def _lowerCAmelCase ( ): __lowercase = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) __lowercase = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __lowercase = yaml.safe_dump(lowerCamelCase_ ) __lowercase = yaml.safe_load(lowerCamelCase_ ) assert dataset_info_yaml_dict == reloaded def _lowerCAmelCase ( ): __lowercase = DatasetInfo() __lowercase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=4_2 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=4_2 ), '''v2''': DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : DatasetInfosDict ): __lowercase = str(lowerCamelCase_ ) dataset_infos_dict.write_to_directory(lowerCamelCase_ ) __lowercase = DatasetInfosDict.from_directory(lowerCamelCase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __lowercase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __lowercase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase_ , '''README.md''' ) )
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE = '''MobileNetV1Config''' # Base docstring _SCREAMING_SNAKE_CASE = '''google/mobilenet_v1_1.0_224''' _SCREAMING_SNAKE_CASE = [1, 1_0_2_4, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE = '''google/mobilenet_v1_1.0_224''' _SCREAMING_SNAKE_CASE = '''tabby, tabby cat''' _SCREAMING_SNAKE_CASE = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]=None ): __lowercase = {} if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = model.mobilenet_va else: __lowercase = model __lowercase = '''MobilenetV1/Conv2d_0/''' __lowercase = backbone.conv_stem.convolution.weight __lowercase = backbone.conv_stem.normalization.bias __lowercase = backbone.conv_stem.normalization.weight __lowercase = backbone.conv_stem.normalization.running_mean __lowercase = backbone.conv_stem.normalization.running_var for i in range(1_3 ): __lowercase = i + 1 __lowercase = i * 2 __lowercase = backbone.layer[pt_index] __lowercase = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" __lowercase = pointer.convolution.weight __lowercase = pointer.normalization.bias __lowercase = pointer.normalization.weight __lowercase = pointer.normalization.running_mean __lowercase = pointer.normalization.running_var __lowercase = backbone.layer[pt_index + 1] __lowercase = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" __lowercase = pointer.convolution.weight __lowercase = pointer.normalization.bias __lowercase = pointer.normalization.weight __lowercase = pointer.normalization.running_mean __lowercase = pointer.normalization.running_var if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __lowercase = model.classifier.weight __lowercase = model.classifier.bias return tf_to_pt_map def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __lowercase = tf.train.list_variables(lowerCamelCase_ ) __lowercase = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) __lowercase = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = array # Build TF to PyTorch weights loading map __lowercase = _build_tf_to_pytorch_map(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue __lowercase = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __lowercase = np.transpose(lowerCamelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __lowercase = array.squeeze().transpose() else: __lowercase = np.transpose(lowerCamelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) __lowercase = torch.from_numpy(lowerCamelCase_ ) tf_weights.pop(lowerCamelCase_ , lowerCamelCase_ ) tf_weights.pop(name + '''/RMSProp''' , lowerCamelCase_ ) tf_weights.pop(name + '''/RMSProp_1''' , lowerCamelCase_ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , lowerCamelCase_ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def _lowerCAmelCase ( lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : nn.Convad ): __lowercase , __lowercase = features.shape[-2:] __lowercase , __lowercase = conv_layer.stride __lowercase , __lowercase = conv_layer.kernel_size if in_height % stride_height == 0: __lowercase = max(kernel_height - stride_height , 0 ) else: __lowercase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __lowercase = max(kernel_width - stride_width , 0 ) else: __lowercase = max(kernel_width - (in_width % stride_width) , 0 ) __lowercase = pad_along_width // 2 __lowercase = pad_along_width - pad_left __lowercase = pad_along_height // 2 __lowercase = pad_along_height - pad_top __lowercase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase_ , lowerCamelCase_ , '''constant''' , 0.0 ) class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 1 ,_lowerCamelCase = 1 ,_lowerCamelCase = False ,_lowerCamelCase = True ,_lowerCamelCase = True ,) -> None: '''simple docstring''' super().__init__() __lowercase = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) __lowercase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __lowercase = nn.Convad( in_channels=_lowerCamelCase ,out_channels=_lowerCamelCase ,kernel_size=_lowerCamelCase ,stride=_lowerCamelCase ,padding=_lowerCamelCase ,groups=_lowerCamelCase ,bias=_lowerCamelCase ,padding_mode='''zeros''' ,) if use_normalization: __lowercase = nn.BatchNormad( num_features=_lowerCamelCase ,eps=config.layer_norm_eps ,momentum=0.9_9_9_7 ,affine=_lowerCamelCase ,track_running_stats=_lowerCamelCase ,) else: __lowercase = None if use_activation: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = ACTaFN[use_activation] elif isinstance(config.hidden_act ,_lowerCamelCase ): __lowercase = ACTaFN[config.hidden_act] else: __lowercase = config.hidden_act else: __lowercase = None def _UpperCAmelCase (self ,_lowerCamelCase ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: __lowercase = apply_tf_padding(_lowerCamelCase ,self.convolution ) __lowercase = self.convolution(_lowerCamelCase ) if self.normalization is not None: __lowercase = self.normalization(_lowerCamelCase ) if self.activation is not None: __lowercase = self.activation(_lowerCamelCase ) return features class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Optional[int] = MobileNetVaConfig a : Union[str, Any] = load_tf_weights_in_mobilenet_va a : Optional[Any] = "mobilenet_v1" a : int = "pixel_values" a : Union[str, Any] = False def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if isinstance(_lowerCamelCase ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _SCREAMING_SNAKE_CASE = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _SCREAMING_SNAKE_CASE = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , lowerCAmelCase__ , ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase = True ) -> str: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = config __lowercase = 32 __lowercase = max(int(depth * config.depth_multiplier ) ,config.min_depth ) __lowercase = MobileNetVaConvLayer( _lowerCamelCase ,in_channels=config.num_channels ,out_channels=_lowerCamelCase ,kernel_size=3 ,stride=2 ,) __lowercase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __lowercase = nn.ModuleList() for i in range(13 ): __lowercase = out_channels if strides[i] == 2 or i == 0: depth *= 2 __lowercase = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase ,in_channels=_lowerCamelCase ,out_channels=_lowerCamelCase ,kernel_size=3 ,stride=strides[i] ,groups=_lowerCamelCase ,) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase ,in_channels=_lowerCamelCase ,out_channels=_lowerCamelCase ,kernel_size=1 ,) ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _UpperCAmelCase (self ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __lowercase = self.conv_stem(_lowerCamelCase ) __lowercase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __lowercase = layer_module(_lowerCamelCase ) if output_hidden_states: __lowercase = all_hidden_states + (hidden_states,) __lowercase = hidden_states if self.pooler is not None: __lowercase = torch.flatten(self.pooler(_lowerCamelCase ) ,start_dim=1 ) else: __lowercase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase ,pooler_output=_lowerCamelCase ,hidden_states=_lowerCamelCase ,) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = config.num_labels __lowercase = MobileNetVaModel(_lowerCamelCase ) __lowercase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __lowercase = nn.Dropout(config.classifier_dropout_prob ,inplace=_lowerCamelCase ) __lowercase = nn.Linear(_lowerCamelCase ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _UpperCAmelCase (self ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.mobilenet_va(_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,return_dict=_lowerCamelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(self.dropout(_lowerCamelCase ) ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = '''single_label_classification''' else: __lowercase = '''multi_label_classification''' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() ,labels.squeeze() ) else: __lowercase = loss_fct(_lowerCamelCase ,_lowerCamelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_lowerCamelCase ,_lowerCamelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase ,logits=_lowerCamelCase ,hidden_states=outputs.hidden_states ,)
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = StableUnCLIPPipeline a : Any = TEXT_TO_IMAGE_PARAMS a : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS a : str = TEXT_TO_IMAGE_IMAGE_PARAMS a : int = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a : str = False def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # prior components torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __lowercase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=_lowerCamelCase ,projection_dim=_lowerCamelCase ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) ) torch.manual_seed(0 ) __lowercase = PriorTransformer( num_attention_heads=2 ,attention_head_dim=12 ,embedding_dim=_lowerCamelCase ,num_layers=1 ,) torch.manual_seed(0 ) __lowercase = DDPMScheduler( variance_type='''fixed_small_log''' ,prediction_type='''sample''' ,num_train_timesteps=1000 ,clip_sample=_lowerCamelCase ,clip_sample_range=5.0 ,beta_schedule='''squaredcos_cap_v2''' ,) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=_lowerCamelCase ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') ,up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type='''projection''' ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=_lowerCamelCase ,layers_per_block=1 ,upcast_attention=_lowerCamelCase ,use_linear_projection=_lowerCamelCase ,) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule='''scaled_linear''' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,prediction_type='''v_prediction''' ,set_alpha_to_one=_lowerCamelCase ,steps_offset=1 ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=0 ) -> str: '''simple docstring''' if str(_lowerCamelCase ).startswith('''mps''' ): __lowercase = torch.manual_seed(_lowerCamelCase ) else: __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __lowercase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' ,torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe('''anime turle''' ,generator=_lowerCamelCase ,output_type='''np''' ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' ,torch_dtype=torch.floataa ) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( '''anime turtle''' ,prior_num_inference_steps=2 ,num_inference_steps=2 ,output_type='''np''' ,) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _SCREAMING_SNAKE_CASE = TypeVar('''T''') _SCREAMING_SNAKE_CASE = Union[List[T], Tuple[T, ...]] _SCREAMING_SNAKE_CASE = Union[T, List[T], Dict[str, T]] _SCREAMING_SNAKE_CASE = Union[str, bytes, os.PathLike]
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowercase = flax_key_tuple[:-1] + ('''weight''',) __lowercase = torch.permute(lowerCamelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase_ ): # linear layer __lowercase = flax_key_tuple[:-1] + ('''weight''',) __lowercase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowercase = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ): if "metadata" in layer: __lowercase = layer.split('''metadata''' ) __lowercase = ''''''.join(split_layer[0] )[:-1] __lowercase = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __lowercase = layer.split('''kvstore''' ) __lowercase = ''''''.join(split_layer[0] )[:-1] __lowercase = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __lowercase = layer.split('''/''' ) __lowercase = '''/'''.join(split_layer[:-1] ) __lowercase = (split_layer[-1],) if "kvstore/path" in layer: __lowercase = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __lowercase = '''file''' else: __lowercase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): __lowercase = rename_keys(lowerCamelCase_ ) __lowercase = {} for k, v in current_block.items(): __lowercase = v __lowercase = new_current_block torch.save(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str = WEIGHTS_NAME ): __lowercase = convert_file_size_to_int(lowerCamelCase_ ) __lowercase = [] __lowercase = {} __lowercase = 0 __lowercase = 0 os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __lowercase = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __lowercase = flatten_dict(lowerCamelCase_ , sep='''/''' ) __lowercase = {} for layer in checkpoint_info.keys(): __lowercase , __lowercase , __lowercase = get_key_and_tensorstore_dict( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if curr_real_layer_name in all_layers: __lowercase = content else: __lowercase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowercase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowercase = torch.tensor(lowerCamelCase_ ) __lowercase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowercase , __lowercase = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowerCamelCase_ ) __lowercase = '''/'''.join(lowerCamelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowercase = os.path.join( lowerCamelCase_ , weights_name.replace('''.bin''' , f"-{len(lowerCamelCase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowercase = {} __lowercase = 0 __lowercase = raw_weights.to(getattr(lowerCamelCase_ , lowerCamelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowercase = os.path.join(lowerCamelCase_ , weights_name.replace('''.bin''' , f"-{len(lowerCamelCase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowerCamelCase_ , lowerCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCamelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowercase = {} __lowercase = {} for idx, shard in enumerate(lowerCamelCase_ ): __lowercase = weights_name.replace( '''.bin''' , f"-{idx+1:05d}-of-{len(lowerCamelCase_ ):05d}.bin" ) # len(sharded_state_dicts):05d} __lowercase = os.path.join(lowerCamelCase_ , weights_name.replace('''.bin''' , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) __lowercase = shard for key in shard: __lowercase = shard_file # Add the metadata __lowercase = {'''total_size''': total_size} __lowercase = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '''\n''' f.write(lowerCamelCase_ ) return metadata, index if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _lowerCAmelCase ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowercase = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __lowercase = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __lowercase = TaTokenizer.from_pretrained('''t5-small''' ) __lowercase = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __lowercase = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ).input_ids __lowercase = model.generate(lowerCamelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _SCREAMING_SNAKE_CASE = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) _SCREAMING_SNAKE_CASE = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) _SCREAMING_SNAKE_CASE = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) _SCREAMING_SNAKE_CASE = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) _SCREAMING_SNAKE_CASE = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) _SCREAMING_SNAKE_CASE = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) _SCREAMING_SNAKE_CASE = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def _lowerCAmelCase ( ): __lowercase , __lowercase = randrange(len(lowerCamelCase_ ) ), randrange(len(lowerCamelCase_ ) ) __lowercase = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] __lowercase , __lowercase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0 ): return (generate_random_hand() for _ in range(lowerCamelCase_ )) @pytest.mark.parametrize('''hand, expected''' , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ): assert PokerHand(lowerCamelCase_ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): assert PokerHand(lowerCamelCase_ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): __lowercase = PokerHand(lowerCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] ): assert PokerHand(lowerCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Any ): assert PokerHand(lowerCamelCase_ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] ): assert PokerHand(lowerCamelCase_ ).compare_with(PokerHand(lowerCamelCase_ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): assert PokerHand(lowerCamelCase_ ).compare_with(PokerHand(lowerCamelCase_ ) ) == expected def _lowerCAmelCase ( ): __lowercase = [PokerHand(lowerCamelCase_ ) for hand in SORTED_HANDS] __lowercase = poker_hands.copy() shuffle(lowerCamelCase_ ) __lowercase = chain(sorted(lowerCamelCase_ ) ) for index, hand in enumerate(lowerCamelCase_ ): assert hand == poker_hands[index] def _lowerCAmelCase ( ): # Test that five high straights are compared correctly. __lowercase = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=lowerCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _lowerCAmelCase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __lowercase = PokerHand('''2C 4S AS 3D 5C''' ) __lowercase = True __lowercase = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _lowerCAmelCase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file __lowercase = 0 __lowercase = os.path.abspath(os.path.dirname(lowerCamelCase_ ) ) __lowercase = os.path.join(lowerCamelCase_ , '''poker_hands.txt''' ) with open(lowerCamelCase_ ) as file_hand: for line in file_hand: __lowercase = line[:1_4].strip() __lowercase = line[1_5:].strip() __lowercase , __lowercase = PokerHand(lowerCamelCase_ ), PokerHand(lowerCamelCase_ ) __lowercase = player.compare_with(lowerCamelCase_ ) if output == "Win": answer += 1 assert answer == 3_7_6
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' from collections import namedtuple _SCREAMING_SNAKE_CASE = namedtuple('''from_to''', '''from_ to''') _SCREAMING_SNAKE_CASE = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_0_1, 1_0_0_0), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), '''cubicyard''': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), '''cubicfoot''': from_to(0.0_2_8, 3_5.3_1_4_7), '''cup''': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def _lowerCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : str , lowerCamelCase_ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ''', '''.join(lowerCamelCase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ''', '''.join(lowerCamelCase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=10 ,_lowerCamelCase=3 ,_lowerCamelCase=2 ,_lowerCamelCase=2 ,_lowerCamelCase=2 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=32 ,_lowerCamelCase=5 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=10 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=0.9 ,_lowerCamelCase=None ,) -> List[Any]: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = patch_size __lowercase = tubelet_size __lowercase = num_frames __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowercase = (image_size // patch_size) ** 2 __lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowercase = int(mask_ratio * self.seq_length ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _UpperCAmelCase (self ) -> Any: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = VideoMAEModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = VideoMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.batch_size ,-1 ).bool() __lowercase = model(_lowerCamelCase ,_lowerCamelCase ) # model only returns predictions for masked patches __lowercase = mask.sum().item() __lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a : Optional[int] = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) a : Tuple = False a : Tuple = False a : Any = False a : Any = False def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = VideoMAEModelTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ,has_text_modality=_lowerCamelCase ,hidden_size=37 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=False ) -> Optional[Any]: '''simple docstring''' __lowercase = copy.deepcopy(_lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.model_tester.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.model_tester.batch_size ,-1 ).bool() __lowercase = bool_masked_pos.to(_lowerCamelCase ) if return_labels: if model_class in [ *get_values(_lowerCamelCase ), ]: __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_lowerCamelCase ) return inputs_dict def _UpperCAmelCase (self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase ,nn.Linear ) ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = VideoMAEModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' if not self.has_attentions: pass else: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCamelCase ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCamelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) __lowercase = len(_lowerCamelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(out_len + 1 ,len(_lowerCamelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCamelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ): __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCamelCase ) ,_lowerCamelCase ) __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' pass def _lowerCAmelCase ( ): __lowercase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __lowercase = np.load(lowerCamelCase_ ) return list(lowerCamelCase_ ) @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( _lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,_lowerCamelCase ) __lowercase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCamelCase ,atol=1E-4 ) ) @slow def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(_lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # add boolean mask, indicating which patches to mask __lowercase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''' ) __lowercase = torch.load(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size([1, 1408, 1536] ) __lowercase = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ,device=_lowerCamelCase ) self.assertEqual(outputs.logits.shape ,_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,_lowerCamelCase ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowercase = torch.tensor([0.5_1_4_2] ,device=_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss ,_lowerCamelCase ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ,norm_pix_loss=_lowerCamelCase ).to( _lowerCamelCase ) with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) __lowercase = torch.tensor(torch.tensor([0.6_4_6_9] ) ,device=_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss ,_lowerCamelCase ,atol=1E-4 ) )
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase=-1 ) -> Union[str, Any]: '''simple docstring''' __lowercase = label_idx def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> List[InputExample]: '''simple docstring''' if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = mode.value __lowercase = os.path.join(_lowerCamelCase ,f"{mode}.txt" ) __lowercase = 1 __lowercase = [] with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = [] __lowercase = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=_lowerCamelCase ,labels=_lowerCamelCase ) ) guid_index += 1 __lowercase = [] __lowercase = [] else: __lowercase = line.split(''' ''' ) words.append(splits[0] ) if len(_lowerCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' ,'''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=_lowerCamelCase ,labels=_lowerCamelCase ) ) return examples def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(_lowerCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __lowercase = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(_lowerCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' ,line.split()[0] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' if path: with open(_lowerCamelCase ,'''r''' ) as f: __lowercase = f.read().splitlines() if "O" not in labels: __lowercase = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ) -> List[Any]: '''simple docstring''' super().__init__(label_idx=-2 ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' if path: with open(_lowerCamelCase ,'''r''' ) as f: __lowercase = f.read().splitlines() if "O" not in labels: __lowercase = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> List[InputExample]: '''simple docstring''' if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = mode.value __lowercase = os.path.join(_lowerCamelCase ,f"{mode}.txt" ) __lowercase = 1 __lowercase = [] with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: for sentence in parse_incr(_lowerCamelCase ): __lowercase = [] __lowercase = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}" ,words=_lowerCamelCase ,labels=_lowerCamelCase ) ) guid_index += 1 return examples def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = 0 for sentence in parse_incr(_lowerCamelCase ): __lowercase = preds_list[example_id] __lowercase = '''''' for token in sentence: out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(_lowerCamelCase ) example_id += 1 def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' if path: with open(_lowerCamelCase ,'''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _SCREAMING_SNAKE_CASE = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ) -> Optional[int]: '''simple docstring''' __lowercase = None __lowercase = os.path.abspath(os.path.join('''examples''' ,'''by_feature''' ) ) __lowercase = os.path.abspath('''examples''' ) for item in os.listdir(_lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if os.path.isfile(_lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=_lowerCamelCase ,feature_script=_lowerCamelCase ,tested_section='''main()''' if parser_only else '''training_function()''' ,): __lowercase = compare_against_test( os.path.join(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = '''\n'''.join(_lowerCamelCase ) if special_strings is not None: for string in special_strings: __lowercase = diff.replace(_lowerCamelCase ,'''''' ) self.assertEqual(_lowerCamelCase ,'''''' ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' ,_lowerCamelCase ) self.one_complete_example('''complete_nlp_example.py''' ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = os.path.abspath(os.path.join('''examples''' ,'''cv_example.py''' ) ) __lowercase = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) self.one_complete_example('''complete_cv_example.py''' ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = False @classmethod def _UpperCAmelCase (cls ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls._tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __lowercase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def _UpperCAmelCase (cls ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,'''epoch_0''' ) ) ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() __lowercase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,'''step_2''' ) ) ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir ,'epoch_0' )}\n ".split() __lowercase = run_command(self._launch_args + testargs ,return_stdout=_lowerCamelCase ) self.assertNotIn('''epoch 0:''' ,_lowerCamelCase ) self.assertIn('''epoch 1:''' ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir ,'step_2' )}\n ".split() __lowercase = run_command(self._launch_args + testargs ,return_stdout=_lowerCamelCase ) if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() else: __lowercase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' ,_lowerCamelCase ) self.assertIn('''epoch 1:''' ,_lowerCamelCase ) else: self.assertIn('''epoch 0:''' ,_lowerCamelCase ) self.assertIn('''epoch 1:''' ,_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ ,{'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __lowercase = run_command(self._launch_args + testargs ,return_stdout=_lowerCamelCase ) __lowercase = re.findall('''({.+})''' ,_lowerCamelCase ) __lowercase = [r for r in results if '''accuracy''' in r][-1] __lowercase = ast.literal_eval(_lowerCamelCase ) self.assertGreaterEqual(results['''accuracy'''] ,0.7_5 ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __lowercase = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase ,'''tracking''' ) ) ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase ,'''tf_padding''' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase ,'''depth_multiplier''' ) ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=3 ,_lowerCamelCase=32 ,_lowerCamelCase=0.2_5 ,_lowerCamelCase=8 ,_lowerCamelCase=True ,_lowerCamelCase=1024 ,_lowerCamelCase=32 ,_lowerCamelCase="relu6" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=10 ,_lowerCamelCase=None ,) -> int: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = depth_multiplier __lowercase = min_depth __lowercase = tf_padding __lowercase = int(last_hidden_size * depth_multiplier ) __lowercase = output_stride __lowercase = hidden_act __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = MobileNetVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileNetVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () a : Dict = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) a : Tuple = False a : List[Any] = False a : Optional[Any] = False a : Tuple = False def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = MobileNetVaModelTester(self ) __lowercase = MobileNetVaConfigTester(self ,config_class=_lowerCamelCase ,has_text_modality=_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ): __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = 26 self.assertEqual(len(_lowerCamelCase ) ,_lowerCamelCase ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileNetVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _lowerCAmelCase ( ): __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(_lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase ,return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape ,_lowerCamelCase ) __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCamelCase ,atol=1E-4 ) )
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' from math import factorial _SCREAMING_SNAKE_CASE = {str(digit): factorial(digit) for digit in range(1_0)} def _lowerCAmelCase ( lowerCamelCase_ : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowerCamelCase_ ) ) def _lowerCAmelCase ( lowerCamelCase_ : int = 6_0 , lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length __lowercase = 0 # the cached sizes of the previous chains __lowercase = {} for start_chain_element in range(1 , lowerCamelCase_ ): # The temporary set will contain the elements of the chain __lowercase = set() __lowercase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __lowercase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowerCamelCase_ ) chain_set_length += 1 __lowercase = digit_factorial_sum(lowerCamelCase_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __lowercase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _SCREAMING_SNAKE_CASE = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any]=None ): require_version(deps[pkg] , lowerCamelCase_ )
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) __lowercase = number_of_bytes // partitions __lowercase = [] for i in range(lowerCamelCase_ ): __lowercase = i * bytes_per_partition + 1 __lowercase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : torch.FloatTensor a : torch.FloatTensor class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' a : Any = 1 @register_to_config def __init__(self ,_lowerCamelCase = 2000 ,_lowerCamelCase = 0.1_5 ,_lowerCamelCase = 0.0_1 ,_lowerCamelCase = 1_3_4_8.0 ,_lowerCamelCase = 1E-5 ,_lowerCamelCase = 1 ,) -> List[str]: '''simple docstring''' __lowercase = sigma_max # setable values __lowercase = None self.set_sigmas(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ) -> List[str]: '''simple docstring''' __lowercase = sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase = torch.linspace(1 ,_lowerCamelCase ,_lowerCamelCase ,device=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ) -> List[Any]: '''simple docstring''' __lowercase = sigma_min if sigma_min is not None else self.config.sigma_min __lowercase = sigma_max if sigma_max is not None else self.config.sigma_max __lowercase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_lowerCamelCase ,_lowerCamelCase ) __lowercase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase = torch.exp(torch.linspace(math.log(_lowerCamelCase ) ,math.log(_lowerCamelCase ) ,_lowerCamelCase ) ) __lowercase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device ) ) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device ) ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = True ,) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) __lowercase = timestep * torch.ones( sample.shape[0] ,device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase = timesteps.to(self.discrete_sigmas.device ) __lowercase = self.discrete_sigmas[timesteps].to(sample.device ) __lowercase = self.get_adjacent_sigma(_lowerCamelCase ,_lowerCamelCase ).to(sample.device ) __lowercase = torch.zeros_like(_lowerCamelCase ) __lowercase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase = diffusion.unsqueeze(-1 ) __lowercase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase = randn_tensor( sample.shape ,layout=sample.layout ,generator=_lowerCamelCase ,device=sample.device ,dtype=sample.dtype ) __lowercase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_lowerCamelCase ,prev_sample_mean=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = True ,) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase = randn_tensor(sample.shape ,layout=sample.layout ,generator=_lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase = torch.norm(model_output.reshape(model_output.shape[0] ,-1 ) ,dim=-1 ).mean() __lowercase = torch.norm(noise.reshape(noise.shape[0] ,-1 ) ,dim=-1 ).mean() __lowercase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase = step_size.unsqueeze(-1 ) __lowercase = sample + step_size * model_output __lowercase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> torch.FloatTensor: '''simple docstring''' __lowercase = timesteps.to(original_samples.device ) __lowercase = self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_lowerCamelCase ) * sigmas[:, None, None, None] ) __lowercase = noise + original_samples return noisy_samples def __len__(self ) -> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = '''▁''' _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''spiece.model'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } _SCREAMING_SNAKE_CASE = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Tuple = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase ,_lowerCamelCase="</s>" ,_lowerCamelCase="<unk>" ,_lowerCamelCase=[] ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return self.sp_model.get_piece_size() def _UpperCAmelCase (self ) -> Dict[str, int]: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__(self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase ,out_type=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = [] __lowercase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token __lowercase = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE = '''RegNetConfig''' # Base docstring _SCREAMING_SNAKE_CASE = '''facebook/regnet-y-040''' _SCREAMING_SNAKE_CASE = [1, 1_0_8_8, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE = '''facebook/regnet-y-040''' _SCREAMING_SNAKE_CASE = '''tabby, tabby cat''' _SCREAMING_SNAKE_CASE = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 3 ,_lowerCamelCase = 1 ,_lowerCamelCase = 1 ,_lowerCamelCase = "relu" ,) -> str: '''simple docstring''' super().__init__() __lowercase = nn.Convad( _lowerCamelCase ,_lowerCamelCase ,kernel_size=_lowerCamelCase ,stride=_lowerCamelCase ,padding=kernel_size // 2 ,groups=_lowerCamelCase ,bias=_lowerCamelCase ,) __lowercase = nn.BatchNormad(_lowerCamelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.convolution(_lowerCamelCase ) __lowercase = self.normalization(_lowerCamelCase ) __lowercase = self.activation(_lowerCamelCase ) return hidden_state class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() __lowercase = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) __lowercase = config.num_channels def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) __lowercase = self.embedder(_lowerCamelCase ) return hidden_state class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 2 ) -> Tuple: '''simple docstring''' super().__init__() __lowercase = nn.Convad(_lowerCamelCase ,_lowerCamelCase ,kernel_size=1 ,stride=_lowerCamelCase ,bias=_lowerCamelCase ) __lowercase = nn.BatchNormad(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Tensor: '''simple docstring''' __lowercase = self.convolution(_lowerCamelCase ) __lowercase = self.normalization(_lowerCamelCase ) return hidden_state class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_lowerCamelCase ,_lowerCamelCase ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_lowerCamelCase ,_lowerCamelCase ,kernel_size=1 ) ,nn.Sigmoid() ,) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = self.pooler(_lowerCamelCase ) __lowercase = self.attention(_lowerCamelCase ) __lowercase = hidden_state * attention return hidden_state class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 1 ) -> List[str]: '''simple docstring''' super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 ,out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_lowerCamelCase ,_lowerCamelCase ,stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_lowerCamelCase ,_lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_lowerCamelCase ,_lowerCamelCase ,stride=_lowerCamelCase ,groups=_lowerCamelCase ,activation=config.hidden_act ) ,RegNetConvLayer(_lowerCamelCase ,_lowerCamelCase ,kernel_size=1 ,activation=_lowerCamelCase ) ,) __lowercase = ACTaFN[config.hidden_act] def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = hidden_state __lowercase = self.layer(_lowerCamelCase ) __lowercase = self.shortcut(_lowerCamelCase ) hidden_state += residual __lowercase = self.activation(_lowerCamelCase ) return hidden_state class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 1 ) -> Tuple: '''simple docstring''' super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 ,out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_lowerCamelCase ,_lowerCamelCase ,stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_lowerCamelCase ,_lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_lowerCamelCase ,_lowerCamelCase ,stride=_lowerCamelCase ,groups=_lowerCamelCase ,activation=config.hidden_act ) ,RegNetSELayer(_lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_lowerCamelCase ,_lowerCamelCase ,kernel_size=1 ,activation=_lowerCamelCase ) ,) __lowercase = ACTaFN[config.hidden_act] def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = hidden_state __lowercase = self.layer(_lowerCamelCase ) __lowercase = self.shortcut(_lowerCamelCase ) hidden_state += residual __lowercase = self.activation(_lowerCamelCase ) return hidden_state class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 2 ,_lowerCamelCase = 2 ,) -> List[str]: '''simple docstring''' super().__init__() __lowercase = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,stride=_lowerCamelCase ,) ,*[layer(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for _ in range(depth - 1 )] ,) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = self.layers(_lowerCamelCase ) return hidden_state class __lowercase ( nn.Module ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) __lowercase = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCamelCase ,config.depths[1:] ): self.stages.append(RegNetStage(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,depth=_lowerCamelCase ) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ,_lowerCamelCase = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_lowerCamelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCamelCase ,hidden_states=_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[str] = RegNetConfig a : str = "regnet" a : List[str] = "pixel_values" a : str = True def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if isinstance(_lowerCamelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_lowerCamelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=False ) -> Dict: '''simple docstring''' if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = value _SCREAMING_SNAKE_CASE = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _SCREAMING_SNAKE_CASE = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_lowerCamelCase ) __lowercase = RegNetEncoder(_lowerCamelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_lowerCamelCase ) __lowercase = self.encoder( _lowerCamelCase ,output_hidden_states=_lowerCamelCase ,return_dict=_lowerCamelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase ,pooler_output=_lowerCamelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' super().__init__(_lowerCamelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_lowerCamelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _UpperCAmelCase (self ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = None ,) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,return_dict=_lowerCamelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_lowerCamelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = '''single_label_classification''' else: __lowercase = '''multi_label_classification''' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() ,labels.squeeze() ) else: __lowercase = loss_fct(_lowerCamelCase ,_lowerCamelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_lowerCamelCase ,_lowerCamelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCamelCase ,logits=_lowerCamelCase ,hidden_states=outputs.hidden_states )
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' from typing import Any def _lowerCAmelCase ( lowerCamelCase_ : list , lowerCamelCase_ : list , lowerCamelCase_ : dict , lowerCamelCase_ : dict , lowerCamelCase_ : dict , ): _validation( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # Creates data structures and fill initial step __lowercase = {} __lowercase = {} for state in states_space: __lowercase = observations_space[0] __lowercase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __lowercase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCamelCase_ ) ): __lowercase = observations_space[o] __lowercase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __lowercase = '''''' __lowercase = -1 for k_state in states_space: __lowercase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __lowercase = probability __lowercase = k_state # Update probabilities and pointers dicts __lowercase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __lowercase = arg_max # The final observation __lowercase = observations_space[len(lowerCamelCase_ ) - 1] # argmax for given final observation __lowercase = '''''' __lowercase = -1 for k_state in states_space: __lowercase = probabilities[(k_state, final_observation)] if probability > max_probability: __lowercase = probability __lowercase = k_state __lowercase = arg_max # Process pointers backwards __lowercase = last_state __lowercase = [] for o in range(len(lowerCamelCase_ ) - 1 , -1 , -1 ): result.append(lowerCamelCase_ ) __lowercase = pointers[previous, observations_space[o]] result.reverse() return result def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , ): _validate_not_empty( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) _validate_lists(lowerCamelCase_ , lowerCamelCase_ ) _validate_dicts( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any ): _validate_list(lowerCamelCase_ , '''observations_space''' ) _validate_list(lowerCamelCase_ , '''states_space''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : str ): if not isinstance(_object , lowerCamelCase_ ): __lowercase = f"{var_name} must be a list" raise ValueError(lowerCamelCase_ ) else: for x in _object: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): __lowercase = f"{var_name} must be a list of strings" raise ValueError(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Any , ): _validate_dict(lowerCamelCase_ , '''initial_probabilities''' , lowerCamelCase_ ) _validate_nested_dict(lowerCamelCase_ , '''transition_probabilities''' ) _validate_nested_dict(lowerCamelCase_ , '''emission_probabilities''' ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : str ): _validate_dict(_object , lowerCamelCase_ , lowerCamelCase_ ) for x in _object.values(): _validate_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : type , lowerCamelCase_ : bool = False ): if not isinstance(_object , lowerCamelCase_ ): __lowercase = f"{var_name} must be a dict" raise ValueError(lowerCamelCase_ ) if not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for x in _object ): __lowercase = f"{var_name} all keys must be strings" raise ValueError(lowerCamelCase_ ) if not all(isinstance(lowerCamelCase_ , lowerCamelCase_ ) for x in _object.values() ): __lowercase = '''nested dictionary ''' if nested else '''''' __lowercase = f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(lowerCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _SCREAMING_SNAKE_CASE = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _SCREAMING_SNAKE_CASE = typing.Union[np.floataa, int, float] # noqa: UP007 def _lowerCAmelCase ( lowerCamelCase_ : Vector , lowerCamelCase_ : Vector ): return np.sqrt(np.sum((np.asarray(lowerCamelCase_ ) - np.asarray(lowerCamelCase_ )) ** 2 ) ) def _lowerCAmelCase ( lowerCamelCase_ : Vector , lowerCamelCase_ : Vector ): return sum((va - va) ** 2 for va, va in zip(lowerCamelCase_ , lowerCamelCase_ ) ) ** (1 / 2) if __name__ == "__main__": def _lowerCAmelCase ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0_0_0_0 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( lowerCamelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , lowerCamelCase_ , ) if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): __lowercase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowercase , __lowercase = image[0].size __lowercase , __lowercase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] __lowercase = np.concatenate(lowerCamelCase_ , axis=0 ) __lowercase = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 __lowercase = image.transpose(0 , 3 , 1 , 2 ) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): __lowercase = torch.cat(lowerCamelCase_ , dim=0 ) return image def _lowerCAmelCase ( lowerCamelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(lowerCamelCase_ , torch.Tensor ): return mask elif isinstance(lowerCamelCase_ , PIL.Image.Image ): __lowercase = [mask] if isinstance(mask[0] , PIL.Image.Image ): __lowercase , __lowercase = mask[0].size __lowercase , __lowercase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __lowercase = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] __lowercase = np.concatenate(lowerCamelCase_ , axis=0 ) __lowercase = mask.astype(np.floataa ) / 2_55.0 __lowercase = 0 __lowercase = 1 __lowercase = torch.from_numpy(lowerCamelCase_ ) elif isinstance(mask[0] , torch.Tensor ): __lowercase = torch.cat(lowerCamelCase_ , dim=0 ) return mask class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : UNetaDModel a : RePaintScheduler def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCamelCase ,scheduler=_lowerCamelCase ) @torch.no_grad() def __call__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 250 ,_lowerCamelCase = 0.0 ,_lowerCamelCase = 10 ,_lowerCamelCase = 10 ,_lowerCamelCase = None ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __lowercase = image __lowercase = _preprocess_image(_lowerCamelCase ) __lowercase = original_image.to(device=self.device ,dtype=self.unet.dtype ) __lowercase = _preprocess_mask(_lowerCamelCase ) __lowercase = mask_image.to(device=self.device ,dtype=self.unet.dtype ) __lowercase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_lowerCamelCase ,_lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __lowercase = original_image.shape __lowercase = randn_tensor(_lowerCamelCase ,generator=_lowerCamelCase ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,self.device ) __lowercase = eta __lowercase = self.scheduler.timesteps[0] + 1 __lowercase = generator[0] if isinstance(_lowerCamelCase ,_lowerCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowercase = self.unet(_lowerCamelCase ,_lowerCamelCase ).sample # compute previous image: x_t -> x_t-1 __lowercase = self.scheduler.step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowercase = self.scheduler.undo_step(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = t __lowercase = (image / 2 + 0.5).clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' class __lowercase : '''simple docstring''' def __init__(self ) -> Optional[int]: '''simple docstring''' __lowercase = '''''' __lowercase = '''''' __lowercase = [] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowercase = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) else: __lowercase = self.__min_dist_top_down_dp(_lowerCamelCase ,n - 1 ) __lowercase = self.__min_dist_top_down_dp(m - 1 ,_lowerCamelCase ) __lowercase = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) __lowercase = 1 + min(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) return self.dp[m][n] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = worda __lowercase = worda __lowercase = [[-1 for _ in range(len(_lowerCamelCase ) )] for _ in range(len(_lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(_lowerCamelCase ) - 1 ,len(_lowerCamelCase ) - 1 ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = worda __lowercase = worda __lowercase = len(_lowerCamelCase ) __lowercase = len(_lowerCamelCase ) __lowercase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowercase = j elif j == 0: # second string is empty __lowercase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowercase = self.dp[i - 1][j - 1] else: __lowercase = self.dp[i][j - 1] __lowercase = self.dp[i - 1][j] __lowercase = self.dp[i - 1][j - 1] __lowercase = 1 + min(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() _SCREAMING_SNAKE_CASE = input('''Enter the first string: ''').strip() _SCREAMING_SNAKE_CASE = input('''Enter the second string: ''').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=7 ,_lowerCamelCase=3 ,_lowerCamelCase=18 ,_lowerCamelCase=30 ,_lowerCamelCase=400 ,_lowerCamelCase=True ,_lowerCamelCase=None ,_lowerCamelCase=True ,) -> Dict: '''simple docstring''' __lowercase = size if size is not None else {'''height''': 18, '''width''': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_normalize def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Any = ImageGPTImageProcessor if is_vision_available() else None def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = ImageGPTImageProcessingTester(self ) @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase ,'''clusters''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase ,'''do_normalize''' ) ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) __lowercase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase ,obj[key] ) ) else: self.assertEqual(obj[key] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = os.path.join(_lowerCamelCase ,'''image_processor.json''' ) image_processor_first.to_json_file(_lowerCamelCase ) __lowercase = self.image_processing_class.from_json_file(_lowerCamelCase ).to_dict() __lowercase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCamelCase ) __lowercase = self.image_processing_class.from_pretrained(_lowerCamelCase ).to_dict() __lowercase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,_lowerCamelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass def _lowerCAmelCase ( ): __lowercase = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __lowercase = Image.open(dataset[4]['''file'''] ) __lowercase = Image.open(dataset[5]['''file'''] ) __lowercase = [imagea, imagea] return images @require_vision @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) __lowercase = prepare_images() # test non-batched __lowercase = image_processing(images[0] ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1024) ) __lowercase = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,_lowerCamelCase ) # test batched __lowercase = image_processing(_lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1024) ) __lowercase = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,_lowerCamelCase )
56
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Tuple = CpmAntTokenizer a : Union[str, Any] = False def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().setUp() __lowercase = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __lowercase = '''今天天气真好!''' __lowercase = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = '''今天天气真好!''' __lowercase = [tokenizer.bos_token] + tokens __lowercase = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,_lowerCamelCase )
56
'''simple docstring''' # flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any]="ro" , lowerCamelCase_ : Any="en" , lowerCamelCase_ : List[str]="wmt16" , lowerCamelCase_ : str=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __lowercase = f"{src_lang}-{tgt_lang}" print(f"Converting {dataset}-{pair}" ) __lowercase = datasets.load_dataset(lowerCamelCase_ , lowerCamelCase_ ) if save_dir is None: __lowercase = f"{dataset}-{pair}" __lowercase = Path(lowerCamelCase_ ) save_dir.mkdir(exist_ok=lowerCamelCase_ ) for split in ds.keys(): print(f"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __lowercase = '''val''' if split == '''validation''' else split __lowercase = save_dir.joinpath(f"{fn}.source" ) __lowercase = save_dir.joinpath(f"{fn}.target" ) __lowercase = src_path.open('''w+''' ) __lowercase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowercase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
56
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _SCREAMING_SNAKE_CASE = { '''gpt-neox-20b''': 2_0_4_8, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = ["input_ids", "attention_mask"] def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase="<|endoftext|>" ,_lowerCamelCase=False ,**_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__( _lowerCamelCase ,_lowerCamelCase ,tokenizer_file=_lowerCamelCase ,unk_token=_lowerCamelCase ,bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ,**_lowerCamelCase ,) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' ,_lowerCamelCase ) != add_prefix_space: __lowercase = getattr(_lowerCamelCase ,pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**_lowerCamelCase ) __lowercase = add_prefix_space def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCamelCase ,name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[int]: '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __lowercase = len(lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) __lowercase = ( first_str_length if first_str_length > second_str_length else second_str_length ) __lowercase = [] for char_count in range(lowerCamelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowerCamelCase_ ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
56
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _SCREAMING_SNAKE_CASE = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _SCREAMING_SNAKE_CASE = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _lowerCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : int ): return float((preds == labels).mean() ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): __lowercase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): __lowercase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) __lowercase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase (self ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_lowerCamelCase ,_lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_lowerCamelCase ,_lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_lowerCamelCase ,_lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
56
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _SCREAMING_SNAKE_CASE = '''pt''' elif is_tf_available(): _SCREAMING_SNAKE_CASE = '''tf''' else: _SCREAMING_SNAKE_CASE = '''jax''' class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : int = ByTaTokenizer a : Optional[Any] = False def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' super().setUp() __lowercase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=False ,_lowerCamelCase=20 ,_lowerCamelCase=5 ) -> Tuple[str, list]: '''simple docstring''' __lowercase = [] for i in range(len(_lowerCamelCase ) ): try: __lowercase = tokenizer.decode([i] ,clean_up_tokenization_spaces=_lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowercase = list(filter(lambda _lowerCamelCase : re.match(R'''^[ a-zA-Z]+$''' ,t[1] ) ,_lowerCamelCase ) ) __lowercase = list(filter(lambda _lowerCamelCase : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=_lowerCamelCase ) ,_lowerCamelCase ) ) if max_length is not None and len(_lowerCamelCase ) > max_length: __lowercase = toks[:max_length] if min_length is not None and len(_lowerCamelCase ) < min_length and len(_lowerCamelCase ) > 0: while len(_lowerCamelCase ) < min_length: __lowercase = toks + toks # toks_str = [t[1] for t in toks] __lowercase = [t[0] for t in toks] # Ensure consistency __lowercase = tokenizer.decode(_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) if " " not in output_txt and len(_lowerCamelCase ) > 1: __lowercase = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=_lowerCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=_lowerCamelCase ) ) if with_prefix_space: __lowercase = ''' ''' + output_txt __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) return output_txt, output_ids def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) __lowercase = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] ,batch_without_eos_added['''input_ids'''] ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = '''Unicode €.''' __lowercase = tokenizer(_lowerCamelCase ) __lowercase = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] ,_lowerCamelCase ) # decoding __lowercase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,'''Unicode €.</s>''' ) __lowercase = tokenizer('''e è é ê ë''' ) __lowercase = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] ,_lowerCamelCase ) # decoding __lowercase = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,'''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) ,'''e è é ê ë</s>''' ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowercase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) if FRAMEWORK != "jax": __lowercase = list(batch.input_ids.numpy()[0] ) else: __lowercase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 37) ,batch.input_ids.shape ) self.assertEqual((2, 37) ,batch.attention_mask.shape ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors=_lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' ,_lowerCamelCase ) self.assertIn('''attention_mask''' ,_lowerCamelCase ) self.assertNotIn('''decoder_input_ids''' ,_lowerCamelCase ) self.assertNotIn('''decoder_attention_mask''' ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = [ '''Summary of the text.''', '''Another summary.''', ] __lowercase = tokenizer( text_target=_lowerCamelCase ,max_length=32 ,padding='''max_length''' ,truncation=_lowerCamelCase ,return_tensors=_lowerCamelCase ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization. </s>'''] __lowercase = ['''Summary of the text. </s>'''] # fmt: off __lowercase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __lowercase = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __lowercase = tokenizer(_lowerCamelCase ,text_target=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,batch['''input_ids'''][0] ) self.assertEqual(_lowerCamelCase ,batch['''labels'''][0] ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowercase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertIn('''new_additional_special_token''' ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) __lowercase = [f"<extra_id_{i}>" for i in range(125 )] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained( _lowerCamelCase ,) self.assertIn( '''an_additional_special_token''' ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' ,lstrip=_lowerCamelCase )] __lowercase = tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,) self.assertIn('''a_new_additional_special_token''' ,tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) ,) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer_class.from_pretrained(_lowerCamelCase ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_tokenizers(fast=_lowerCamelCase ,do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] __lowercase = tokenizer.convert_tokens_to_string(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = 0 __lowercase = tokenizer.convert_ids_to_tokens( _lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[] ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[token_id_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[token_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[token_id_to_test_setters] )
56
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' a : Optional[Any] = ["onnx"] def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Any: '''simple docstring''' requires_backends(self ,['''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: '''simple docstring''' requires_backends(cls ,['''onnx'''] ) @classmethod def _UpperCAmelCase (cls ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' requires_backends(cls ,['''onnx'''] )
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE = False class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 12 @property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } __lowercase = TransformeraDModel(**_lowerCamelCase ) return model def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = '''cpu''' __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,transformer=_lowerCamelCase ,scheduler=_lowerCamelCase ,learned_classifier_free_sampling_embeddings=_lowerCamelCase ,) __lowercase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''teddy bear playing in the pool''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe([prompt] ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipe( [prompt] ,generator=_lowerCamelCase ,output_type='''np''' ,return_dict=_lowerCamelCase ,num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) __lowercase = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) __lowercase = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = pipeline( '''teddy bear playing in the pool''' ,num_images_per_prompt=1 ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
1
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[str] = BertJapaneseTokenizer a : List[Any] = False a : Dict = True def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' super().setUp() __lowercase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase = self.get_input_output_texts(_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_lowerCamelCase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_lowerCamelCase ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(_lowerCamelCase ,'''wb''' ) as handle: pickle.dump(_lowerCamelCase ,_lowerCamelCase ) with open(_lowerCamelCase ,'''rb''' ) as handle: __lowercase = pickle.load(_lowerCamelCase ) __lowercase = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> str: '''simple docstring''' try: __lowercase = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = MecabTokenizer(do_lower_case=_lowerCamelCase ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' try: __lowercase = MecabTokenizer( do_lower_case=_lowerCamelCase ,normalize_text=_lowerCamelCase ,mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = MecabTokenizer(normalize_text=_lowerCamelCase ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] ,) @require_sudachi def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_lowerCamelCase ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(_lowerCamelCase ,'''wb''' ) as handle: pickle.dump(_lowerCamelCase ,_lowerCamelCase ) with open(_lowerCamelCase ,'''rb''' ) as handle: __lowercase = pickle.load(_lowerCamelCase ) __lowercase = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) @require_sudachi def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人''', '''参政権'''] ) @require_sudachi def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人参政権'''] ) @require_sudachi def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = SudachiTokenizer(do_lower_case=_lowerCamelCase ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = SudachiTokenizer(normalize_text=_lowerCamelCase ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = SudachiTokenizer(trim_whitespace=_lowerCamelCase ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_lowerCamelCase ) __lowercase = '''こんにちは、世界。\nこんばんは、世界。''' __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(_lowerCamelCase ,'''wb''' ) as handle: pickle.dump(_lowerCamelCase ,_lowerCamelCase ) with open(_lowerCamelCase ,'''rb''' ) as handle: __lowercase = pickle.load(_lowerCamelCase ) __lowercase = tokenizer_new.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) @require_jumanpp def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = JumanppTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = JumanppTokenizer(normalize_text=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = JumanppTokenizer(trim_whitespace=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] ,) @require_jumanpp def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) ,['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] ,) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __lowercase = {} for i, token in enumerate(_lowerCamelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_lowerCamelCase ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) ,['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) ,['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) __lowercase = tokenizer.subword_tokenizer __lowercase = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_lowerCamelCase ,['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) __lowercase = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_lowerCamelCase ,['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) __lowercase = tokenizer.encode('''ありがとう。''' ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ,_lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = BertJapaneseTokenizer a : List[Any] = False def _UpperCAmelCase (self ) -> Any: '''simple docstring''' super().setUp() __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type='''character''' ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = '''こんにちは、世界。 \nこんばんは、世界。''' __lowercase = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass # TODO add if relevant def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type='''character''' ) __lowercase = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _lowerCamelCase ,['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __lowercase = {} for i, token in enumerate(_lowerCamelCase ): __lowercase = i __lowercase = CharacterTokenizer(vocab=_lowerCamelCase ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) __lowercase = tokenizer.encode('''ありがとう。''' ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ,_lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' __lowercase = AutoTokenizer.from_pretrained(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) __lowercase = '''bert-base-cased''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
56
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase = "▁" ,_lowerCamelCase = True ,_lowerCamelCase = "<unk>" ,_lowerCamelCase = "</s>" ,_lowerCamelCase = "<pad>" ,) -> List[Any]: '''simple docstring''' __lowercase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['''token'''] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) ,''' ''' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_lowerCamelCase ,add_prefix_space=_lowerCamelCase ) __lowercase = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" ,special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] ,) __lowercase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> Union[str, Any]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [files] self._tokenizer.train(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = 8000 ,_lowerCamelCase = True ,) -> List[str]: '''simple docstring''' __lowercase = trainers.UnigramTrainer( vocab_size=_lowerCamelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCamelCase ,) self._tokenizer.train_from_iterator(_lowerCamelCase ,trainer=_lowerCamelCase ) self.add_unk_id() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['''unk''']['''id'''] __lowercase = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' from __future__ import annotations import queue class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = data __lowercase = None __lowercase = None def _lowerCAmelCase ( ): print('''\n********Press N to stop entering at any point of time********\n''' ) __lowercase = input('''Enter the value of the root node: ''' ).strip().lower() __lowercase = queue.Queue() __lowercase = TreeNode(int(lowerCamelCase_ ) ) q.put(lowerCamelCase_ ) while not q.empty(): __lowercase = q.get() __lowercase = f"Enter the left node of {node_found.data}: " __lowercase = input(lowerCamelCase_ ).strip().lower() or '''n''' if check == "n": return tree_node __lowercase = TreeNode(int(lowerCamelCase_ ) ) __lowercase = left_node q.put(lowerCamelCase_ ) __lowercase = f"Enter the right node of {node_found.data}: " __lowercase = input(lowerCamelCase_ ).strip().lower() or '''n''' if check == "n": return tree_node __lowercase = TreeNode(int(lowerCamelCase_ ) ) __lowercase = right_node q.put(lowerCamelCase_ ) raise def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return __lowercase = queue.Queue() q.put(lowerCamelCase_ ) while not q.empty(): __lowercase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return __lowercase = queue.Queue() q.put(lowerCamelCase_ ) while not q.empty(): __lowercase = [] while not q.empty(): __lowercase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return __lowercase = [] __lowercase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(lowerCamelCase_ ) __lowercase = n.left # end of while means current node doesn't have left child __lowercase = stack.pop() # start to traverse its right child __lowercase = n.right def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return __lowercase = [] __lowercase = node while n or stack: while n: stack.append(lowerCamelCase_ ) __lowercase = n.left __lowercase = stack.pop() print(n.data , end=''',''' ) __lowercase = n.right def _lowerCAmelCase ( lowerCamelCase_ : TreeNode ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not node: return __lowercase , __lowercase = [], [] __lowercase = node stacka.append(lowerCamelCase_ ) while stacka: # to find the reversed order of post order, store it in stack2 __lowercase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCamelCase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _lowerCAmelCase ( lowerCamelCase_ : str = "" , lowerCamelCase_ : Optional[Any]=5_0 , lowerCamelCase_ : Optional[Any]="*" ): if not s: return "\n" + width * char __lowercase , __lowercase = divmod(width - len(lowerCamelCase_ ) - 2 , 2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) _SCREAMING_SNAKE_CASE = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
56
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'''vocab_file''': '''spiece.model'''} _SCREAMING_SNAKE_CASE = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } _SCREAMING_SNAKE_CASE = { '''google/bigbird-roberta-base''': 4_0_9_6, '''google/bigbird-roberta-large''': 4_0_9_6, '''google/bigbird-base-trivia-itc''': 4_0_9_6, } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = VOCAB_FILES_NAMES a : List[str] = PRETRAINED_VOCAB_FILES_MAP a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple = ["input_ids", "attention_mask"] a : List[int] = [] def __init__(self ,_lowerCamelCase ,_lowerCamelCase="<unk>" ,_lowerCamelCase="<s>" ,_lowerCamelCase="</s>" ,_lowerCamelCase="<pad>" ,_lowerCamelCase="[SEP]" ,_lowerCamelCase="[MASK]" ,_lowerCamelCase="[CLS]" ,_lowerCamelCase = None ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else bos_token __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else eos_token __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else unk_token __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else pad_token __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else cls_token __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ,rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase ,eos_token=_lowerCamelCase ,unk_token=_lowerCamelCase ,pad_token=_lowerCamelCase ,sep_token=_lowerCamelCase ,mask_token=_lowerCamelCase ,cls_token=_lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCamelCase ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Dict: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__(self ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase ,out_type=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _UpperCAmelCase (self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(_lowerCamelCase ) __lowercase = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = False ,_lowerCamelCase = None ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> str: '''simple docstring''' __lowercase = kwargs.pop('''use_source_tokenizer''' ,_lowerCamelCase ) __lowercase = self.convert_ids_to_tokens(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase = [] __lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) __lowercase = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowercase = re.sub(R''' (\[(MASK|SEP)\])''' ,R'''\1''' ,''' '''.join(_lowerCamelCase ) ) else: __lowercase = ''''''.join(_lowerCamelCase ) __lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( _lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase ,token_ids_a=_lowerCamelCase ,already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
56
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _lowerCAmelCase ( ): __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase_ ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowerCamelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
56
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase_ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowerCamelCase_ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowerCamelCase_ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=None ): __lowercase = load_checkpoint(lowerCamelCase_ ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowerCamelCase_ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowerCamelCase_ ).half().eval() model.load_state_dict(lowerCamelCase_ ) # Check results Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
'''simple docstring''' import math def _lowerCAmelCase ( lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=1 , **lowerCamelCase_ : Tuple ): __lowercase = factor * value __lowercase = value while not is_prime(lowerCamelCase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCamelCase_ ) return value
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_subarray(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) __lowercase , __lowercase , __lowercase = max_cross_sum(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase , __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(lowerCamelCase_ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase_ : int ): __lowercase = [randint(1 , lowerCamelCase_ ) for _ in range(lowerCamelCase_ )] __lowercase = time.time() max_subarray(lowerCamelCase_ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def _lowerCAmelCase ( ): __lowercase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __lowercase = [time_max_subarray(lowerCamelCase_ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(lowerCamelCase_ , lowerCamelCase_ ): print(lowerCamelCase_ , '''\t\t''' , lowerCamelCase_ ) plt.plot(lowerCamelCase_ , lowerCamelCase_ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE = 1_6 _SCREAMING_SNAKE_CASE = 3_2 def _lowerCAmelCase ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : int = 1_6 ): __lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowercase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCamelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCamelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase = 1_6 elif accelerator.mixed_precision != "no": __lowercase = 8 else: __lowercase = None return tokenizer.pad( lowerCamelCase_ , padding='''longest''' , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCamelCase_ ) == "1": __lowercase = 2 # Initialize accelerator __lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase = batch_size // MAX_GPU_BATCH_SIZE __lowercase = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase_ ) __lowercase , __lowercase = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase = model.to(accelerator.device ) # Instantiate optimizer __lowercase = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler __lowercase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase = model(**lowerCamelCase_ ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowercase = 0 for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**lowerCamelCase_ ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCamelCase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , lowerCamelCase_ ) def _lowerCAmelCase ( ): __lowercase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __lowercase = dict(zip(_lowerCamelCase ,range(len(_lowerCamelCase ) ) ) ) __lowercase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __lowercase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,_lowerCamelCase ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.feature_extraction_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) # load decoder from hub __lowercase = '''hf-internal-testing/ngram-beam-search-decoder''' def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCamelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCamelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,_lowerCamelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_lowerCamelCase ,'''include''' ): WavaVecaProcessorWithLM( tokenizer=_lowerCamelCase ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor(_lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = '''This is a test string''' __lowercase = processor(text=_lowerCamelCase ) __lowercase = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _UpperCAmelCase (self ,_lowerCamelCase=(2, 10, 16) ,_lowerCamelCase=77 ) -> Optional[int]: '''simple docstring''' np.random.seed(_lowerCamelCase ) return np.random.rand(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __lowercase = processor.decode(_lowerCamelCase ) __lowercase = decoder.decode_beams(_lowerCamelCase )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_lowerCamelCase ) else: with get_context(_lowerCamelCase ).Pool() as pool: __lowercase = processor.batch_decode(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_lowerCamelCase ,_lowerCamelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCamelCase ,decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] ,decoded_processor.text ) self.assertListEqual(_lowerCamelCase ,decoded_processor.logit_score ) self.assertListEqual(_lowerCamelCase ,decoded_processor.lm_score ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -2_0.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,beam_width=_lowerCamelCase ,beam_prune_logp=_lowerCamelCase ,token_min_logp=_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] ,_lowerCamelCase ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,_lowerCamelCase ,atol=1E-3 ) ) self.assertTrue(np.array_equal(_lowerCamelCase ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -2_0.0 __lowercase = True __lowercase = processor.batch_decode( _lowerCamelCase ,alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) __lowercase = decoded_processor_out.text __lowercase = list(_lowerCamelCase ) decoder.reset_params( alpha=_lowerCamelCase ,beta=_lowerCamelCase ,unk_score_offset=_lowerCamelCase ,lm_score_boundary=_lowerCamelCase ,) with get_context('''fork''' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _lowerCamelCase ,_lowerCamelCase ,) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] ,_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_lowerCamelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __lowercase = os.listdir(_lowerCamelCase ) __lowercase = os.listdir(_lowerCamelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = floats_list((3, 1000) ) __lowercase = processor_wavaveca(_lowerCamelCase ,return_tensors='''np''' ) __lowercase = processor_auto(_lowerCamelCase ,return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_lowerCamelCase ) __lowercase = processor_auto.batch_decode(_lowerCamelCase ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_lowerCamelCase ,feature_extractor=_lowerCamelCase ,decoder=_lowerCamelCase ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg='''`processor` and `feature_extractor` model input names do not match''' ,) @staticmethod def _UpperCAmelCase (_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] ,'''end_offset''' ) ,[1, 3, 5] ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_lowerCamelCase ,output_word_offsets=_lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_lowerCamelCase ,_lowerCamelCase ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) for o in outputs['''word_offsets''']] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''word''' ) ,['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''start_offset''' ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] ,'''end_offset''' ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' import torch __lowercase = load_dataset('''common_voice''' ,'''en''' ,split='''train''' ,streaming=_lowerCamelCase ) __lowercase = ds.cast_column('''audio''' ,datasets.Audio(sampling_rate=16000 ) ) __lowercase = iter(_lowerCamelCase ) __lowercase = next(_lowerCamelCase ) __lowercase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __lowercase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['''audio''']['''array'''] ,return_tensors='''pt''' ).input_values with torch.no_grad(): __lowercase = model(_lowerCamelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] ,output_word_offsets=_lowerCamelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __lowercase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,_lowerCamelCase ) self.assertEqual(''' '''.join(self.get_from_offsets(_lowerCamelCase ,'''word''' ) ) ,output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''start_time''' ) ) __lowercase = torch.tensor(self.get_from_offsets(_lowerCamelCase ,'''end_time''' ) ) # fmt: off __lowercase = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowercase = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=0.0_1 ) )
56
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __lowercase = set(range(3 , lowerCamelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCamelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCamelCase_ , lowerCamelCase_ ) ) ) __lowercase = [float(lowerCamelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = ["pixel_values"] def __init__(self ,_lowerCamelCase = True ,_lowerCamelCase = 32 ,_lowerCamelCase=PILImageResampling.BILINEAR ,_lowerCamelCase = True ,**_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = do_resize __lowercase = do_rescale __lowercase = size_divisor __lowercase = resample super().__init__(**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' __lowercase , __lowercase = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowercase = height // size_divisor * size_divisor __lowercase = width // size_divisor * size_divisor __lowercase = resize(_lowerCamelCase ,(new_h, new_w) ,resample=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) return image def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = None ,**_lowerCamelCase ) -> np.ndarray: '''simple docstring''' return rescale(image=_lowerCamelCase ,scale=_lowerCamelCase ,data_format=_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase=None ,_lowerCamelCase = None ,_lowerCamelCase = None ,_lowerCamelCase = ChannelDimension.FIRST ,**_lowerCamelCase ,) -> BatchFeature: '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = size_divisor if size_divisor is not None else self.size_divisor __lowercase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __lowercase = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: __lowercase = [self.resize(_lowerCamelCase ,size_divisor=_lowerCamelCase ,resample=_lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCamelCase ,scale=1 / 255 ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCamelCase ,_lowerCamelCase ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase ,tensor_type=_lowerCamelCase )
56
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(lowerCamelCase_ ) __lowercase = cos(lowerCamelCase_ ) __lowercase = _sin / (2 * q_factor) __lowercase = (1 - _cos) / 2 __lowercase = 1 - _cos __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(lowerCamelCase_ ) __lowercase = cos(lowerCamelCase_ ) __lowercase = _sin / (2 * q_factor) __lowercase = (1 + _cos) / 2 __lowercase = -1 - _cos __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(lowerCamelCase_ ) __lowercase = cos(lowerCamelCase_ ) __lowercase = _sin / (2 * q_factor) __lowercase = _sin / 2 __lowercase = 0 __lowercase = -ba __lowercase = 1 + alpha __lowercase = -2 * _cos __lowercase = 1 - alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float = 1 / sqrt(2 ) ): __lowercase = tau * frequency / samplerate __lowercase = sin(lowerCamelCase_ ) __lowercase = cos(lowerCamelCase_ ) __lowercase = _sin / (2 * q_factor) __lowercase = 1 - alpha __lowercase = -2 * _cos __lowercase = 1 + alpha __lowercase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : float = 1 / sqrt(2 ) , ): __lowercase = tau * frequency / samplerate __lowercase = sin(lowerCamelCase_ ) __lowercase = cos(lowerCamelCase_ ) __lowercase = _sin / (2 * q_factor) __lowercase = 1_0 ** (gain_db / 4_0) __lowercase = 1 + alpha * big_a __lowercase = -2 * _cos __lowercase = 1 - alpha * big_a __lowercase = 1 + alpha / big_a __lowercase = -2 * _cos __lowercase = 1 - alpha / big_a __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : float = 1 / sqrt(2 ) , ): __lowercase = tau * frequency / samplerate __lowercase = sin(lowerCamelCase_ ) __lowercase = cos(lowerCamelCase_ ) __lowercase = _sin / (2 * q_factor) __lowercase = 1_0 ** (gain_db / 4_0) __lowercase = (big_a + 1) - (big_a - 1) * _cos __lowercase = (big_a + 1) + (big_a - 1) * _cos __lowercase = (big_a - 1) - (big_a + 1) * _cos __lowercase = (big_a - 1) + (big_a + 1) * _cos __lowercase = 2 * sqrt(lowerCamelCase_ ) * alpha __lowercase = big_a * (pmc + aaa) __lowercase = 2 * big_a * mpc __lowercase = big_a * (pmc - aaa) __lowercase = ppmc + aaa __lowercase = -2 * pmpc __lowercase = ppmc - aaa __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : float = 1 / sqrt(2 ) , ): __lowercase = tau * frequency / samplerate __lowercase = sin(lowerCamelCase_ ) __lowercase = cos(lowerCamelCase_ ) __lowercase = _sin / (2 * q_factor) __lowercase = 1_0 ** (gain_db / 4_0) __lowercase = (big_a + 1) - (big_a - 1) * _cos __lowercase = (big_a + 1) + (big_a - 1) * _cos __lowercase = (big_a - 1) - (big_a + 1) * _cos __lowercase = (big_a - 1) + (big_a + 1) * _cos __lowercase = 2 * sqrt(lowerCamelCase_ ) * alpha __lowercase = big_a * (ppmc + aaa) __lowercase = -2 * big_a * pmpc __lowercase = big_a * (ppmc - aaa) __lowercase = pmc + aaa __lowercase = 2 * mpc __lowercase = pmc - aaa __lowercase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
56
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(lowerCamelCase_ , a % b ) __lowercase = a // b return (y, x - k * y) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): ((__lowercase) , (__lowercase)) = extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): ((__lowercase) , (__lowercase)) = extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) if b < 0: __lowercase = (b % n + n) % n return b def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = invert_modulo(lowerCamelCase_ , lowerCamelCase_ ), invert_modulo(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=2 ,_lowerCamelCase=56 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=32 ,_lowerCamelCase=2 ,_lowerCamelCase=2 ,_lowerCamelCase=7 ,_lowerCamelCase="gelu_new" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=16 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=4 ,_lowerCamelCase="block_sparse" ,_lowerCamelCase=True ,_lowerCamelCase=False ,_lowerCamelCase=2 ,_lowerCamelCase=3 ,) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices __lowercase = rescale_embeddings __lowercase = attention_type __lowercase = use_bias __lowercase = block_size __lowercase = num_random_blocks def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = BigBirdConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCamelCase ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,block_size=self.block_size ,num_random_blocks=self.num_random_blocks ,use_bias=self.use_bias ,rescale_embeddings=self.rescale_embeddings ,) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[str] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) a : int = False a : Union[str, Any] = False def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase (self ) -> str: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().test_hidden_states_output() @slow def _UpperCAmelCase (self ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) __lowercase = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowerCamelCase ,_lowerCamelCase=None ,**_lowerCamelCase ): return model(input_ids=_lowerCamelCase ,attention_mask=_lowerCamelCase ,**_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): __lowercase = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowercase = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase ,_lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=1E-5 ,_lowerCamelCase="outputs" ,_lowerCamelCase=None ) -> Optional[int]: '''simple docstring''' if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )
56
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _SCREAMING_SNAKE_CASE = '''<<<<<<< This should probably be modified because it mentions: ''' _SCREAMING_SNAKE_CASE = '''======= >>>>>>> ''' _SCREAMING_SNAKE_CASE = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _SCREAMING_SNAKE_CASE = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCamelCase_ : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @staticmethod def _UpperCAmelCase (_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=_lowerCamelCase ,required=_lowerCamelCase ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,*_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def _UpperCAmelCase (self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(_lowerCamelCase ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if not os.path.isfile(_lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_lowerCamelCase ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda _lowerCamelCase : e in out_line ,_lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_lowerCamelCase ) + '''\n''' ) out_lines.append(_lowerCamelCase ) out_lines.append(_lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,_lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(_lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) __lowercase = os.path.join(_lowerCamelCase ,_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_lowerCamelCase ) if needs_manual_update: with_manual_update.append(_lowerCamelCase ) with open(_lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(_lowerCamelCase ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(_lowerCamelCase ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(_lowerCamelCase ,_lowerCamelCase ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
56
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) _SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) _SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) _SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) _SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) _SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _SCREAMING_SNAKE_CASE = '''Normal''' if result[0][0] == 1: _SCREAMING_SNAKE_CASE = '''Abnormality detected'''
56
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm _SCREAMING_SNAKE_CASE = 2_0_4_8 _SCREAMING_SNAKE_CASE = 4_0_9_6 _SCREAMING_SNAKE_CASE = 4_2 _SCREAMING_SNAKE_CASE = os.environ.pop('''PROCESS_TRAIN''', '''false''') _SCREAMING_SNAKE_CASE = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): def choose_first(lowerCamelCase_ : Dict , lowerCamelCase_ : str=False ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) == 1: __lowercase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __lowercase = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a __lowercase = {'''id''': example['''id''']} __lowercase = example['''annotations'''] __lowercase = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: __lowercase = ['''yes'''] if 1 in yes_no_answer else ['''no'''] __lowercase = __lowercase = [] __lowercase = __lowercase = [] __lowercase = ['''<cls>'''] else: __lowercase = ['''short'''] __lowercase = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available __lowercase = ['''long'''] __lowercase = choose_first(annotation['''long_answer'''] , is_long_answer=lowerCamelCase_ ) __lowercase = [] answer.update(lowerCamelCase_ ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: __lowercase = True else: __lowercase = False __lowercase = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , lowerCamelCase_ ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int]=False ): __lowercase = _get_single_answer(lowerCamelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase = example['''document''']['''tokens'''] __lowercase = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __lowercase = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __lowercase = example['''document''']['''tokens'''] __lowercase = answer['''start_token'''] __lowercase = answer['''end_token'''] __lowercase = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __lowercase = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: __lowercase = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] __lowercase = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] __lowercase = ''' '''.join([old[i] for i in range(len(lowerCamelCase_ ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , lowerCamelCase_ , end='''\n''' ) print('''Old:''' , lowerCamelCase_ , end='''\n\n''' ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=2_0_4_8 , lowerCamelCase_ : str=4_0_9_6 , lowerCamelCase_ : Union[str, Any]=True ): # overlap will be of doc_stride - q_len __lowercase = get_context_and_ans(lowerCamelCase_ , assertion=lowerCamelCase_ ) __lowercase = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __lowercase = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids __lowercase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __lowercase = [] __lowercase = [] __lowercase = input_ids[:q_len] __lowercase = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) for i in doc_start_indices: __lowercase = i + max_length - q_len __lowercase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowerCamelCase_ ), "end_token": [-1_0_0] * len(lowerCamelCase_ ), "category": category, }, } __lowercase = out['''context'''].split() __lowercase = splitted_context[answer['''end_token''']] __lowercase = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=lowerCamelCase_ , ).input_ids ) __lowercase = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=lowerCamelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __lowercase = len(tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __lowercase = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive __lowercase = answer['''start_token'''] __lowercase = answer['''end_token'''] if assertion: __lowercase = tokenizer.decode(lowerCamelCase_ ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , lowerCamelCase_ , end='''\n\n''' ) if len(lowerCamelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __lowercase = input_ids[:q_len] __lowercase = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) __lowercase = [] __lowercase = [] __lowercase = [] __lowercase = [] # null, yes, no, long, short for i in doc_start_indices: __lowercase = i + max_length - q_len __lowercase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __lowercase = start_token - i + q_len __lowercase = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: __lowercase = -1_0_0 __lowercase = -1_0_0 answers_category.append('''null''' ) __lowercase = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase_ ) answers_end_token.append(lowerCamelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(lowerCamelCase_ ) ) print('''Old:''' , tokenizer.decode(lowerCamelCase_ ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[str]=2_0_4_8 , lowerCamelCase_ : Optional[int]=4_0_9_6 , lowerCamelCase_ : Tuple=False ): __lowercase = get_strided_contexts_and_ans( lowerCamelCase_ , lowerCamelCase_ , doc_stride=lowerCamelCase_ , max_length=lowerCamelCase_ , assertion=lowerCamelCase_ , ) return example def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict ): with jsonlines.open(lowerCamelCase_ , '''a''' ) as writer: for example in tqdm(lowerCamelCase_ , total=len(lowerCamelCase_ ) , desc='''Saving samples ... ''' ): __lowercase = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _SCREAMING_SNAKE_CASE = load_dataset('''natural_questions''') _SCREAMING_SNAKE_CASE = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _SCREAMING_SNAKE_CASE = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] _SCREAMING_SNAKE_CASE = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } _SCREAMING_SNAKE_CASE = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _SCREAMING_SNAKE_CASE = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) _SCREAMING_SNAKE_CASE = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ) __lowercase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ,streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ) __lowercase = tokenizer.decode(greedy_ids[0] ) __lowercase = TextIteratorStreamer(_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase = Thread(target=model.generate ,kwargs=_lowerCamelCase ) thread.start() __lowercase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ) __lowercase = greedy_ids[:, input_ids.shape[1] :] __lowercase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(_lowerCamelCase ,skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase ,max_new_tokens=10 ,do_sample=_lowerCamelCase ,streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = torch.ones((1, 5) ,device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase = TextStreamer(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase ,max_new_tokens=1 ,do_sample=_lowerCamelCase ,streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase = cs.out[:-1] # Remove the final "\n" __lowercase = tokenizer(_lowerCamelCase ,return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) __lowercase = TextIteratorStreamer(_lowerCamelCase ,timeout=0.0_0_1 ) __lowercase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase = Thread(target=model.generate ,kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): __lowercase = '''''' for new_text in streamer: streamer_text += new_text
56
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,_lowerCamelCase ,) super().__init__(*_lowerCamelCase ,**_lowerCamelCase )
56
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=0.9_99 , lowerCamelCase_ : int="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase_ : int ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase_ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __lowercase = [] for i in range(lowerCamelCase_ ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase_ ) / alpha_bar_fn(lowerCamelCase_ ) , lowerCamelCase_ ) ) return torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' a : str = [e.name for e in KarrasDiffusionSchedulers] a : Dict = 2 @register_to_config def __init__(self ,_lowerCamelCase = 1000 ,_lowerCamelCase = 0.0_0_0_8_5 ,_lowerCamelCase = 0.0_1_2 ,_lowerCamelCase = "linear" ,_lowerCamelCase = None ,_lowerCamelCase = "epsilon" ,_lowerCamelCase = False ,_lowerCamelCase = False ,_lowerCamelCase = 1.0 ,_lowerCamelCase = "linspace" ,_lowerCamelCase = 0 ,) -> List[Any]: '''simple docstring''' if trained_betas is not None: __lowercase = torch.tensor(_lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase = torch.linspace(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_lowerCamelCase ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase = betas_for_alpha_bar(_lowerCamelCase ,alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": __lowercase = betas_for_alpha_bar(_lowerCamelCase ,alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) __lowercase = 1.0 - self.betas __lowercase = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) __lowercase = use_karras_sigmas def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase=None ) -> Optional[int]: '''simple docstring''' if schedule_timesteps is None: __lowercase = self.timesteps __lowercase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowercase = 1 if len(_lowerCamelCase ) > 1 else 0 else: __lowercase = timestep.cpu().item() if torch.is_tensor(_lowerCamelCase ) else timestep __lowercase = self._index_counter[timestep_int] return indices[pos].item() @property def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,) -> torch.FloatTensor: '''simple docstring''' __lowercase = self.index_for_timestep(_lowerCamelCase ) __lowercase = self.sigmas[step_index] __lowercase = sample / ((sigma**2 + 1) ** 0.5) return sample def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase = None ,_lowerCamelCase = None ,) -> Optional[int]: '''simple docstring''' __lowercase = num_inference_steps __lowercase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowercase = np.linspace(0 ,num_train_timesteps - 1 ,_lowerCamelCase ,dtype=_lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowercase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase = (np.arange(0 ,_lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowercase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase = (np.arange(_lowerCamelCase ,0 ,-step_ratio )).round().copy().astype(_lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) __lowercase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowercase = np.log(_lowerCamelCase ) __lowercase = np.interp(_lowerCamelCase ,np.arange(0 ,len(_lowerCamelCase ) ) ,_lowerCamelCase ) if self.config.use_karras_sigmas: __lowercase = self._convert_to_karras(in_sigmas=_lowerCamelCase ,num_inference_steps=self.num_inference_steps ) __lowercase = np.array([self._sigma_to_t(_lowerCamelCase ,_lowerCamelCase ) for sigma in sigmas] ) __lowercase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowercase = torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase ) __lowercase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowercase = torch.from_numpy(_lowerCamelCase ) __lowercase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCamelCase ).startswith('''mps''' ): # mps does not support float64 __lowercase = timesteps.to(_lowerCamelCase ,dtype=torch.floataa ) else: __lowercase = timesteps.to(device=_lowerCamelCase ) # empty dt and derivative __lowercase = None __lowercase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowercase = defaultdict(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = np.log(_lowerCamelCase ) # get distribution __lowercase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowercase = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowercase = low_idx + 1 __lowercase = log_sigmas[low_idx] __lowercase = log_sigmas[high_idx] # interpolate sigmas __lowercase = (low - log_sigma) / (low - high) __lowercase = np.clip(_lowerCamelCase ,0 ,1 ) # transform interpolation to time range __lowercase = (1 - w) * low_idx + w * high_idx __lowercase = t.reshape(sigma.shape ) return t def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> torch.FloatTensor: '''simple docstring''' __lowercase = in_sigmas[-1].item() __lowercase = in_sigmas[0].item() __lowercase = 7.0 # 7.0 is the value used in the paper __lowercase = np.linspace(0 ,1 ,_lowerCamelCase ) __lowercase = sigma_min ** (1 / rho) __lowercase = sigma_max ** (1 / rho) __lowercase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _UpperCAmelCase (self ) -> Any: '''simple docstring''' return self.dt is None def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = True ,) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' __lowercase = self.index_for_timestep(_lowerCamelCase ) # advance index counter by 1 __lowercase = timestep.cpu().item() if torch.is_tensor(_lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowercase = self.sigmas[step_index] __lowercase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowercase = self.sigmas[step_index - 1] __lowercase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowercase = 0 __lowercase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowercase = sigma_hat if self.state_in_first_order else sigma_next __lowercase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowercase = sigma_hat if self.state_in_first_order else sigma_next __lowercase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowercase = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: __lowercase = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowercase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowercase = sigma_next - sigma_hat # store for 2nd order step __lowercase = derivative __lowercase = dt __lowercase = sample else: # 2. 2nd order / Heun's method __lowercase = (sample - pred_original_sample) / sigma_next __lowercase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowercase = self.dt __lowercase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowercase = None __lowercase = None __lowercase = None __lowercase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> torch.FloatTensor: '''simple docstring''' __lowercase = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCamelCase ): # mps does not support float64 __lowercase = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) __lowercase = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: __lowercase = self.timesteps.to(original_samples.device ) __lowercase = timesteps.to(original_samples.device ) __lowercase = [self.index_for_timestep(_lowerCamelCase ,_lowerCamelCase ) for t in timesteps] __lowercase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowercase = sigma.unsqueeze(-1 ) __lowercase = original_samples + noise * sigma return noisy_samples def __len__(self ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
56
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(_lowerCamelCase ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def _UpperCAmelCase (self ) -> None: '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def _lowerCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
56
1