code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> float: """simple docstring""" if edge <= 0 or not isinstance(a__ , a__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> float: """simple docstring""" if edge <= 0 or not isinstance(a__ , a__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : Dict = get_tests_dir('fixtures/test_sentencepiece.model') _SCREAMING_SNAKE_CASE : int = {'target_lang': 'fi', 'source_lang': 'en'} _SCREAMING_SNAKE_CASE : List[Any] = '>>zh<<' _SCREAMING_SNAKE_CASE : List[str] = 'Helsinki-NLP/' if is_torch_available(): _SCREAMING_SNAKE_CASE : Dict = 'pt' elif is_tf_available(): _SCREAMING_SNAKE_CASE : int = 'tf' else: _SCREAMING_SNAKE_CASE : Optional[int] = 'jax' @require_sentencepiece class UpperCamelCase__ ( __lowerCAmelCase, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = MarianTokenizer _lowerCAmelCase = False _lowerCAmelCase = True def __snake_case ( self ): super().setUp() A__ : Optional[Any] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] A__ : Any = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Optional[Any] = Path(self.tmpdirname ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) A__ : str = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __snake_case ( self , UpperCamelCase__ ): return ( "This is a test", "This is a test", ) def __snake_case ( self ): A__ : Optional[int] = '''</s>''' A__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __snake_case ( self ): A__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(lowerCAmelCase_ ) , 9 ) def __snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __snake_case ( self ): A__ : Tuple = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" ) A__ : Optional[Any] = en_de_tokenizer(['''I am a small frog'''] , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowerCAmelCase_ , batch.input_ids[0] ) A__ : List[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Dict = [x.name for x in Path(lowerCAmelCase_ ).glob('''*''' )] self.assertIn('''source.spm''' , lowerCAmelCase_ ) MarianTokenizer.from_pretrained(lowerCAmelCase_ ) def __snake_case ( self ): A__ : List[str] = self.get_tokenizer() A__ : Union[str, Any] = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __snake_case ( self ): A__ : Tuple = self.get_tokenizer() A__ : str = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __snake_case ( self ): # fmt: off A__ : Optional[int] = {'''input_ids''': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __snake_case ( self ): A__ : str = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) A__ : Tuple = '''Tämä on testi''' A__ : Any = '''This is a test''' A__ : List[Any] = [76, 7, 2047, 2] A__ : List[Any] = [69, 12, 11, 940, 2] A__ : Optional[int] = tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict = tokenizer(text_target=lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Tuple = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : List[Any] = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=__UpperCamelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=__UpperCamelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=__UpperCamelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=__UpperCamelCase , default=10_00 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=__UpperCamelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=__UpperCamelCase , type=__UpperCamelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=__UpperCamelCase , default=5_12 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=__UpperCamelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) A__ : List[str] = parser.parse_args() return args def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Any: """simple docstring""" def fn(__UpperCamelCase : List[str] ): return tokenizer(examples['''text'''] ) return fn def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> List[str]: """simple docstring""" A__ : Optional[int] = [] for i in range(len(tokenized_data['''input_ids'''] ) ): A__ : List[str] = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } A__ : Dict = tf.train.Features(feature=__UpperCamelCase ) A__ : int = tf.train.Example(features=__UpperCamelCase ) A__ : Tuple = example.SerializeToString() records.append(__UpperCamelCase ) return records def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" A__ : Dict = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: A__ : Union[str, Any] = min(len(__UpperCamelCase ) , args.limit ) A__ : List[str] = dataset.select(range(__UpperCamelCase ) ) print(F"Limiting the dataset to {args.limit} entries." ) A__ : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) A__ : List[str] = os.path.join(args.output_dir , args.split ) if not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) else: A__ : int = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. A__ : Any = tokenize_function(__UpperCamelCase ) A__ : Tuple = dataset.map(__UpperCamelCase , batched=__UpperCamelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__UpperCamelCase : int ): # Concatenate all texts. A__ : List[str] = {k: sum(examples[k] , [] ) for k in examples.keys()} A__ : int = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 A__ : Tuple = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. A__ : Optional[int] = { k: [t[i : i + args.max_length] for i in range(0 , __UpperCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result A__ : List[str] = dataset_tokenized.map(__UpperCamelCase , batched=__UpperCamelCase , batch_size=10_00 , num_proc=4 ) A__ : Union[str, Any] = 0 A__ : Any = 0 for shard in range(0 , len(__UpperCamelCase ) , args.shard_size ): A__ : Optional[int] = grouped_dataset[shard : shard + args.shard_size] A__ : Optional[Any] = len(dataset_snapshot['''input_ids'''] ) A__ : Optional[int] = os.path.join(__UpperCamelCase , F"dataset-{shard_count}-{records_containing}.tfrecord" ) A__ : Optional[int] = get_serialized_examples(__UpperCamelCase ) with tf.io.TFRecordWriter(__UpperCamelCase ) as out_file: for i in range(len(__UpperCamelCase ) ): A__ : Tuple = serialized_examples[i] out_file.write(__UpperCamelCase ) print('''Wrote file {} containing {} records'''.format(__UpperCamelCase , __UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , '''w''' ) as f: print(F"Total {args.split} records: {total_records}" , file=__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = parse_args() main(args)
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _SCREAMING_SNAKE_CASE : Optional[int] = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" F" reinstalling {pkg}." ) if not ops[op](version.parse(__a ) , version.parse(__a ) ): raise ImportError( F"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = F"\n{hint}" if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , __a ): A__ , A__ , A__ : Tuple = requirement, None, None else: A__ : str = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , __a ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F" got {requirement}" ) A__ , A__ : str = match[0] A__ : Any = want_full.split(''',''' ) # there could be multiple requirements A__ : Dict = {} for w in want_range: A__ : Union[str, Any] = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , __a ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F" but got {requirement}" ) A__ , A__ : Tuple = match[0] A__ : List[str] = want_ver if op not in ops: raise ValueError(F"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": A__ : Optional[int] = '''.'''.join([str(__a ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) return # check if any version is installed try: A__ : int = importlib.metadata.version(__a ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> str: """simple docstring""" A__ : List[str] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(__a , __a )
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
from scipy.stats import spearmanr import datasets _SCREAMING_SNAKE_CASE : Optional[Any] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ _SCREAMING_SNAKE_CASE : Optional[Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ _SCREAMING_SNAKE_CASE : Tuple = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[Any] = spearmanr(snake_case_ , snake_case_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np _SCREAMING_SNAKE_CASE : str = re.compile(r'\b(a|an|the)\b', re.UNICODE) _SCREAMING_SNAKE_CASE : Optional[Any] = None def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : Any = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__UpperCamelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__UpperCamelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> int: """simple docstring""" A__ : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A__ : Union[str, Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" def remove_articles(__UpperCamelCase : Optional[int] ): return ARTICLES_REGEX.sub(''' ''' , __UpperCamelCase ) def white_space_fix(__UpperCamelCase : List[str] ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase : List[Any] ): A__ : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" if not s: return [] return normalize_answer(__UpperCamelCase ).split() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" A__ : Union[str, Any] = get_tokens(__UpperCamelCase ) A__ : Optional[Any] = get_tokens(__UpperCamelCase ) A__ : str = collections.Counter(__UpperCamelCase ) & collections.Counter(__UpperCamelCase ) A__ : Optional[int] = sum(common.values() ) if len(__UpperCamelCase ) == 0 or len(__UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 A__ : Union[str, Any] = 1.0 * num_same / len(__UpperCamelCase ) A__ : List[Any] = 1.0 * num_same / len(__UpperCamelCase ) A__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" A__ : Any = {} A__ : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A__ : Union[str, Any] = qa['''id'''] A__ : int = [t for t in qa['''answers''']['''text'''] if normalize_answer(__UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string A__ : Union[str, Any] = [''''''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue A__ : Optional[int] = preds[qid] # Take max over all gold answers A__ : List[str] = max(compute_exact(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) A__ : Optional[int] = max(compute_fa(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" A__ : List[str] = {} for qid, s in scores.items(): A__ : Optional[Any] = na_probs[qid] > na_prob_thresh if pred_na: A__ : Union[str, Any] = float(not qid_to_has_ans[qid] ) else: A__ : Union[str, Any] = s return new_scores def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple=None ) -> Union[str, Any]: """simple docstring""" if not qid_list: A__ : Union[str, Any] = len(__UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_00.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: A__ : Union[str, Any] = len(__UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" for k in new_eval: A__ : Optional[int] = new_eval[k] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ) -> Union[str, Any]: """simple docstring""" plt.step(__UpperCamelCase , __UpperCamelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__UpperCamelCase , __UpperCamelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(__UpperCamelCase ) plt.savefig(__UpperCamelCase ) plt.clf() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" A__ : int = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) A__ : int = 0.0 A__ : int = 1.0 A__ : Optional[int] = 0.0 A__ : Tuple = [1.0] A__ : Union[str, Any] = [0.0] A__ : Any = 0.0 for i, qid in enumerate(__UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] A__ : List[str] = true_pos / float(i + 1 ) A__ : List[str] = true_pos / float(__UpperCamelCase ) if i == len(__UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCamelCase ) recalls.append(__UpperCamelCase ) if out_image: plot_pr_curve(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return {"ap": 1_00.0 * avg_prec} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" if out_image_dir and not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) A__ : Optional[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return A__ : List[str] = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) A__ : List[Any] = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) A__ : Optional[Any] = {k: float(__UpperCamelCase ) for k, v in qid_to_has_ans.items()} A__ : List[str] = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_exact''' ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_f1''' ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_oracle''' ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if not qid_list: return A__ : str = [na_probs[k] for k in qid_list] A__ : int = np.ones_like(__UpperCamelCase ) / float(len(__UpperCamelCase ) ) plt.hist(__UpperCamelCase , weights=__UpperCamelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(__UpperCamelCase , F"na_prob_hist_{name}.png" ) ) plt.clf() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : List[str] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) A__ : Any = num_no_ans A__ : Union[str, Any] = cur_score A__ : Tuple = 0.0 A__ : int = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) for i, qid in enumerate(__UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: A__ : Tuple = scores[qid] else: if preds[qid]: A__ : Any = -1 else: A__ : Tuple = 0 cur_score += diff if cur_score > best_score: A__ : Tuple = cur_score A__ : Any = na_probs[qid] return 1_00.0 * best_score / len(__UpperCamelCase ), best_thresh def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Any ) -> Dict: """simple docstring""" A__ : Union[str, Any] = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ : Union[str, Any] = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ : Optional[Any] = best_exact A__ : Optional[Any] = exact_thresh A__ : str = best_fa A__ : Tuple = fa_thresh def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" with open(OPTS.data_file ) as f: A__ : Tuple = json.load(__UpperCamelCase ) A__ : List[Any] = dataset_json['''data'''] with open(OPTS.pred_file ) as f: A__ : Optional[int] = json.load(__UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: A__ : Union[str, Any] = json.load(__UpperCamelCase ) else: A__ : Optional[int] = {k: 0.0 for k in preds} A__ : List[str] = make_qid_to_has_ans(__UpperCamelCase ) # maps qid to True/False A__ : Optional[Any] = [k for k, v in qid_to_has_ans.items() if v] A__ : List[Any] = [k for k, v in qid_to_has_ans.items() if not v] A__ : int = get_raw_scores(__UpperCamelCase , __UpperCamelCase ) A__ : Optional[Any] = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) A__ : Dict = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) A__ : List[Any] = make_eval_dict(__UpperCamelCase , __UpperCamelCase ) if has_ans_qids: A__ : Optional[Any] = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''HasAns''' ) if no_ans_qids: A__ : int = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) else: print(json.dumps(__UpperCamelCase , indent=2 ) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] = model.config A__ : Optional[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ : Optional[Any] = MBartConfig( is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_lowerCAmelCase , add_final_layer_norm=_lowerCAmelCase , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if "encoder.model" in name: A__ : int = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: A__ : Optional[int] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: A__ : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A__ : List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: A__ : Dict = '''encoder.''' + name if "attn.proj" in name: A__ : Optional[int] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: A__ : Union[str, Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A__ : Tuple = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A__ : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": A__ : Union[str, Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": A__ : List[str] = '''encoder.layernorm.bias''' return name def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ : Optional[Any] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: A__ : Any = key.split('''.''' ) A__ : Union[str, Any] = int(key_split[3] ) A__ : Union[str, Any] = int(key_split[5] ) A__ : Optional[Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ : Union[str, Any] = val[:dim, :] A__ : Any = val[dim : dim * 2, :] A__ : Any = val[-dim:, :] else: A__ : Optional[Any] = val[:dim] A__ : Tuple = val[dim : dim * 2] A__ : Optional[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ : Union[str, Any] = val return orig_state_dict def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : int=None , __UpperCamelCase : Optional[Any]=False ) -> List[Any]: """simple docstring""" A__ : Any = DonutModel.from_pretrained(_lowerCAmelCase ).eval() # load HuggingFace model A__ , A__ : Dict = get_configs(_lowerCAmelCase ) A__ : Optional[int] = DonutSwinModel(_lowerCAmelCase ) A__ : Dict = MBartForCausalLM(_lowerCAmelCase ) A__ : Dict = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() A__ : Optional[Any] = original_model.state_dict() A__ : Any = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # verify results on scanned document A__ : List[Any] = load_dataset('''hf-internal-testing/example-documents''' ) A__ : List[str] = dataset['''test'''][0]['''image'''].convert('''RGB''' ) A__ : Any = XLMRobertaTokenizerFast.from_pretrained(_lowerCAmelCase , from_slow=_lowerCAmelCase ) A__ : Optional[Any] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ : Tuple = DonutProcessor(_lowerCAmelCase , _lowerCAmelCase ) A__ : Tuple = processor(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ : List[str] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' A__ : Union[str, Any] = '''When is the coffee break?''' A__ : List[str] = task_prompt.replace('''{user_input}''' , _lowerCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ : Union[str, Any] = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ : str = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ : List[Any] = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ : int = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ : Tuple = '''hello world''' else: raise ValueError('''Model name not supported''' ) A__ : Any = original_model.decoder.tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] A__ : List[str] = original_model.encoder.model.patch_embed(_lowerCAmelCase ) A__ , A__ : Optional[int] = model.encoder.embeddings(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) # verify encoder hidden states A__ : List[str] = original_model.encoder(_lowerCAmelCase ) A__ : Dict = model.encoder(_lowerCAmelCase ).last_hidden_state assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 ) # verify decoder hidden states A__ : Tuple = original_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).logits A__ : Optional[Any] = model(_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Dict=False ) -> Any: """simple docstring""" try: A__ : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Optional[Any] = default else: # KEY is set, convert it to True or False. try: A__ : int = strtobool(lowerCamelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Any = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> str: """simple docstring""" return unittest.skip('''Test was skipped''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Tuple: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> str: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None ) -> Any: """simple docstring""" if test_case is None: return partial(lowerCamelCase_ , version=lowerCamelCase_ ) return unittest.skipUnless(is_torch_version('''>=''' , lowerCamelCase_ ) , F"test requires torch version >= {version}" )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(lowerCamelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(lowerCamelCase_ ) class UpperCamelCase__ ( unittest.TestCase ): _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowerCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): def __snake_case ( self , UpperCamelCase__ ): A__ : int = mocks if isinstance(__lowerCamelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" A__ : Tuple = AcceleratorState() A__ : str = tensor[None].clone().to(state.device ) A__ : Any = gather(lowerCamelCase_ ).cpu() A__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase_ ): return False return True class UpperCamelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = returncode A__ : List[str] = stdout A__ : List[Any] = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Any ) -> str: """simple docstring""" while True: A__ : Union[str, Any] = await stream.readline() if line: callback(lowerCamelCase_ ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Dict=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=False , __UpperCamelCase : List[str]=False ) -> str: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(lowerCamelCase_ ) ) A__ : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : Union[str, Any] = [] A__ : List[str] = [] def tee(__UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int="" ): A__ : Optional[int] = line.decode('''utf-8''' ).rstrip() sink.append(lowerCamelCase_ ) if not quiet: print(lowerCamelCase_ , lowerCamelCase_ , file=lowerCamelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=lowerCamelCase_ , ) return _RunOutput(await p.wait() , lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : int=None , __UpperCamelCase : str=1_80 , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Optional[int]=True ) -> int: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : List[Any] = loop.run_until_complete( _stream_subprocess(lowerCamelCase_ , env=lowerCamelCase_ , stdin=lowerCamelCase_ , timeout=lowerCamelCase_ , quiet=lowerCamelCase_ , echo=lowerCamelCase_ ) ) A__ : int = ''' '''.join(lowerCamelCase_ ) if result.returncode > 0: A__ : List[str] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( lowerCamelCase__ ): pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : int=False ) -> List[str]: """simple docstring""" try: A__ : Dict = subprocess.check_output(lowerCamelCase_ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase_ , '''decode''' ): A__ : Tuple = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(lowerCamelCase_ )}` failed with the following error:\n\n{e.output.decode()}" ) from e
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _SCREAMING_SNAKE_CASE : str = { "AI-Sweden/gpt-sw3-126m": 2_0_4_8, "AI-Sweden/gpt-sw3-350m": 2_0_4_8, "AI-Sweden/gpt-sw3-1.6b": 2_0_4_8, "AI-Sweden/gpt-sw3-6.7b": 2_0_4_8, "AI-Sweden/gpt-sw3-20b": 2_0_4_8, } class UpperCamelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = None , **UpperCamelCase__ , ): A__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs A__ : Union[str, Any] = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) A__ : str = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing A__ : int = '''<|endoftext|>''' if eos_token is None else eos_token A__ : str = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: A__ : str = unk_token if pad_token is None else pad_token A__ : Dict = eos_token if bos_token is None else bos_token else: A__ : Optional[Any] = '''<pad>''' if pad_token is None else pad_token A__ : Any = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) A__ : List[Any] = do_lower_case A__ : Tuple = remove_space A__ : Optional[Any] = keep_accents A__ : List[str] = vocab_file A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) # Used for whitespace normalization in input texts # fmt : off A__ : Optional[Any] = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing A__ : Optional[int] = re.compile( F"[{''.join(map(_lowercase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]" ) def __getstate__( self ): A__ : Optional[Any] = self.__dict__.copy() A__ : Any = None return state def __setstate__( self , UpperCamelCase__ ): A__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A__ : Dict = {} A__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __snake_case ( self ): return len(self.sp_model ) def __snake_case ( self , UpperCamelCase__ ): A__ : Optional[int] = self.non_printing_characters_re.sub('''''' , _lowercase ) # Normalize whitespaces A__ : List[Any] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization A__ : Optional[int] = unicodedata.normalize('''NFC''' , _lowercase ) return text def __snake_case ( self , UpperCamelCase__ , **UpperCamelCase__ ): A__ : int = self.preprocess_text(_lowercase ) return self.sp_model.encode(_lowercase , out_type=_lowercase ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.PieceToId(_lowercase ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.IdToPiece(_lowercase ) @staticmethod def __snake_case ( UpperCamelCase__ ): return out_string def __snake_case ( self , UpperCamelCase__ ): A__ : str = [] A__ : Any = '''''' A__ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowercase ) + token A__ : Any = True A__ : Tuple = [] else: current_sub_tokens.append(_lowercase ) A__ : Union[str, Any] = False out_string += self.sp_model.decode(_lowercase ) return out_string def __snake_case ( self ): A__ : List[Any] = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if not os.path.isdir(_lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Tuple = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , '''wb''' ) as fi: A__ : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = False ): if isinstance(_lowercase , _lowercase ): A__ : Union[str, Any] = self.preprocess_text(_lowercase ) A__ : Optional[Any] = self.sp_model.encode(_lowercase ) else: A__ : Dict = [self.preprocess_text(_lowercase ) for t in text] A__ : Union[str, Any] = self.sp_model.encode(_lowercase ) if return_tensors is True or return_tensors == "pt": A__ : Optional[int] = torch.tensor(_lowercase ) return token_ids def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.decode(_lowercase ) def __snake_case ( self , UpperCamelCase__ ): A__ : Optional[int] = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()] A__ : Dict = ( F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(_lowercase ) + F"{self.bos_token}Bot:" ) return self.encode(text=_lowercase )
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ): """simple docstring""" A__ : Dict = SwinConfig(image_size=1_92 ) if "base" in model_name: A__ : Dict = 6 A__ : Optional[Any] = 1_28 A__ : str = (2, 2, 18, 2) A__ : Dict = (4, 8, 16, 32) elif "large" in model_name: A__ : str = 12 A__ : Optional[int] = 1_92 A__ : Any = (2, 2, 18, 2) A__ : int = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) A__ : Any = window_size A__ : Any = embed_dim A__ : Dict = depths A__ : Union[str, Any] = num_heads return config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if "encoder.mask_token" in name: A__ : int = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: A__ : List[str] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: A__ : Tuple = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: A__ : str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A__ : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A__ : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ : List[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A__ : Optional[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ : int = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": A__ : List[Any] = "layernorm.weight" if name == "encoder.norm.bias": A__ : Optional[Any] = "layernorm.bias" if "decoder" in name: pass else: A__ : str = "swin." + name return name def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): A__ : Optional[int] = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "attn_mask" in key: pass elif "qkv" in key: A__ : str = key.split('''.''' ) A__ : int = int(key_split[2] ) A__ : str = int(key_split[4] ) A__ : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ : Optional[Any] = val[:dim, :] A__ : Any = val[ dim : dim * 2, : ] A__ : List[str] = val[-dim:, :] else: A__ : Tuple = val[ :dim ] A__ : int = val[ dim : dim * 2 ] A__ : Any = val[ -dim: ] else: A__ : int = val return orig_state_dict def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ): """simple docstring""" A__ : Union[str, Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' )["model"] A__ : Any = get_swin_config(__SCREAMING_SNAKE_CASE ) A__ : Optional[int] = SwinForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.eval() A__ : Tuple = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) A__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ : Optional[int] = ViTImageProcessor(size={'''height''': 1_92, '''width''': 1_92} ) A__ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) A__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) with torch.no_grad(): A__ : Tuple = model(**__SCREAMING_SNAKE_CASE ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(F"microsoft/{model_name}" ) image_processor.push_to_hub(F"microsoft/{model_name}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ): pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) A__ : Optional[int] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = object_detector(examples[0] , threshold=0.0 ) A__ : Union[str, Any] = len(A_ ) self.assertGreater(A_ , 0 ) self.assertEqual( A_ , [ { '''score''': ANY(A_ ), '''label''': ANY(A_ ), '''box''': {'''xmin''': ANY(A_ ), '''ymin''': ANY(A_ ), '''xmax''': ANY(A_ ), '''ymax''': ANY(A_ )}, } for i in range(A_ ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __snake_case ( self ): pass @require_torch def __snake_case ( self ): A__ : List[Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) A__ : Any = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) A__ : Any = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def __snake_case ( self ): A__ : Union[str, Any] = pipeline('''zero-shot-object-detection''' ) A__ : Optional[int] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) A__ : Optional[Any] = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def __snake_case ( self ): pass @require_torch @slow def __snake_case ( self ): A__ : Dict = 0.2 A__ : Any = pipeline('''zero-shot-object-detection''' ) A__ : List[str] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=A_ , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def __snake_case ( self ): A__ : Optional[Any] = 2 A__ : List[str] = pipeline('''zero-shot-object-detection''' ) A__ : Union[str, Any] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=A_ , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_lowerCamelCase ) A__ = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_lowerCamelCase ) EnvironmentCommand.register_subcommand(_lowerCamelCase ) TestCommand.register_subcommand(_lowerCamelCase ) RunBeamCommand.register_subcommand(_lowerCamelCase ) DummyDataCommand.register_subcommand(_lowerCamelCase ) # Parse args A__ = parser.parse_known_args() if not hasattr(_lowerCamelCase , '''func''' ): parser.print_help() exit(1 ) A__ = parse_unknown_args(_lowerCamelCase ) # Run A__ = args.func(_lowerCamelCase , **_lowerCamelCase ) service.run() if __name__ == "__main__": main()
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE : Dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "dhaka" , __UpperCamelCase : int = 5 ) -> str: """simple docstring""" A__ : Dict = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! A__ : str = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } A__ : str = requests.get('''https://www.google.com/search''' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) A__ : Any = BeautifulSoup(html.text , '''html.parser''' ) A__ : List[str] = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) A__ : Any = json.dumps(_SCREAMING_SNAKE_CASE ) A__ : int = json.loads(_SCREAMING_SNAKE_CASE ) A__ : Tuple = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 A__ : Union[str, Any] = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(_SCREAMING_SNAKE_CASE ) , ) A__ : Dict = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index A__ : str = bytes(_SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) A__ : str = bytes(_SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) A__ : Dict = urllib.request.build_opener() A__ : Union[str, Any] = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) A__ : str = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE : Dict = download_images_from_google_query(sys.argv[1]) print(f"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase__ ( A_ ): '''simple docstring''' _lowerCAmelCase = '''openai/whisper-base''' _lowerCAmelCase = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) _lowerCAmelCase = '''transcriber''' _lowerCAmelCase = WhisperProcessor _lowerCAmelCase = WhisperForConditionalGeneration _lowerCAmelCase = ['''audio'''] _lowerCAmelCase = ['''text'''] def __snake_case ( self , UpperCamelCase__ ): return self.pre_processor(UpperCamelCase__ , return_tensors='''pt''' ).input_features def __snake_case ( self , UpperCamelCase__ ): return self.model.generate(inputs=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): return self.pre_processor.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )[0]
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Tuple = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[Any] = 'cpu' _SCREAMING_SNAKE_CASE : Any = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' _SCREAMING_SNAKE_CASE : Any = 'path-to-your-trained-model' _SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _SCREAMING_SNAKE_CASE : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(device) # to channels last _SCREAMING_SNAKE_CASE : Tuple = pipe.unet.to(memory_format=torch.channels_last) _SCREAMING_SNAKE_CASE : List[Any] = pipe.vae.to(memory_format=torch.channels_last) _SCREAMING_SNAKE_CASE : List[str] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _SCREAMING_SNAKE_CASE : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _SCREAMING_SNAKE_CASE : Any = torch.randn(2, 4, 6_4, 6_4) _SCREAMING_SNAKE_CASE : List[str] = torch.rand(1) * 9_9_9 _SCREAMING_SNAKE_CASE : int = torch.randn(2, 7_7, 7_6_8) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sample, timestep, encoder_hidden_status) try: _SCREAMING_SNAKE_CASE : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _SCREAMING_SNAKE_CASE : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _SCREAMING_SNAKE_CASE : Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _SCREAMING_SNAKE_CASE : Any = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _SCREAMING_SNAKE_CASE : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _SCREAMING_SNAKE_CASE : Union[str, Any] = 6_6_6 _SCREAMING_SNAKE_CASE : Any = torch.Generator(device).manual_seed(seed) _SCREAMING_SNAKE_CASE : List[str] = {'generator': generator} if args.steps is not None: _SCREAMING_SNAKE_CASE : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _SCREAMING_SNAKE_CASE : Optional[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
import unittest from transformers import DonutProcessor _SCREAMING_SNAKE_CASE : int = 'naver-clova-ix/donut-base' class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Any = DonutProcessor.from_pretrained(UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } A__ : Tuple = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) A__ : Optional[Any] = self.processor.tokenajson(UpperCamelCase__ ) self.assertDictEqual(UpperCamelCase__ , UpperCamelCase__ )
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( __UpperCAmelCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__="None" , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): A__ : Optional[Any] = parent A__ : Tuple = batch_size A__ : Optional[Any] = seq_length A__ : str = is_training A__ : Union[str, Any] = use_input_mask A__ : List[Any] = use_token_type_ids A__ : str = use_labels A__ : Optional[Any] = vocab_size A__ : List[Any] = hidden_size A__ : List[Any] = num_hidden_layers A__ : int = num_attention_heads A__ : Optional[int] = intermediate_size A__ : List[str] = hidden_act A__ : Union[str, Any] = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Union[str, Any] = max_position_embeddings A__ : Optional[Any] = type_vocab_size A__ : List[Any] = type_sequence_label_size A__ : Dict = initializer_range A__ : Dict = num_labels A__ : Optional[Any] = num_choices A__ : List[str] = relative_attention A__ : int = position_biased_input A__ : Optional[Any] = pos_att_type A__ : str = scope def __snake_case ( self ): A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : str = None if self.use_input_mask: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ : List[Any] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : Any = None A__ : List[Any] = None if self.use_labels: A__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __snake_case ( self , UpperCamelCase__ ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = DebertaVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] A__ : str = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] A__ : int = model(lowerCAmelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = DebertaVaForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : int = self.num_labels A__ : List[Any] = DebertaVaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase_ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[str] = self.num_labels A__ : Union[str, Any] = DebertaVaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = DebertaVaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : int = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = DebertaVaForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self ): A__ : Tuple = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __UpperCAmelCase, __UpperCAmelCase, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _lowerCAmelCase = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self ): A__ : Tuple = DebertaVaModelTester(self ) A__ : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ ) def __snake_case ( self ): A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ ) def __snake_case ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ ) def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase_ ) @slow def __snake_case ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = DebertaVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def __snake_case ( self ): pass @slow def __snake_case ( self ): A__ : List[str] = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) A__ : str = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) A__ : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ : List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] # compare the actual values for a slice. A__ : str = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
from __future__ import annotations _SCREAMING_SNAKE_CASE : int = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] , __UpperCamelCase : list[int] , __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A__ : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the reference grid A__ : Optional[Any] = 1 A__ : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the action grid A__ : Any = init[0] A__ : Any = init[1] A__ : List[Any] = 0 A__ : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell A__ : int = [[f, g, x, y]] A__ : Optional[Any] = False # flag that is set when search is complete A__ : List[Any] = False # flag set if we can't find expand while not found and not resign: if len(a_ ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A__ : List[str] = cell.pop() A__ : Optional[int] = next_cell[2] A__ : int = next_cell[3] A__ : Union[str, Any] = next_cell[1] if x == goal[0] and y == goal[1]: A__ : Optional[int] = True else: for i in range(len(a_ ) ): # to try out different valid actions A__ : List[Any] = x + DIRECTIONS[i][0] A__ : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(a_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A__ : List[Any] = g + cost A__ : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A__ : Any = 1 A__ : int = i A__ : Tuple = [] A__ : int = goal[0] A__ : Union[str, Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A__ : str = x - DIRECTIONS[action[x][y]][0] A__ : str = y - DIRECTIONS[action[x][y]][1] A__ : List[Any] = xa A__ : Union[str, Any] = ya invpath.append([x, y] ) A__ : Optional[Any] = [] for i in range(len(a_ ) ): path.append(invpath[len(a_ ) - 1 - i] ) return path, action if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _SCREAMING_SNAKE_CASE : List[Any] = [0, 0] # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE : Optional[Any] = [len(grid) - 1, len(grid[0]) - 1] _SCREAMING_SNAKE_CASE : Any = 1 # the cost map which pushes the path closer to the goal _SCREAMING_SNAKE_CASE : Optional[int] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _SCREAMING_SNAKE_CASE : Dict = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _SCREAMING_SNAKE_CASE : Union[str, Any] = 9_9 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase__ ( _a ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ ): A__ : Tuple = parent A__ : Optional[Any] = config_class A__ : Any = has_text_modality A__ : Dict = kwargs A__ : Optional[int] = common_properties def __snake_case ( self ): A__ : Optional[Any] = self.config_class(**self.inputs_dict ) A__ : Tuple = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_A , _A ) , msg=F"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(_A ): try: setattr(_A , _A , _A ) self.parent.assertEqual( getattr(_A , _A ) , _A , msg=F"`{name} value {idx} expected, but was {getattr(_A , _A )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_A ): try: A__ : Optional[Any] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_A , _A ) , _A , msg=F"`{name} value {idx} expected, but was {getattr(_A , _A )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __snake_case ( self ): A__ : Dict = self.config_class(**self.inputs_dict ) A__ : Union[str, Any] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _A ) def __snake_case ( self ): A__ : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[str] = os.path.join(_A , '''config.json''' ) config_first.to_json_file(_A ) A__ : Dict = self.config_class.from_json_file(_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __snake_case ( self ): A__ : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_A ) A__ : Tuple = self.config_class.from_pretrained(_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __snake_case ( self ): A__ : List[Any] = self.config_class(**self.inputs_dict ) A__ : List[str] = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = os.path.join(_A , _A ) config_first.save_pretrained(_A ) A__ : Optional[int] = self.config_class.from_pretrained(_A , subfolder=_A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __snake_case ( self ): A__ : List[Any] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A__ : Optional[int] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __snake_case ( self ): if self.config_class.is_composition: return A__ : int = self.config_class() self.parent.assertIsNotNone(_A ) def __snake_case ( self ): A__ : List[str] = copy.deepcopy(_A ) A__ : List[str] = self.config_class(**_A ) A__ : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_A , _A ) != value: wrong_values.append((key, getattr(_A , _A ), value) ) if len(_A ) > 0: A__ : Any = '''\n'''.join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(F"The following keys were not properly set in the config:\n{errors}" ) def __snake_case ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[float]] ) -> list[list[float]]: """simple docstring""" A__ : int = [] for data in source_data: for i, el in enumerate(UpperCAmelCase__ ): if len(UpperCAmelCase__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(UpperCAmelCase__ ) ) return data_lists def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[float]] , __UpperCamelCase : list[int] ) -> list[list[float]]: """simple docstring""" A__ : List[str] = [] for dlist, weight in zip(UpperCAmelCase__ , UpperCAmelCase__ ): A__ : Union[str, Any] = min(UpperCAmelCase__ ) A__ : Any = max(UpperCAmelCase__ ) A__ : Optional[int] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A__ : Any = F"Invalid weight of {weight:f} provided" raise ValueError(UpperCAmelCase__ ) score_lists.append(UpperCAmelCase__ ) return score_lists def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[float]] ) -> list[float]: """simple docstring""" A__ : Union[str, Any] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(UpperCAmelCase__ ): A__ : Tuple = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[float]] , __UpperCamelCase : list[int] ) -> list[list[float]]: """simple docstring""" A__ : Tuple = get_data(UpperCAmelCase__ ) A__ : Optional[Any] = calculate_each_score(UpperCAmelCase__ , UpperCAmelCase__ ) A__ : Any = generate_final_scores(UpperCAmelCase__ ) # append scores to source data for i, ele in enumerate(UpperCAmelCase__ ): source_data[i].append(UpperCAmelCase__ ) return source_data
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): super().__init__( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , index=UpperCamelCase__ , init_retrieval=UpperCamelCase__ , ) A__ : str = None def __snake_case ( self , UpperCamelCase__ ): logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually A__ : Union[str, Any] = self._infer_socket_ifname() # avoid clash with the NCCL port A__ : Union[str, Any] = str(distributed_port + 1 ) A__ : Union[str, Any] = dist.new_group(ranks=UpperCamelCase__ , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __snake_case ( self ): return dist.get_rank(group=self.process_group ) == 0 def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=torch.floataa ): A__ : Union[str, Any] = torch.empty(UpperCamelCase__ , dtype=UpperCamelCase__ ) dist.scatter(UpperCamelCase__ , src=0 , scatter_list=UpperCamelCase__ , group=self.process_group ) return target_tensor def __snake_case ( self ): A__ : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A__ : Union[str, Any] = next((addr for addr in addrs if addr.startswith('''e''' )) , UpperCamelCase__ ) return ifname def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if not dist.is_initialized(): A__ , A__ : Optional[Any] = self._main_retrieve(UpperCamelCase__ , UpperCamelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase__ ) # distributed training A__ : Any = dist.get_world_size(group=self.process_group ) # gather logic A__ : Dict = None if self._is_main(): A__ : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCamelCase__ )] dist.gather(torch.tensor(UpperCamelCase__ ) , dst=0 , gather_list=UpperCamelCase__ , group=self.process_group ) # scatter logic A__ : Dict = question_hidden_states.shape[0] A__ : str = [] A__ : Tuple = [] if self._is_main(): assert len(UpperCamelCase__ ) == world_size A__ , A__ : Any = self._main_retrieve(torch.cat(UpperCamelCase__ ).numpy() , UpperCamelCase__ ) A__ , A__ : List[Any] = torch.tensor(UpperCamelCase__ ), torch.tensor(UpperCamelCase__ ) A__ : Union[str, Any] = self._chunk_tensor(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = self._chunk_tensor(UpperCamelCase__ , UpperCamelCase__ ) A__ : int = self._scattered(UpperCamelCase__ , [n_queries, n_docs] , target_type=torch.intaa ) A__ : Tuple = self._scattered(UpperCamelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCamelCase__ )
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Dict ) -> Any: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(__UpperCamelCase ): print(F"{i}\t\t{d}" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> List[Any]: """simple docstring""" for j in range(__UpperCamelCase ): A__ , A__ , A__ : Any = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ) -> int: """simple docstring""" A__ : Optional[int] = [float('''inf''' )] * vertex_count A__ : Tuple = 0.0 for _ in range(vertex_count - 1 ): for j in range(__UpperCamelCase ): A__ , A__ , A__ : Any = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: A__ : int = distance[u] + w A__ : Optional[Any] = check_negative_cycle(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Optional[Any] = int(input('Enter number of vertices: ').strip()) _SCREAMING_SNAKE_CASE : List[str] = int(input('Enter number of edges: ').strip()) _SCREAMING_SNAKE_CASE : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) _SCREAMING_SNAKE_CASE : int = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) _SCREAMING_SNAKE_CASE : Dict = {"""src""": src, """dst""": dest, """weight""": weight} _SCREAMING_SNAKE_CASE : Optional[int] = int(input('\nEnter shortest path source:').strip()) _SCREAMING_SNAKE_CASE : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : Tuple = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ : str = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ : Any = 1 if upper_limit > 0: A__ : Tuple = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(snake_case_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: _SCREAMING_SNAKE_CASE : Any = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case ( self ): A__ : int = 1 A__ : List[Any] = 3 A__ : Dict = (32, 32) A__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase__ ) return image @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCamelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : int = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ : Optional[int] = self.dummy_cond_unet_upscale A__ : Any = DDPMScheduler() A__ : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) A__ : Optional[int] = self.dummy_vae A__ : Any = self.dummy_text_encoder A__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A__ : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Union[str, Any] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A__ : Dict = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=350 , ) A__ : List[Any] = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Dict = '''A painting of a squirrel eating a burger''' A__ : int = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A__ : Optional[int] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A__ : str = output.images A__ : Optional[Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A__ : Optional[int] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase__ , )[0] A__ : Union[str, Any] = image[0, -3:, -3:, -1] A__ : Tuple = image_from_tuple[0, -3:, -3:, -1] A__ : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A__ : int = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self ): A__ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ : Union[str, Any] = self.dummy_cond_unet_upscale A__ : Union[str, Any] = DDPMScheduler() A__ : Optional[int] = DDIMScheduler(prediction_type='''v_prediction''' ) A__ : List[str] = self.dummy_vae A__ : Any = self.dummy_text_encoder A__ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A__ : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Any = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A__ : List[str] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=350 , ) A__ : int = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : str = '''A painting of a squirrel eating a burger''' A__ : Union[str, Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A__ : List[str] = output.images assert image.shape[0] == 2 A__ : int = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A__ : str = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A__ : int = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __snake_case ( self ): A__ : List[str] = self.dummy_cond_unet_upscale A__ : Union[str, Any] = DDPMScheduler() A__ : Tuple = DDIMScheduler(prediction_type='''v_prediction''' ) A__ : Optional[Any] = self.dummy_vae A__ : Optional[int] = self.dummy_text_encoder A__ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A__ : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 A__ : int = unet.half() A__ : str = text_encoder.half() # make sure here that pndm scheduler skips prk A__ : str = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=350 , ) A__ : Union[str, Any] = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Any = '''A painting of a squirrel eating a burger''' A__ : Union[str, Any] = torch.manual_seed(0 ) A__ : List[Any] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ).images A__ : List[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): A__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) A__ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) A__ : Union[str, Any] = '''stabilityai/stable-diffusion-x4-upscaler''' A__ : Any = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ : List[str] = '''a cat sitting on a park bench''' A__ : str = torch.manual_seed(0 ) A__ : Optional[int] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type='''np''' , ) A__ : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __snake_case ( self ): A__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) A__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) A__ : Tuple = '''stabilityai/stable-diffusion-x4-upscaler''' A__ : str = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ : List[Any] = '''a cat sitting on a park bench''' A__ : int = torch.manual_seed(0 ) A__ : Dict = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type='''np''' , ) A__ : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) A__ : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' A__ : Dict = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : List[str] = '''a cat sitting on a park bench''' A__ : Optional[int] = torch.manual_seed(0 ) A__ : Optional[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , output_type='''np''' , ) A__ : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : str ) -> Image: """simple docstring""" A__ : Dict = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(__UpperCamelCase : Union[str, Any] ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(lowerCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _SCREAMING_SNAKE_CASE : Tuple = change_contrast(img, 1_7_0) cont_img.save('image_data/lena_high_contrast.png', format='png')
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A__ : int = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A__ : str = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A__ : Union[str, Any] = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Tuple = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
from __future__ import annotations import bisect def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> int: """simple docstring""" if hi < 0: A__ : Union[str, Any] = len(__UpperCamelCase ) while lo < hi: A__ : str = lo + (hi - lo) // 2 if sorted_collection[mid] < item: A__ : List[Any] = mid + 1 else: A__ : Optional[int] = mid return lo def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> int: """simple docstring""" if hi < 0: A__ : Dict = len(__UpperCamelCase ) while lo < hi: A__ : int = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: A__ : Dict = mid + 1 else: A__ : int = mid return lo def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int | None: """simple docstring""" A__ : List[Any] = 0 A__ : Union[str, Any] = len(__UpperCamelCase ) - 1 while left <= right: A__ : Dict = left + (right - left) // 2 A__ : Optional[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: A__ : Optional[Any] = midpoint - 1 else: A__ : str = midpoint + 1 return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int | None: """simple docstring""" A__ : Dict = bisect.bisect_left(__UpperCamelCase , __UpperCamelCase ) if index != len(__UpperCamelCase ) and sorted_collection[index] == item: return index return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> int | None: """simple docstring""" if right < left: return None A__ : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCamelCase , __UpperCamelCase , midpoint + 1 , __UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = input('Enter numbers separated by comma:\n').strip() _SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(int(item) for item in user_input.split(',')) _SCREAMING_SNAKE_CASE : List[Any] = int(input('Enter a single number to be found in the list:\n')) _SCREAMING_SNAKE_CASE : Tuple = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
import csv import tweepy # Twitter API credentials _SCREAMING_SNAKE_CASE : Tuple = '' _SCREAMING_SNAKE_CASE : Any = '' _SCREAMING_SNAKE_CASE : Tuple = '' _SCREAMING_SNAKE_CASE : Dict = '' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> None: """simple docstring""" A__ : Union[str, Any] = tweepy.OAuthHandler(__UpperCamelCase , __UpperCamelCase ) auth.set_access_token(__UpperCamelCase , __UpperCamelCase ) A__ : Tuple = tweepy.API(__UpperCamelCase ) # initialize a list to hold all the tweepy Tweets A__ : List[Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) A__ : List[str] = api.user_timeline(screen_name=__UpperCamelCase , count=2_00 ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # save the id of the oldest tweet less one A__ : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__UpperCamelCase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates A__ : Union[str, Any] = api.user_timeline( screen_name=__UpperCamelCase , count=2_00 , max_id=__UpperCamelCase ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # update the id of the oldest tweet less one A__ : Optional[int] = alltweets[-1].id - 1 print(F"...{len(__UpperCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv A__ : Any = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , '''w''' ) as f: A__ : Optional[Any] = csv.writer(__UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Any = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _SCREAMING_SNAKE_CASE : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=16 , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=14 , UpperCamelCase__=10 , UpperCamelCase__=19 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=True , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=[1, 2, 3, 4, 5] , UpperCamelCase__=25 , UpperCamelCase__=5 , ): A__ : Optional[int] = d_model A__ : Dict = parent A__ : List[Any] = batch_size A__ : Dict = prediction_length A__ : List[Any] = context_length A__ : Union[str, Any] = cardinality A__ : int = num_time_features A__ : Optional[Any] = lags_sequence A__ : Optional[Any] = embedding_dimension A__ : Any = is_training A__ : Dict = hidden_size A__ : List[Any] = num_hidden_layers A__ : List[str] = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : List[str] = context_length A__ : Any = prediction_length + label_length A__ : List[str] = label_length A__ : str = moving_average A__ : List[str] = autocorrelation_factor def __snake_case ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __snake_case ( self , UpperCamelCase__ ): A__ : int = config.context_length + max(config.lags_sequence ) A__ : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) A__ : List[str] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) A__ : int = floats_tensor([self.batch_size, _past_length] ) A__ : Optional[int] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs A__ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) A__ : Optional[int] = floats_tensor([self.batch_size, config.prediction_length] ) A__ : str = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __snake_case ( self ): A__ : Tuple = self.get_config() A__ : Tuple = self.prepare_autoformer_inputs_dict(UpperCamelCase__ ) return config, inputs_dict def __snake_case ( self ): A__ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = AutoformerModel(config=UpperCamelCase__ ).to(UpperCamelCase__ ).eval() A__ : List[str] = model(**UpperCamelCase__ ) A__ : Any = outputs.encoder_last_hidden_state A__ : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: A__ : Tuple = model.get_encoder() encoder.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoformerEncoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) A__ : str = model.create_network_inputs(**UpperCamelCase__ ) A__ : Dict = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) A__ : Tuple = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) A__ : List[Any] = encoder(inputs_embeds=UpperCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) A__ : Dict = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) A__ : Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) A__ : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) A__ : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : str = model.get_decoder() decoder.save_pretrained(UpperCamelCase__ ) A__ : str = AutoformerDecoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) A__ : Any = decoder( trend=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _lowerCAmelCase = (AutoformerForPrediction,) if is_torch_available() else () _lowerCAmelCase = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self ): A__ : List[str] = AutoformerModelTester(self ) A__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: A__ : int = model_class(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) A__ : int = model_class.from_pretrained(UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) self.assertEqual(info['''missing_keys'''] , [] ) def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase__ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __snake_case ( self ): pass def __snake_case ( self ): A__ : Optional[Any] = inspect.signature(getattr(UpperCamelCase__ , '''forward''' ) ) # The main input is the name of the argument after `self` A__ : Tuple = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : str = model_class(UpperCamelCase__ ) A__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : List[str] = [*signature.parameters.keys()] A__ : int = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(UpperCamelCase__ )] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Dict = True A__ : int = getattr(self.model_tester , '''seq_length''' , UpperCamelCase__ ) A__ : Union[str, Any] = getattr(self.model_tester , '''decoder_seq_length''' , UpperCamelCase__ ) A__ : Tuple = getattr(self.model_tester , '''encoder_seq_length''' , UpperCamelCase__ ) A__ : Dict = getattr(self.model_tester , '''d_model''' , UpperCamelCase__ ) A__ : Dict = getattr(self.model_tester , '''num_attention_heads''' , UpperCamelCase__ ) A__ : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: A__ : List[Any] = True A__ : Optional[int] = False A__ : Union[str, Any] = True A__ : Any = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Dict = True A__ : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Any = outputs.encoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) A__ : Union[str, Any] = len(UpperCamelCase__ ) A__ : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # decoder attentions A__ : str = outputs.decoder_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions A__ : Optional[Any] = outputs.cross_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine A__ : Optional[int] = True A__ : Optional[int] = True A__ : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 2 , len(UpperCamelCase__ ) ) A__ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __snake_case ( self ): super().test_retain_grad_hidden_states_attentions() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any]="train-batch.pt" ) -> str: """simple docstring""" A__ : Dict = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__UpperCamelCase , repo_type='''dataset''' ) A__ : Tuple = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) return batch @require_torch @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) A__ : int = prepare_batch() with torch.no_grad(): A__ : Any = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] A__ : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) A__ : Any = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def __snake_case ( self ): A__ : Tuple = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) A__ : Optional[Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): A__ : int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state A__ : Tuple = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCamelCase__ ) A__ : Dict = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def __snake_case ( self ): A__ : int = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) A__ : int = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): A__ : Optional[int] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) A__ : Tuple = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCamelCase__ ) A__ : str = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCamelCase__ ) A__ : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCamelCase__ , rtol=1e-1 ) )
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ): pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _SCREAMING_SNAKE_CASE : Dict = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = pipeline( '''document-question-answering''' , model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A__ = INVOICE_URL A__ = list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , '''''' ) ) ) A__ = '''What is the placebo?''' A__ = [ { '''image''': load_image(UpperCamelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ = dqa_pipeline(UpperCamelCase__ , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ [ {'''score''': ANY(UpperCamelCase__ ), '''answer''': ANY(UpperCamelCase__ ), '''start''': ANY(UpperCamelCase__ ), '''end''': ANY(UpperCamelCase__ )}, {'''score''': ANY(UpperCamelCase__ ), '''answer''': ANY(UpperCamelCase__ ), '''start''': ANY(UpperCamelCase__ ), '''end''': ANY(UpperCamelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __snake_case ( self ): A__ = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) A__ = INVOICE_URL A__ = '''How many cats are there?''' A__ = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , UpperCamelCase__ ) A__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , UpperCamelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably A__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(UpperCamelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes A__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A__ = [] A__ = [] A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , words=UpperCamelCase__ , boxes=UpperCamelCase__ , top_k=2 ) self.assertEqual(UpperCamelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __snake_case ( self ): A__ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) A__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __snake_case ( self ): A__ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) A__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __snake_case ( self ): A__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCamelCase__ ) A__ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCamelCase__ , revision='''3dc6de3''' , ) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) A__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) A__ = list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None A__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __snake_case ( self ): A__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCamelCase__ ) A__ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCamelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) A__ = list(zip(*apply_tesseract(load_image(UpperCamelCase__ ) , UpperCamelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None A__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __snake_case ( self ): A__ = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __snake_case ( self ): pass
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "camembert" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Dict = vocab_size A__ : Dict = hidden_size A__ : Dict = num_hidden_layers A__ : str = num_attention_heads A__ : List[Any] = hidden_act A__ : Dict = intermediate_size A__ : str = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Union[str, Any] = max_position_embeddings A__ : int = type_vocab_size A__ : List[str] = initializer_range A__ : Optional[Any] = layer_norm_eps A__ : Union[str, Any] = position_embedding_type A__ : Optional[Any] = use_cache A__ : str = classifier_dropout class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def __snake_case ( self ): if self.task == "multiple-choice": A__ : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : Dict = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } _SCREAMING_SNAKE_CASE : Any = { 'roberta-base': 5_1_2, 'roberta-large': 5_1_2, 'roberta-large-mnli': 5_1_2, 'distilroberta-base': 5_1_2, 'roberta-base-openai-detector': 5_1_2, 'roberta-large-openai-detector': 5_1_2, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = RobertaTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : int = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : str = add_prefix_space A__ : int = pre_tok_class(**UpperCamelCase__ ) A__ : Any = add_prefix_space A__ : Dict = '''post_processor''' A__ : str = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: A__ : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ : Tuple = tuple(state['''sep'''] ) if "cls" in state: A__ : Tuple = tuple(state['''cls'''] ) A__ : Any = False if state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Dict = add_prefix_space A__ : Optional[Any] = True if state.get('''trim_offsets''' , UpperCamelCase__ ) != trim_offsets: A__ : Tuple = trim_offsets A__ : Union[str, Any] = True if changes_to_apply: A__ : Optional[Any] = getattr(UpperCamelCase__ , state.pop('''type''' ) ) A__ : Union[str, Any] = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property def __snake_case ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __snake_case ( self , UpperCamelCase__ ): A__ : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value A__ : List[str] = value def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): A__ : List[str] = kwargs.get('''is_split_into_words''' , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): A__ : Tuple = kwargs.get('''is_split_into_words''' , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Union[str, Any] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : List[str] = [self.sep_token_id] A__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): A__ : Optional[Any] = F"Input value of [number={number}] must be an integer" raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : bool , __UpperCamelCase : bool ) -> Optional[Any]: """simple docstring""" def run_func(__UpperCamelCase : Optional[int] ): @wraps(__UpperCamelCase ) def run_in_eager_mode(*__UpperCamelCase : Tuple , **__UpperCamelCase : Tuple ): return func(*__UpperCamelCase , **__UpperCamelCase ) @wraps(__UpperCamelCase ) @tf.function(experimental_compile=__UpperCamelCase ) def run_in_graph_mode(*__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ): return func(*__UpperCamelCase , **__UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> ["tf.Tensor"]: """simple docstring""" A__ : Any = random.Random() A__ : List[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = "TensorFlow" @property def __snake_case ( self ): return tf.__version__ def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # initialize GPU on separate process A__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : str = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_inference ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : Dict = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_train ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) A__ : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : List[Any] = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_inference ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) A__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : str = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_train ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) A__ : Union[str, Any] = ( hasattr(UpperCamelCase__ , '''architectures''' ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A__ : Optional[int] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model A__ : int = __import__('''transformers''' , fromlist=[model_class] ) A__ : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) A__ : Any = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: A__ : Tuple = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently A__ : List[str] = config.vocab_size if hasattr(UpperCamelCase__ , '''vocab_size''' ) else config.encoder.vocab_size A__ : List[str] = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ , training=UpperCamelCase__ ) A__ : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) A__ : Any = ( hasattr(UpperCamelCase__ , '''architectures''' ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A__ : List[Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model A__ : Tuple = __import__('''transformers''' , fromlist=[model_class] ) A__ : str = getattr(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: A__ : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently A__ : Tuple = config.vocab_size if hasattr(UpperCamelCase__ , '''vocab_size''' ) else config.encoder.vocab_size A__ : str = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): A__ : Union[str, Any] = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] A__ : Union[str, Any] = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): A__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] A__ : Dict = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients A__ : Optional[Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __snake_case ( self , UpperCamelCase__ ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(UpperCamelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average A__ : Dict = timeit.repeat( UpperCamelCase__ , repeat=self.args.repeat , number=10 , ) return min(UpperCamelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __snake_case ( self , UpperCamelCase__ ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) A__ : Optional[Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) A__ : int = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() A__ : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) A__ : str = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) A__ : Any = meminfo.used A__ : int = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) A__ : Any = None else: A__ : Optional[int] = measure_peak_memory_cpu(UpperCamelCase__ ) A__ : Dict = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: A__ : str = stop_memory_tracing(UpperCamelCase__ ) if memory is None: A__ : Tuple = summary.total else: A__ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE : Any = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=8 ) -> List[str]: """simple docstring""" A__ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A__ : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : int=5_12 , __UpperCamelCase : Optional[Any]=5_12 ) -> List[str]: """simple docstring""" A__ : str = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) A__ : str = np.array(pil_image.convert('''RGB''' ) ) A__ : str = arr.astype(np.floataa ) / 1_27.5 - 1 A__ : List[str] = np.transpose(__UpperCamelCase , [2, 0, 1] ) A__ : List[str] = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ) return image class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): super().__init__() self.register_modules( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , movq=UpperCamelCase__ , ) A__ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # get the original timestep using init_timestep A__ : Tuple = min(int(num_inference_steps * strength ) , UpperCamelCase__ ) A__ : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) A__ : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): if not isinstance(UpperCamelCase__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase__ )}" ) A__ : List[str] = image.to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) A__ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: A__ : int = image else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(UpperCamelCase__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase__ ) ] A__ : int = torch.cat(UpperCamelCase__ , dim=0 ) else: A__ : str = self.movq.encode(UpperCamelCase__ ).latent_dist.sample(UpperCamelCase__ ) A__ : int = self.movq.config.scaling_factor * init_latents A__ : List[Any] = torch.cat([init_latents] , dim=0 ) A__ : str = init_latents.shape A__ : str = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) # get latents A__ : str = self.scheduler.add_noise(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : str = init_latents return latents def __snake_case ( self , UpperCamelCase__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) A__ : Dict = torch.device(F"cuda:{gpu_id}" ) A__ : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) A__ : Any = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=UpperCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A__ : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: A__ : Tuple = cpu_offload_with_hook(UpperCamelCase__ , UpperCamelCase__ , prev_module_hook=UpperCamelCase__ ) # We'll offload the last model manually. A__ : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 100 , UpperCamelCase__ = 4.0 , UpperCamelCase__ = 0.3 , UpperCamelCase__ = 1 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ): A__ : Any = self._execution_device A__ : str = guidance_scale > 1.0 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = torch.cat(UpperCamelCase__ , dim=0 ) A__ : Tuple = image_embeds.shape[0] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = torch.cat(UpperCamelCase__ , dim=0 ) if do_classifier_free_guidance: A__ : List[str] = image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) A__ : int = negative_image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) A__ : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = [image] if not all(isinstance(UpperCamelCase__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(UpperCamelCase__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) A__ : str = torch.cat([prepare_image(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in image] , dim=0 ) A__ : List[Any] = image.to(dtype=image_embeds.dtype , device=UpperCamelCase__ ) A__ : List[str] = self.movq.encode(UpperCamelCase__ )['''latents'''] A__ : Dict = latents.repeat_interleave(UpperCamelCase__ , dim=0 ) self.scheduler.set_timesteps(UpperCamelCase__ , device=UpperCamelCase__ ) A__ : Optional[int] = self.get_timesteps(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : List[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) A__ : Any = downscale_height_and_width(UpperCamelCase__ , UpperCamelCase__ , self.movq_scale_factor ) A__ : List[str] = self.prepare_latents( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , image_embeds.dtype , UpperCamelCase__ , UpperCamelCase__ ) for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance A__ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : List[str] = {'''image_embeds''': image_embeds} A__ : Optional[int] = self.unet( sample=UpperCamelCase__ , timestep=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , added_cond_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] if do_classifier_free_guidance: A__ : Any = noise_pred.split(latents.shape[1] , dim=1 ) A__ : Optional[int] = noise_pred.chunk(2 ) A__ : List[str] = variance_pred.chunk(2 ) A__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A__ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A__ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A__ : str = self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ , )[0] # post-processing A__ : List[Any] = self.movq.decode(UpperCamelCase__ , force_not_quantize=UpperCamelCase__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: A__ : Any = image * 0.5 + 0.5 A__ : List[str] = image.clamp(0 , 1 ) A__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ : Tuple = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
from sklearn.metrics import fa_score import datasets _SCREAMING_SNAKE_CASE : List[str] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' _SCREAMING_SNAKE_CASE : Any = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' _SCREAMING_SNAKE_CASE : Union[str, Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__="binary" , UpperCamelCase__=None ): A__ : Optional[Any] = fa_score( UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ , pos_label=UpperCamelCase__ , average=UpperCamelCase__ , sample_weight=UpperCamelCase__ ) return {"f1": float(UpperCamelCase__ ) if score.size == 1 else score}
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE : int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" A__ : Tuple = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): A__ : int = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() A__ : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ["pixel_values"] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ ) A__ : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} A__ : Optional[int] = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} A__ : int = get_size_dict(UpperCamelCase__ , param_name='''crop_size''' ) A__ : Union[str, Any] = do_resize A__ : str = size A__ : List[str] = resample A__ : Dict = do_rescale A__ : Optional[Any] = rescale_factor A__ : List[str] = do_center_crop A__ : Tuple = crop_size A__ : Dict = do_flip_channel_order def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PIL.Image.BILINEAR , UpperCamelCase__ = None , **UpperCamelCase__ , ): A__ : Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) A__ : Any = get_resize_output_image_size(UpperCamelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCamelCase__ ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): A__ : str = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(UpperCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): return flip_channel_order(UpperCamelCase__ , data_format=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ): A__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize A__ : List[Any] = resample if resample is not None else self.resample A__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale A__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor A__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop A__ : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) A__ : List[Any] = size if size is not None else self.size A__ : Dict = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A__ : Any = crop_size if crop_size is not None else self.crop_size A__ : Optional[Any] = get_size_dict(UpperCamelCase__ , param_name='''crop_size''' ) A__ : Optional[int] = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. A__ : List[Any] = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: A__ : List[Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: A__ : Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: A__ : Union[str, Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: A__ : Dict = [self.flip_channel_order(image=UpperCamelCase__ ) for image in images] A__ : Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] A__ : Tuple = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase__ ): A__ : List[str] = target_sizes.numpy() A__ : int = [] for idx in range(len(UpperCamelCase__ ) ): A__ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase__ ) A__ : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase__ ) else: A__ : Dict = logits.argmax(dim=1 ) A__ : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Optional[Any] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() A__ : Optional[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A__ : str = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } A__ : Dict = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_6000, '''return_attention_mask''': False, '''do_normalize''': True, } A__ : Optional[int] = tempfile.mkdtemp() A__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A__ : str = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) # load decoder from hub A__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def __snake_case ( self , **UpperCamelCase__ ): A__ : int = self.add_kwargs_tokens_map.copy() kwargs.update(UpperCamelCase__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **UpperCamelCase__ ) def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : Any = self.get_tokenizer() A__ : Any = self.get_feature_extractor() A__ : List[str] = self.get_decoder() A__ : Dict = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) A__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , UpperCamelCase__ ) def __snake_case ( self ): A__ : str = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match A__ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __snake_case ( self ): A__ : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(UpperCamelCase__ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=UpperCamelCase__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __snake_case ( self ): A__ : str = self.get_feature_extractor() A__ : Dict = self.get_tokenizer() A__ : str = self.get_decoder() A__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Tuple = floats_list((3, 1000) ) A__ : List[Any] = feature_extractor(UpperCamelCase__ , return_tensors='''np''' ) A__ : int = processor(UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ): A__ : List[Any] = self.get_feature_extractor() A__ : Optional[Any] = self.get_tokenizer() A__ : List[Any] = self.get_decoder() A__ : Dict = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Union[str, Any] = '''This is a test string''' A__ : Optional[Any] = processor(text=UpperCamelCase__ ) A__ : str = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self , UpperCamelCase__=(2, 10, 16) , UpperCamelCase__=77 ): np.random.seed(UpperCamelCase__ ) return np.random.rand(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.get_feature_extractor() A__ : Dict = self.get_tokenizer() A__ : Optional[Any] = self.get_decoder() A__ : int = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Any = self._get_dummy_logits(shape=(10, 16) , seed=13 ) A__ : str = processor.decode(UpperCamelCase__ ) A__ : List[Any] = decoder.decode_beams(UpperCamelCase__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __snake_case ( self , UpperCamelCase__ ): A__ : int = self.get_feature_extractor() A__ : int = self.get_tokenizer() A__ : int = self.get_decoder() A__ : str = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: A__ : Tuple = processor.batch_decode(UpperCamelCase__ ) else: with get_context(UpperCamelCase__ ).Pool() as pool: A__ : List[Any] = processor.batch_decode(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = list(UpperCamelCase__ ) with get_context('''fork''' ).Pool() as p: A__ : str = decoder.decode_beams_batch(UpperCamelCase__ , UpperCamelCase__ ) A__ : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(UpperCamelCase__ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(UpperCamelCase__ , decoded_processor.logit_score ) self.assertListEqual(UpperCamelCase__ , decoded_processor.lm_score ) def __snake_case ( self ): A__ : List[Any] = self.get_feature_extractor() A__ : List[str] = self.get_tokenizer() A__ : Dict = self.get_decoder() A__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Optional[int] = self._get_dummy_logits() A__ : Dict = 15 A__ : Union[str, Any] = -20.0 A__ : List[Any] = -4.0 A__ : List[Any] = processor.batch_decode( UpperCamelCase__ , beam_width=UpperCamelCase__ , beam_prune_logp=UpperCamelCase__ , token_min_logp=UpperCamelCase__ , ) A__ : Optional[Any] = decoded_processor_out.text A__ : str = list(UpperCamelCase__ ) with get_context('''fork''' ).Pool() as pool: A__ : Dict = decoder.decode_beams_batch( UpperCamelCase__ , UpperCamelCase__ , beam_width=UpperCamelCase__ , beam_prune_logp=UpperCamelCase__ , token_min_logp=UpperCamelCase__ , ) A__ : List[str] = [d[0][0] for d in decoded_decoder_out] A__ : Any = [d[0][2] for d in decoded_decoder_out] A__ : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , UpperCamelCase__ ) self.assertTrue(np.array_equal(UpperCamelCase__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , UpperCamelCase__ , atol=1e-3 ) ) self.assertTrue(np.array_equal(UpperCamelCase__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , UpperCamelCase__ , atol=1e-3 ) ) def __snake_case ( self ): A__ : Optional[int] = self.get_feature_extractor() A__ : Tuple = self.get_tokenizer() A__ : Optional[int] = self.get_decoder() A__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : int = self._get_dummy_logits() A__ : Optional[Any] = 2.0 A__ : Union[str, Any] = 5.0 A__ : Tuple = -20.0 A__ : Tuple = True A__ : int = processor.batch_decode( UpperCamelCase__ , alpha=UpperCamelCase__ , beta=UpperCamelCase__ , unk_score_offset=UpperCamelCase__ , lm_score_boundary=UpperCamelCase__ , ) A__ : Any = decoded_processor_out.text A__ : int = list(UpperCamelCase__ ) decoder.reset_params( alpha=UpperCamelCase__ , beta=UpperCamelCase__ , unk_score_offset=UpperCamelCase__ , lm_score_boundary=UpperCamelCase__ , ) with get_context('''fork''' ).Pool() as pool: A__ : Optional[int] = decoder.decode_beams_batch( UpperCamelCase__ , UpperCamelCase__ , ) A__ : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , UpperCamelCase__ ) A__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , UpperCamelCase__ ) def __snake_case ( self ): A__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Any = processor.decoder.model_container[processor.decoder._model_key] A__ : Optional[Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() A__ : Optional[Any] = os.listdir(UpperCamelCase__ ) A__ : Tuple = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) A__ : Dict = WavaVecaProcessorWithLM.from_pretrained(UpperCamelCase__ ) A__ : List[str] = processor.decoder.model_container[processor.decoder._model_key] A__ : int = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() A__ : Tuple = os.listdir(UpperCamelCase__ ) A__ : int = os.listdir(UpperCamelCase__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Any = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Dict = floats_list((3, 1000) ) A__ : List[Any] = processor_wavaveca(UpperCamelCase__ , return_tensors='''np''' ) A__ : Tuple = processor_auto(UpperCamelCase__ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) A__ : int = self._get_dummy_logits() A__ : str = processor_wavaveca.batch_decode(UpperCamelCase__ ) A__ : Union[str, Any] = processor_auto.batch_decode(UpperCamelCase__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __snake_case ( self ): A__ : Any = self.get_feature_extractor() A__ : List[str] = self.get_tokenizer() A__ : int = self.get_decoder() A__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = [d[key] for d in offsets] return retrieved_list def __snake_case ( self ): A__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : str = self._get_dummy_logits()[0] A__ : str = processor.decode(UpperCamelCase__ , output_word_offsets=UpperCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __snake_case ( self ): A__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Optional[int] = self._get_dummy_logits() A__ : Any = processor.batch_decode(UpperCamelCase__ , output_word_offsets=UpperCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __snake_case ( self ): import torch A__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=UpperCamelCase__ ) A__ : str = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6000 ) ) A__ : int = iter(UpperCamelCase__ ) A__ : Dict = next(UpperCamelCase__ ) A__ : str = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) A__ : Optional[Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train A__ : Union[str, Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): A__ : Union[str, Any] = model(UpperCamelCase__ ).logits.cpu().numpy() A__ : Tuple = processor.decode(logits[0] , output_word_offsets=UpperCamelCase__ ) A__ : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate A__ : List[Any] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] A__ : Union[str, Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) , UpperCamelCase__ ) self.assertEqual(''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) , output.text ) # output times A__ : List[str] = torch.tensor(self.get_from_offsets(UpperCamelCase__ , '''start_time''' ) ) A__ : Tuple = torch.tensor(self.get_from_offsets(UpperCamelCase__ , '''end_time''' ) ) # fmt: off A__ : str = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) A__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=0.0_1 ) )
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = (CMStochasticIterativeScheduler,) _lowerCAmelCase = 10 def __snake_case ( self , **UpperCamelCase__ ): A__ : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 80.0, } config.update(**UpperCamelCase__ ) return config def __snake_case ( self ): A__ : Tuple = 10 A__ : Any = self.get_scheduler_config() A__ : Tuple = self.scheduler_classes[0](**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) A__ : Dict = scheduler.timesteps[0] A__ : Dict = scheduler.timesteps[1] A__ : List[str] = self.dummy_sample A__ : str = 0.1 * sample A__ : Dict = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample A__ : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def __snake_case ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = self.scheduler_classes[0] A__ : Dict = self.get_scheduler_config() A__ : List[Any] = scheduler_class(**UpperCamelCase__ ) A__ : Optional[Any] = 1 scheduler.set_timesteps(UpperCamelCase__ ) A__ : Optional[int] = scheduler.timesteps A__ : Tuple = torch.manual_seed(0 ) A__ : Optional[int] = self.dummy_model() A__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCamelCase__ ): # 1. scale model input A__ : Tuple = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict noise residual A__ : Dict = model(UpperCamelCase__ , UpperCamelCase__ ) # 3. predict previous sample x_t-1 A__ : Optional[int] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample A__ : Any = pred_prev_sample A__ : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) A__ : str = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3 def __snake_case ( self ): A__ : Optional[int] = self.scheduler_classes[0] A__ : Any = self.get_scheduler_config() A__ : str = scheduler_class(**UpperCamelCase__ ) A__ : Any = [106, 0] scheduler.set_timesteps(timesteps=UpperCamelCase__ ) A__ : int = scheduler.timesteps A__ : Optional[int] = torch.manual_seed(0 ) A__ : int = self.dummy_model() A__ : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A__ : Any = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict noise residual A__ : Optional[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) # 3. predict previous sample x_t-1 A__ : Union[str, Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample A__ : Tuple = pred_prev_sample A__ : List[Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) A__ : str = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3 def __snake_case ( self ): A__ : Optional[int] = self.scheduler_classes[0] A__ : str = self.get_scheduler_config() A__ : int = scheduler_class(**UpperCamelCase__ ) A__ : Optional[Any] = [39, 30, 12, 15, 0] with self.assertRaises(UpperCamelCase__ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = self.scheduler_classes[0] A__ : Tuple = self.get_scheduler_config() A__ : Optional[int] = scheduler_class(**UpperCamelCase__ ) A__ : Optional[int] = [39, 30, 12, 1, 0] A__ : Tuple = len(UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase__ , timesteps=UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self.scheduler_classes[0] A__ : int = self.get_scheduler_config() A__ : Union[str, Any] = scheduler_class(**UpperCamelCase__ ) A__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase__ )
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" A__ : List[Any] = set() # Replace all the whitespace in our sentence A__ : Optional[int] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__UpperCamelCase ) == 26 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" A__ : int = [False] * 26 for char in input_str: if char.islower(): A__ : Tuple = True elif char.isupper(): A__ : Union[str, Any] = True return all(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit A__ : str = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=__UpperCamelCase ) ) print(timeit('''is_pangram_faster()''' , setup=__UpperCamelCase ) ) print(timeit('''is_pangram_fastest()''' , setup=__UpperCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any]=False ): """simple docstring""" A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Dict = '''''' else: A__ : Any = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Dict = in_proj_weight[ : config.hidden_size, : ] A__ : List[Any] = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Dict = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ): """simple docstring""" A__ : Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ): """simple docstring""" A__ : List[Any] = dct.pop(__UpperCamelCase ) A__ : List[Any] = val def SCREAMING_SNAKE_CASE ( ): """simple docstring""" A__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ : Dict = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : str ): """simple docstring""" A__ : List[str] = ViTConfig() A__ : Union[str, Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": A__ : Optional[int] = True A__ : int = int(vit_name[-12:-10] ) A__ : List[Any] = int(vit_name[-9:-6] ) else: A__ : Any = 10_00 A__ : str = '''huggingface/label-files''' A__ : Optional[Any] = '''imagenet-1k-id2label.json''' A__ : Any = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Dict = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : int = idalabel A__ : List[str] = {v: k for k, v in idalabel.items()} A__ : List[str] = int(vit_name[-6:-4] ) A__ : Any = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): A__ : List[str] = 1_92 A__ : Optional[Any] = 7_68 A__ : Optional[int] = 12 A__ : Tuple = 3 elif vit_name[9:].startswith('''small''' ): A__ : int = 3_84 A__ : Union[str, Any] = 15_36 A__ : Union[str, Any] = 12 A__ : List[str] = 6 else: pass else: if vit_name[4:].startswith('''small''' ): A__ : List[Any] = 7_68 A__ : Tuple = 23_04 A__ : List[str] = 8 A__ : Union[str, Any] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): A__ : Optional[int] = 10_24 A__ : List[Any] = 40_96 A__ : List[str] = 24 A__ : Optional[Any] = 16 elif vit_name[4:].startswith('''huge''' ): A__ : Optional[Any] = 12_80 A__ : Dict = 51_20 A__ : Dict = 32 A__ : Optional[Any] = 16 # load original model from timm A__ : Optional[int] = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCamelCase ) A__ : List[Any] = create_rename_keys(__UpperCamelCase , __UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": A__ : Optional[Any] = ViTModel(__UpperCamelCase ).eval() else: A__ : List[str] = ViTForImageClassification(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: A__ : Optional[Any] = DeiTImageProcessor(size=config.image_size ) else: A__ : int = ViTImageProcessor(size=config.image_size ) A__ : List[str] = image_processor(images=prepare_img() , return_tensors='''pt''' ) A__ : Dict = encoding['''pixel_values'''] A__ : List[str] = model(__UpperCamelCase ) if base_model: A__ : List[Any] = timm_model.forward_features(__UpperCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ : Optional[int] = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1e-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ShapEPipeline _lowerCAmelCase = ["prompt"] _lowerCAmelCase = ["prompt"] _lowerCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _lowerCAmelCase = False @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return self.time_input_dim * 4 @property def __snake_case ( self ): return 8 @property def __snake_case ( self ): A__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : Optional[int] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } A__ : int = PriorTransformer(**UpperCamelCase__ ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : int = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } A__ : Any = ShapERenderer(**UpperCamelCase__ ) return model def __snake_case ( self ): A__ : Optional[int] = self.dummy_prior A__ : Dict = self.dummy_text_encoder A__ : Optional[int] = self.dummy_tokenizer A__ : Optional[int] = self.dummy_renderer A__ : List[str] = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) A__ : Optional[Any] = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=0 ): if str(UpperCamelCase__ ).startswith('''mps''' ): A__ : Optional[int] = torch.manual_seed(UpperCamelCase__ ) else: A__ : Union[str, Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ : List[Any] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __snake_case ( self ): A__ : Tuple = '''cpu''' A__ : str = self.get_dummy_components() A__ : Any = self.pipeline_class(**UpperCamelCase__ ) A__ : Any = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A__ : Optional[Any] = output.images[0] A__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A__ : Optional[Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __snake_case ( self ): A__ : Dict = torch_device == '''cpu''' A__ : Any = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def __snake_case ( self ): A__ : Dict = self.get_dummy_components() A__ : Dict = self.pipeline_class(**UpperCamelCase__ ) A__ : Optional[int] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[int] = 1 A__ : List[Any] = 2 A__ : Any = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: A__ : List[str] = batch_size * [inputs[key]] A__ : Optional[int] = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): A__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) A__ : Dict = ShapEPipeline.from_pretrained('''openai/shap-e''' ) A__ : Any = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Union[str, Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A__ : str = pipe( '''a shark''' , generator=UpperCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _SCREAMING_SNAKE_CASE : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( datasets.BuilderConfig ): '''simple docstring''' _lowerCAmelCase = 10_000 _lowerCAmelCase = None _lowerCAmelCase = None class UpperCamelCase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _lowerCAmelCase = ParquetConfig def __snake_case ( self ): return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self , UpperCamelCase__ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) A__ : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ , (str, list, tuple) ): A__ : Optional[int] = data_files if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ : Optional[int] = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A__ : Dict = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ : int = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCamelCase__ ): with open(UpperCamelCase__ , '''rb''' ) as f: A__ : List[Any] = datasets.Features.from_arrow_schema(pq.read_schema(UpperCamelCase__ ) ) break splits.append(datasets.SplitGenerator(name=UpperCamelCase__ , gen_kwargs={'''files''': files} ) ) return splits def __snake_case ( self , UpperCamelCase__ ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A__ : str = table_cast(UpperCamelCase__ , self.info.features.arrow_schema ) return pa_table def __snake_case ( self , UpperCamelCase__ ): A__ : Dict = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): with open(UpperCamelCase__ , '''rb''' ) as f: A__ : Dict = pq.ParquetFile(UpperCamelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): A__ : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(UpperCamelCase__ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(UpperCamelCase__ )}: {e}" ) raise
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=2 , UpperCamelCase__=99 , UpperCamelCase__=0 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__="last" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=0 , ): A__ : str = parent A__ : Tuple = batch_size A__ : str = seq_length A__ : List[str] = is_training A__ : int = use_input_lengths A__ : Optional[Any] = use_token_type_ids A__ : Tuple = use_labels A__ : Union[str, Any] = gelu_activation A__ : List[Any] = sinusoidal_embeddings A__ : List[str] = causal A__ : Optional[int] = asm A__ : Dict = n_langs A__ : Optional[int] = vocab_size A__ : Optional[Any] = n_special A__ : str = hidden_size A__ : int = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : Union[str, Any] = hidden_dropout_prob A__ : str = attention_probs_dropout_prob A__ : Dict = max_position_embeddings A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : Dict = num_labels A__ : Optional[Any] = num_choices A__ : Tuple = summary_type A__ : Any = use_proj A__ : List[Any] = scope A__ : List[str] = bos_token_id def __snake_case ( self ): A__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : List[str] = None if self.use_input_lengths: A__ : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any = None A__ : Any = None A__ : str = None if self.use_labels: A__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = ids_tensor([self.batch_size] , 2 ).float() A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __snake_case ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): A__ : int = XLMModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ , lengths=UpperCamelCase__ , langs=UpperCamelCase__ ) A__ : str = model(UpperCamelCase__ , langs=UpperCamelCase__ ) A__ : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): A__ : Optional[Any] = XLMWithLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Tuple = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): A__ : List[str] = XLMForQuestionAnsweringSimple(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[int] = model(UpperCamelCase__ ) A__ : Optional[Any] = model(UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) A__ : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): A__ : List[str] = XLMForQuestionAnswering(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) A__ : List[Any] = model( UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , cls_index=UpperCamelCase__ , is_impossible=UpperCamelCase__ , p_mask=UpperCamelCase__ , ) A__ : int = model( UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , cls_index=UpperCamelCase__ , is_impossible=UpperCamelCase__ , ) (A__ ) : Union[str, Any] = result_with_labels.to_tuple() A__ : str = model(UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) (A__ ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): A__ : Any = XLMForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Tuple = model(UpperCamelCase__ ) A__ : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): A__ : List[str] = self.num_labels A__ : Union[str, Any] = XLMForTokenClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): A__ : int = self.num_choices A__ : Any = XLMForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[int] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self ): A__ : Dict = self.prepare_config_and_inputs() ( A__ ) : Optional[int] = config_and_inputs A__ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCAmelCase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCAmelCase = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Union[str, Any] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) A__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def __snake_case ( self ): A__ : Optional[Any] = XLMModelTester(self ) A__ : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , emb_dim=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=1 ): self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual( [isinstance(UpperCamelCase__ , UpperCamelCase__ ) for iter_attentions in attentions] , [True] * len(UpperCamelCase__ ) ) self.assertEqual(len(UpperCamelCase__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCamelCase__ ): # adds PAD dummy token A__ : str = min_length + idx + 1 A__ : Any = min_length + idx + 1 A__ : str = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCamelCase__ ) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=1 ): self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual( [isinstance(UpperCamelCase__ , UpperCamelCase__ ) for iter_hidden_states in hidden_states] , [True] * len(UpperCamelCase__ ) , ) self.assertEqual(len(UpperCamelCase__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCamelCase__ ): # adds PAD dummy token A__ : List[Any] = min_length + idx + 1 A__ : str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCamelCase__ ) , ) pass @slow def __snake_case ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Dict = XLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): A__ : str = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(UpperCamelCase__ ) A__ : Union[str, Any] = torch.tensor([[14, 447]] , dtype=torch.long , device=UpperCamelCase__ ) # the president A__ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCamelCase__ )
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = RoCBertTokenizer _lowerCAmelCase = None _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = filter_non_english def __snake_case ( self ): super().setUp() A__ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] A__ : int = {} A__ : Dict = {} for i, value in enumerate(UpperCamelCase__ ): A__ : int = i A__ : Any = i A__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) A__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCamelCase__ , UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCamelCase__ , UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : Tuple = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCamelCase__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) def __snake_case ( self ): A__ : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __snake_case ( self ): A__ : List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __snake_case ( self ): A__ : str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : int = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : List[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Any = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Dict = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __snake_case ( self ): A__ : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A__ : Union[str, Any] = {} for i, token in enumerate(UpperCamelCase__ ): A__ : List[str] = i A__ : Dict = RoCBertWordpieceTokenizer(vocab=UpperCamelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __snake_case ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __snake_case ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __snake_case ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __snake_case ( self ): A__ : Tuple = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: A__ : Optional[int] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def __snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[int] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." A__ : Dict = tokenizer_r.encode_plus( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , ) A__ : Tuple = tokenizer_r.do_lower_case if hasattr(UpperCamelCase__ , '''do_lower_case''' ) else False A__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __snake_case ( self ): A__ : int = ['''的''', '''人''', '''有'''] A__ : Tuple = ''''''.join(UpperCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : List[str] = True A__ : List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : List[str] = tokenizer_p.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : str = tokenizer_r.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) A__ : int = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = False A__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Any = tokenizer_r.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer_p.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) A__ : str = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". A__ : Tuple = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCamelCase__ ) ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def __snake_case ( self ): A__ : int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : str = tokenizer.encode('''你好''' , add_special_tokens=UpperCamelCase__ ) A__ : List[str] = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __snake_case ( self ): A__ : Tuple = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): A__ : Union[str, Any] = '''你好,你是谁''' A__ : Optional[int] = tokenizer.tokenize(UpperCamelCase__ ) A__ : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) A__ : int = tokenizer.convert_tokens_to_shape_ids(UpperCamelCase__ ) A__ : Any = tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase__ ) A__ : Dict = tokenizer.prepare_for_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Any = tokenizer.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ["speech"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): requires_backends(self , ['''speech'''] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ["speech"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): requires_backends(self , ['''speech'''] )
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "upernet" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=512 , UpperCamelCase__=0.0_2 , UpperCamelCase__=[1, 2, 3, 6] , UpperCamelCase__=True , UpperCamelCase__=0.4 , UpperCamelCase__=384 , UpperCamelCase__=256 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=255 , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : Optional[int] = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = backbone_config.get('''model_type''' ) A__ : Dict = CONFIG_MAPPING[backbone_model_type] A__ : Optional[Any] = config_class.from_dict(UpperCamelCase__ ) A__ : Union[str, Any] = backbone_config A__ : List[str] = hidden_size A__ : Tuple = initializer_range A__ : Optional[int] = pool_scales A__ : Tuple = use_auxiliary_head A__ : Optional[Any] = auxiliary_loss_weight A__ : Optional[int] = auxiliary_in_channels A__ : Union[str, Any] = auxiliary_channels A__ : Tuple = auxiliary_num_convs A__ : List[Any] = auxiliary_concat_input A__ : Optional[int] = loss_ignore_index def __snake_case ( self ): A__ : Optional[int] = copy.deepcopy(self.__dict__ ) A__ : Optional[Any] = self.backbone_config.to_dict() A__ : Any = self.__class__.model_type return output
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCAmelCase = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : List[str] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): A__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): A__ : Tuple = parent A__ : Tuple = batch_size A__ : Tuple = seq_length A__ : Union[str, Any] = is_training A__ : Any = use_input_mask A__ : Union[str, Any] = use_token_type_ids A__ : Optional[Any] = use_labels A__ : Dict = vocab_size A__ : Union[str, Any] = hidden_size A__ : str = num_hidden_layers A__ : List[str] = num_attention_heads A__ : List[str] = intermediate_size A__ : Union[str, Any] = hidden_act A__ : int = hidden_dropout_prob A__ : List[str] = attention_probs_dropout_prob A__ : Tuple = max_position_embeddings A__ : Union[str, Any] = type_vocab_size A__ : List[str] = type_sequence_label_size A__ : Union[str, Any] = initializer_range A__ : List[Any] = num_labels A__ : List[str] = num_choices A__ : Dict = scope A__ : List[Any] = embedding_size def __snake_case ( self ): A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Optional[int] = None A__ : Union[str, Any] = None A__ : Optional[int] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = TFMobileBertModel(config=UpperCamelCase__ ) A__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : List[str] = model(UpperCamelCase__ ) A__ : List[Any] = [input_ids, input_mask] A__ : Optional[Any] = model(UpperCamelCase__ ) A__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : int = TFMobileBertForMaskedLM(config=UpperCamelCase__ ) A__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = TFMobileBertForNextSentencePrediction(config=UpperCamelCase__ ) A__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : int = TFMobileBertForPreTraining(config=UpperCamelCase__ ) A__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : int = model(UpperCamelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = self.num_labels A__ : int = TFMobileBertForSequenceClassification(config=UpperCamelCase__ ) A__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = self.num_choices A__ : str = TFMobileBertForMultipleChoice(config=UpperCamelCase__ ) A__ : Any = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A__ : Dict = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A__ : List[Any] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A__ : Tuple = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = self.num_labels A__ : Optional[int] = TFMobileBertForTokenClassification(config=UpperCamelCase__ ) A__ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = TFMobileBertForQuestionAnswering(config=UpperCamelCase__ ) A__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ): A__ : List[str] = self.prepare_config_and_inputs() ( A__ ) : Optional[int] = config_and_inputs A__ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def __snake_case ( self ): A__ : str = TFMobileBertModelTest.TFMobileBertModelTester(self ) A__ : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCamelCase__ ) @slow def __snake_case ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: A__ : int = TFMobileBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): A__ : Union[str, Any] = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) A__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ : List[str] = model(UpperCamelCase__ )[0] A__ : int = [1, 6, 3_0522] self.assertEqual(output.shape , UpperCamelCase__ ) A__ : Union[str, Any] = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 )
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): A__ = question_encoder A__ = generator A__ = self.question_encoder def __snake_case ( self , UpperCamelCase__ ): if os.path.isfile(UpperCamelCase__ ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ = os.path.join(UpperCamelCase__ , '''question_encoder_tokenizer''' ) A__ = os.path.join(UpperCamelCase__ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(UpperCamelCase__ ) self.generator.save_pretrained(UpperCamelCase__ ) @classmethod def __snake_case ( cls , UpperCamelCase__ , **UpperCamelCase__ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer A__ = kwargs.pop('''config''' , UpperCamelCase__ ) if config is None: A__ = RagConfig.from_pretrained(UpperCamelCase__ ) A__ = AutoTokenizer.from_pretrained( UpperCamelCase__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) A__ = AutoTokenizer.from_pretrained( UpperCamelCase__ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=UpperCamelCase__ , generator=UpperCamelCase__ ) def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.current_tokenizer(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.generator.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.generator.decode(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self ): A__ = self.question_encoder def __snake_case ( self ): A__ = self.generator def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "longest" , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , UpperCamelCase__ , ) if max_length is None: A__ = self.current_tokenizer.model_max_length A__ = self( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , max_length=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , **UpperCamelCase__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: A__ = self.current_tokenizer.model_max_length A__ = self( text_target=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = labels['''input_ids'''] return model_inputs
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) @add_end_docstrings( SCREAMING_SNAKE_CASE_, R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): if self.framework == "tf": A__ : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A__ : Any = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase__ ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __snake_case ( self , UpperCamelCase__ ): A__ : Dict = self.get_masked_index(UpperCamelCase__ ) A__ : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def __snake_case ( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ): if return_tensors is None: A__ : str = self.framework A__ : str = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.ensure_exactly_one_mask_token(UpperCamelCase__ ) return model_inputs def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = self.model(**UpperCamelCase__ ) A__ : List[str] = model_inputs['''input_ids'''] return model_outputs def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=5 , UpperCamelCase__=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: A__ : Union[str, Any] = target_ids.shape[0] A__ : str = model_outputs['''input_ids'''][0] A__ : Tuple = model_outputs['''logits'''] if self.framework == "tf": A__ : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A__ : Dict = outputs.numpy() A__ : Tuple = outputs[0, masked_index, :] A__ : str = stable_softmax(UpperCamelCase__ , axis=-1 ) if target_ids is not None: A__ : int = tf.gather_nd(tf.squeeze(UpperCamelCase__ , 0 ) , target_ids.reshape(-1 , 1 ) ) A__ : str = tf.expand_dims(UpperCamelCase__ , 0 ) A__ : str = tf.math.top_k(UpperCamelCase__ , k=UpperCamelCase__ ) A__ : List[str] = topk.values.numpy(), topk.indices.numpy() else: A__ : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A__ : List[Any] = outputs[0, masked_index, :] A__ : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: A__ : str = probs[..., target_ids] A__ : Tuple = probs.topk(UpperCamelCase__ ) A__ : Union[str, Any] = [] A__ : str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A__ : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A__ : List[str] = input_ids.numpy().copy() if target_ids is not None: A__ : Any = target_ids[p].tolist() A__ : List[str] = p # Filter padding out: A__ : Dict = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A__ : Any = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) A__ : str = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(UpperCamelCase__ ) result.append(UpperCamelCase__ ) if single_mask: return result[0] return result def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = [targets] try: A__ : Any = self.tokenizer.get_vocab() except Exception: A__ : Tuple = {} A__ : str = [] for target in targets: A__ : int = vocab.get(UpperCamelCase__ , UpperCamelCase__ ) if id_ is None: A__ : Tuple = self.tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , max_length=1 , truncation=UpperCamelCase__ , )['''input_ids'''] if len(UpperCamelCase__ ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue A__ : int = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) A__ : str = list(set(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) A__ : Optional[int] = np.array(UpperCamelCase__ ) return target_ids def __snake_case ( self , UpperCamelCase__=None , UpperCamelCase__=None ): A__ : Tuple = {} if targets is not None: A__ : Any = self.get_target_ids(UpperCamelCase__ , UpperCamelCase__ ) A__ : List[Any] = target_ids if top_k is not None: A__ : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): A__ : Any = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) == 1: return outputs[0] return outputs
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 4_00_00_00 ) -> int: """simple docstring""" A__ : Any = [0, 1] A__ : Optional[int] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A__ : int = 0 for j in range(len(__UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "megatron-bert" def __init__( self , UpperCamelCase__=2_9056 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=True , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : List[Any] = vocab_size A__ : Tuple = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : str = num_attention_heads A__ : Dict = hidden_act A__ : Dict = intermediate_size A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : List[Any] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : Optional[int] = position_embedding_type A__ : str = use_cache
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
_SCREAMING_SNAKE_CASE : List[str] = 8.31_4462 # Unit - J mol-1 K-1 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] = torch.nn.Linear(2 , 4 ) A__ : int = torch.optim.AdamW(model.parameters() , lr=1.0 ) A__ : Any = torch.optim.lr_scheduler.OneCycleLR(__UpperCamelCase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) A__ : Optional[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) A__ : Union[str, Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" A__ : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__UpperCamelCase ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_cuda def __snake_case ( self ): A__ : Any = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCamelCase__ ): A__ : Dict = Accelerator(cpu=UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = Accelerator() A__ : str = GradientState() assert state.num_steps == 1 A__ : Optional[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True A__ : int = False assert state.sync_gradients is False GradientState._reset_state() def __snake_case ( self ): A__ : Optional[int] = Accelerator() A__ : Dict = create_components() ( A__ ) : Any = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __snake_case ( self ): A__ : Dict = Accelerator() A__ : str = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __snake_case ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCamelCase__ , **UpperCamelCase__ ): pass with patch('''torch.cuda.set_device''' , UpperCamelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): A__ : Optional[int] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def __snake_case ( self ): A__ : Tuple = Accelerator() A__ : Any = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[Any] = get_signature(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) def __snake_case ( self ): A__ : List[Any] = Accelerator() A__ : Optional[int] = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : Union[str, Any] = get_signature(UpperCamelCase__ ) # saving hook def save_config(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(UpperCamelCase__ , '''data.json''' ) , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # loading hook def load_config(UpperCamelCase__ , UpperCamelCase__ ): with open(os.path.join(UpperCamelCase__ , '''data.json''' ) , '''r''' ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) A__ : List[Any] = config['''class_name'''] A__ : Dict = accelerator.register_save_state_pre_hook(UpperCamelCase__ ) A__ : Optional[int] = accelerator.register_load_state_pre_hook(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded A__ : Union[str, Any] = '''random''' # make sure loaded weights match with hooks accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded A__ : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __snake_case ( self ): A__ : int = Accelerator() A__ : Tuple = create_components() A__ : List[Any] = None # This should work A__ : Tuple = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(dummy_obj is None ) def __snake_case ( self ): A__ : str = Accelerator() A__ : int = create_components() A__ : Any = [1, 2, 3] # This should work A__ : List[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def __snake_case ( self ): from transformers import AutoModelForCausalLM A__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=UpperCamelCase__ , device_map={'''''': 0} , ) A__ : Optional[int] = Accelerator() # This should work A__ : Optional[Any] = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb def __snake_case ( self ): from transformers import AutoModelForCausalLM A__ : List[str] = Accelerator() with init_empty_weights(): A__ : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() A__ : Any = infer_auto_device_map(UpperCamelCase__ ) A__ : Any = '''cpu''' A__ : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=UpperCamelCase__ , load_in_abit=UpperCamelCase__ , llm_inta_enable_fpaa_cpu_offload=UpperCamelCase__ ) # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb @require_multi_gpu def __snake_case ( self ): from transformers import AutoModelForCausalLM A__ : Any = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): A__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() A__ : Dict = infer_auto_device_map(UpperCamelCase__ ) A__ : Dict = 1 A__ : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) A__ : Any = Accelerator() # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): A__ : Dict = accelerator.prepare(UpperCamelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __snake_case ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): A__ : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) A__ : Tuple = infer_auto_device_map(UpperCamelCase__ ) A__ : Optional[int] = 1 A__ : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) A__ : List[Any] = Accelerator() # This should work A__ : List[Any] = accelerator.prepare(UpperCamelCase__ ) @require_cuda def __snake_case ( self ): A__ : int = torch.nn.Linear(10 , 10 ) A__ : int = torch.optim.SGD(model.parameters() , lr=0.0_1 ) A__ : str = Accelerator(cpu=UpperCamelCase__ ) A__ : Optional[Any] = accelerator.prepare(UpperCamelCase__ )
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=2 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=36 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=6 , UpperCamelCase__=6 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=1000 , ): A__ : List[Any] = parent A__ : Dict = batch_size A__ : Optional[Any] = num_channels A__ : Optional[Any] = image_size A__ : Optional[Any] = patch_size A__ : List[Any] = text_seq_length A__ : List[Any] = is_training A__ : Optional[int] = use_input_mask A__ : Dict = use_token_type_ids A__ : List[Any] = use_labels A__ : int = vocab_size A__ : Any = hidden_size A__ : List[Any] = num_hidden_layers A__ : Dict = num_attention_heads A__ : int = intermediate_size A__ : Optional[int] = hidden_act A__ : Any = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : Optional[Any] = type_vocab_size A__ : Tuple = type_sequence_label_size A__ : Tuple = initializer_range A__ : Dict = coordinate_size A__ : Optional[Any] = shape_size A__ : int = num_labels A__ : Dict = num_choices A__ : Any = scope A__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A__ : Any = text_seq_length A__ : Optional[Any] = (image_size // patch_size) ** 2 + 1 A__ : List[Any] = self.text_seq_length + self.image_seq_length def __snake_case ( self ): A__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ : Tuple = bbox[i, j, 3] A__ : Optional[int] = bbox[i, j, 1] A__ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ : str = bbox[i, j, 2] A__ : List[Any] = bbox[i, j, 0] A__ : List[Any] = t A__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Any = None if self.use_input_mask: A__ : int = random_attention_mask([self.batch_size, self.text_seq_length] ) A__ : str = None if self.use_token_type_ids: A__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None if self.use_labels: A__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A__ : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image A__ : List[str] = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A__ : Union[str, Any] = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A__ : Tuple = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = self.num_labels A__ : List[Any] = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Any = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = self.num_labels A__ : str = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : List[str] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Dict = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ): A__ : Any = self.prepare_config_and_inputs() ( A__ ) : List[Any] = config_and_inputs A__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __snake_case ( self ): A__ : str = LayoutLMvaModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : str = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): A__ : Optional[Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): A__ : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): A__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) A__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : Optional[Any] = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Any = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCamelCase__ ) A__ : Any = self.default_image_processor A__ : Dict = prepare_img() A__ : List[str] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values.to(UpperCamelCase__ ) A__ : Optional[int] = torch.tensor([[1, 2]] ) A__ : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A__ : Dict = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits A__ : Union[str, Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) A__ : Tuple = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Optional[int] = tempfile.mkdtemp() A__ : Optional[int] = BlipImageProcessor() A__ : Union[str, Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) A__ : List[str] = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) A__ : Union[str, Any] = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Any = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): A__ : List[str] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A__ : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A__ : Dict = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A__ : Tuple = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = self.get_image_processor() A__ : Any = self.get_tokenizer() A__ : Optional[int] = self.get_qformer_tokenizer() A__ : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : List[Any] = self.prepare_image_inputs() A__ : List[Any] = image_processor(UpperCamelCase__ , return_tensors='''np''' ) A__ : List[str] = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ): A__ : Optional[int] = self.get_image_processor() A__ : str = self.get_tokenizer() A__ : List[Any] = self.get_qformer_tokenizer() A__ : Union[str, Any] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : List[Any] = '''lower newer''' A__ : Union[str, Any] = processor(text=UpperCamelCase__ ) A__ : List[Any] = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) A__ : Dict = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __snake_case ( self ): A__ : List[str] = self.get_image_processor() A__ : Optional[Any] = self.get_tokenizer() A__ : List[Any] = self.get_qformer_tokenizer() A__ : int = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Optional[int] = '''lower newer''' A__ : Optional[int] = self.prepare_image_inputs() A__ : Any = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __snake_case ( self ): A__ : List[str] = self.get_image_processor() A__ : Tuple = self.get_tokenizer() A__ : str = self.get_qformer_tokenizer() A__ : Any = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Optional[int] = processor.batch_decode(UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.get_image_processor() A__ : Optional[int] = self.get_tokenizer() A__ : str = self.get_qformer_tokenizer() A__ : Optional[int] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Optional[Any] = '''lower newer''' A__ : Any = self.prepare_image_inputs() A__ : Dict = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
import functools def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> int: """simple docstring""" A__ : Dict = len(__UpperCamelCase ) A__ : str = len(__UpperCamelCase ) @functools.cache def min_distance(__UpperCamelCase : int , __UpperCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A__ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCamelCase ) , 1 + min_distance(__UpperCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) set_seed(7_7_0) _SCREAMING_SNAKE_CASE : Optional[Any] = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } _SCREAMING_SNAKE_CASE : Optional[int] = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } _SCREAMING_SNAKE_CASE : Tuple = os.path.dirname(os.path.abspath(__file__)) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(os.path.expanduser('~'), '.cache') _SCREAMING_SNAKE_CASE : Tuple = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" A__ : Optional[Any] = model_type if use_small: key += "_small" return os.path.join(__UpperCamelCase , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ) -> Any: """simple docstring""" os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) hf_hub_download(repo_id=__UpperCamelCase , filename=__UpperCamelCase , local_dir=__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : int=False , __UpperCamelCase : Optional[int]="text" ) -> Union[str, Any]: """simple docstring""" if model_type == "text": A__ : Optional[int] = BarkSemanticModel A__ : str = BarkSemanticConfig A__ : int = BarkSemanticGenerationConfig elif model_type == "coarse": A__ : Optional[int] = BarkCoarseModel A__ : Tuple = BarkCoarseConfig A__ : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": A__ : str = BarkFineModel A__ : List[Any] = BarkFineConfig A__ : Optional[Any] = BarkFineGenerationConfig else: raise NotImplementedError() A__ : Optional[Any] = F"{model_type}_small" if use_small else model_type A__ : str = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__UpperCamelCase ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) A__ : int = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) # this is a hack A__ : Union[str, Any] = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: A__ : Any = model_args['''vocab_size'''] A__ : int = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments A__ : Optional[Any] = model_args.pop('''n_head''' ) A__ : Tuple = model_args.pop('''n_embd''' ) A__ : Tuple = model_args.pop('''n_layer''' ) A__ : Any = ConfigClass(**checkpoint['''model_args'''] ) A__ : Tuple = ModelClass(config=__UpperCamelCase ) A__ : Any = GenerationConfigClass() A__ : Optional[int] = model_generation_config A__ : Union[str, Any] = checkpoint['''model'''] # fixup checkpoint A__ : List[str] = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(__UpperCamelCase ): # replace part of the key with corresponding layer name in HF implementation A__ : List[Any] = k[len(__UpperCamelCase ) :] for old_layer_name in new_layer_name_dict: A__ : List[Any] = new_k.replace(__UpperCamelCase , new_layer_name_dict[old_layer_name] ) A__ : Optional[int] = state_dict.pop(__UpperCamelCase ) A__ : List[str] = set(state_dict.keys() ) - set(model.state_dict().keys() ) A__ : Optional[int] = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} A__ : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) A__ : Any = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(__UpperCamelCase ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(__UpperCamelCase ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) A__ : Optional[Any] = model.num_parameters(exclude_embeddings=__UpperCamelCase ) A__ : str = checkpoint['''best_val_loss'''].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(__UpperCamelCase , 3 )} loss" ) model.eval() model.to(__UpperCamelCase ) del checkpoint, state_dict return model def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Tuple="text" ) -> int: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() A__ : str = '''cpu''' # do conversion on cpu A__ : int = _get_ckpt_path(__UpperCamelCase , use_small=__UpperCamelCase ) A__ : Optional[int] = _load_model(__UpperCamelCase , __UpperCamelCase , model_type=__UpperCamelCase , use_small=__UpperCamelCase ) # load bark initial model A__ : List[Any] = _bark_load_model(__UpperCamelCase , '''cpu''' , model_type=__UpperCamelCase , use_small=__UpperCamelCase ) if model_type == "text": A__ : Optional[int] = bark_model['''model'''] if model.num_parameters(exclude_embeddings=__UpperCamelCase ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model A__ : Optional[Any] = 5 A__ : Dict = 10 if model_type in ["text", "coarse"]: A__ : Tuple = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) A__ : Tuple = bark_model(__UpperCamelCase )[0] A__ : int = model(__UpperCamelCase ) # take last logits A__ : int = output_new_model_total.logits[:, [-1], :] else: A__ : str = 3 A__ : List[str] = 8 A__ : List[Any] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) A__ : List[Any] = model(__UpperCamelCase , __UpperCamelCase ) A__ : Union[str, Any] = bark_model(__UpperCamelCase , __UpperCamelCase ) A__ : Optional[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('''initial and new outputs are not equal''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , ) -> Dict: """simple docstring""" A__ : int = os.path.join(__UpperCamelCase , __UpperCamelCase ) A__ : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(__UpperCamelCase , '''config.json''' ) ) A__ : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(__UpperCamelCase , '''config.json''' ) ) A__ : str = BarkFineConfig.from_pretrained(os.path.join(__UpperCamelCase , '''config.json''' ) ) A__ : int = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) A__ : Dict = BarkSemanticModel.from_pretrained(__UpperCamelCase ) A__ : str = BarkCoarseModel.from_pretrained(__UpperCamelCase ) A__ : Optional[int] = BarkFineModel.from_pretrained(__UpperCamelCase ) A__ : int = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) A__ : str = BarkConfig.from_sub_model_configs( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ : Any = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) A__ : List[Any] = BarkModel(__UpperCamelCase ) A__ : List[Any] = semantic A__ : Tuple = coarseAcoustic A__ : Union[str, Any] = fineAcoustic A__ : Any = codec A__ : Union[str, Any] = bark_generation_config Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) bark.save_pretrained(__UpperCamelCase , repo_id=__UpperCamelCase , push_to_hub=__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , **__UpperCamelCase : Optional[int] ): """simple docstring""" A__ : int = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) A__ : int = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Optional[Any] = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : str = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": A__ : Dict = 8 else: A__ : List[Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Optional[int] = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ) -> int: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : Tuple = 2 # New Code # A__ : Optional[int] = int(args.gradient_accumulation_steps ) A__ : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator A__ : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : List[Any] = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : List[Any] = int(config['''batch_size'''] ) A__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__UpperCamelCase ) A__ : List[Any] = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Dict = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer A__ : Dict = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): A__ : Tuple = model(**__UpperCamelCase ) A__ : str = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : str = model(**__UpperCamelCase ) A__ : Dict = outputs.logits.argmax(dim=-1 ) A__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__UpperCamelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=__UpperCamelCase , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Optional[int] = parser.parse_args() A__ : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , ) -> str: """simple docstring""" A__ : Union[str, Any] = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } A__ : List[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: A__ : Tuple = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) assert base_extractor.is_extractable(__UpperCamelCase ) A__ : List[str] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(__UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A__ : List[str] = file_path.read_text(encoding='''utf-8''' ) else: A__ : Any = output_path.read_text(encoding='''utf-8''' ) A__ : Any = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , ) -> List[str]: """simple docstring""" A__ : List[Any] = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } A__ : Any = input_paths[compression_format] if input_path is None: A__ : Optional[Any] = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) A__ : Dict = Extractor.infer_extractor_format(__UpperCamelCase ) assert extractor_format is not None A__ : Optional[Any] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A__ : Optional[int] = file_path.read_text(encoding='''utf-8''' ) else: A__ : Union[str, Any] = output_path.read_text(encoding='''utf-8''' ) A__ : Any = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" import tarfile A__ : Any = tmp_path / '''data_dot_dot''' directory.mkdir() A__ : Optional[Any] = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(__UpperCamelCase , '''w''' ) as f: f.add(__UpperCamelCase , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" import tarfile A__ : int = tmp_path / '''data_sym_link''' directory.mkdir() A__ : List[Any] = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=__UpperCamelCase ) with tarfile.TarFile(__UpperCamelCase , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" A__ : int = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } A__ : str = insecure_tar_files[insecure_tar_file] A__ : Dict = tmp_path / '''extracted''' TarExtractor.extract(__UpperCamelCase , __UpperCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> List[str]: """simple docstring""" A__ : Any = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 A__ : int = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(__UpperCamelCase ) assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] _SCREAMING_SNAKE_CASE : Any = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" A__ : int = torch.load(__UpperCamelCase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=rename_keys_prefix ) -> int: """simple docstring""" A__ : Dict = OrderedDict() A__ : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A__ : Optional[int] = key for name_pair in rename_keys_prefix: A__ : Dict = new_key.replace(name_pair[0] , name_pair[1] ) A__ : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A__ : str = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[str] ) -> str: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: A__ : str = '''pretraining''' if "vcr" in checkpoint_path: A__ : int = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: A__ : List[str] = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: A__ : Optional[Any] = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: A__ : Any = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: A__ : int = {'''visual_embedding_dim''': 5_12} A__ : str = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A__ : Union[str, Any] = {'''visual_embedding_dim''': 20_48} A__ : List[Any] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A__ : Tuple = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} A__ : Optional[int] = '''vqa''' elif "nlvr" in checkpoint_path: A__ : Dict = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } A__ : Optional[int] = '''nlvr''' A__ : str = VisualBertConfig(**__UpperCamelCase ) # Load State Dict A__ : int = load_state_dict(__UpperCamelCase ) A__ : Optional[Any] = get_new_dict(__UpperCamelCase , __UpperCamelCase ) if model_type == "pretraining": A__ : Optional[int] = VisualBertForPreTraining(__UpperCamelCase ) elif model_type == "vqa": A__ : Union[str, Any] = VisualBertForQuestionAnswering(__UpperCamelCase ) elif model_type == "nlvr": A__ : Tuple = VisualBertForVisualReasoning(__UpperCamelCase ) elif model_type == "multichoice": A__ : List[str] = VisualBertForMultipleChoice(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Save Checkpoints Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') _SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' import qiskit def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> qiskit.result.counts.Counts: """simple docstring""" A__ : str = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register A__ : int = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A__ : List[str] = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A__ : Any = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A__ : Dict = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A__ : Tuple = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
import os import sys import unittest _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _SCREAMING_SNAKE_CASE : Dict = os.path.join(git_repo_path, 'src', 'transformers') _SCREAMING_SNAKE_CASE : Dict = '\n{0} = None\n' _SCREAMING_SNAKE_CASE : Dict = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' _SCREAMING_SNAKE_CASE : int = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class UpperCamelCase__ ( unittest.TestCase ): def __snake_case ( self ): A__ : List[str] = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(UpperCamelCase__ ) A__ : Tuple = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(UpperCamelCase__ , '''tokenizers''' ) A__ : Tuple = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(UpperCamelCase__ , '''tensorflow_text''' ) A__ : Any = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(UpperCamelCase__ , '''sentencepiece_and_tokenizers''' ) A__ : int = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(UpperCamelCase__ , '''sentencepiece_and_tensorflow_text''' ) A__ : List[Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(UpperCamelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __snake_case ( self ): A__ : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , UpperCamelCase__ ) self.assertIn('''tensorflow_text''' , UpperCamelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , UpperCamelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __snake_case ( self ): A__ : str = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(UpperCamelCase__ , '''\nCONSTANT = None\n''' ) A__ : int = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( UpperCamelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) A__ : Optional[Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' A__ : Union[str, Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' A__ : Any = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , UpperCamelCase__ )
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = field(default="question-answering-extractive", metadata={"include_in_asdict_even_if_is_default": True} ) _lowerCAmelCase = Features({"question": Value("string" ), "context": Value("string" )} ) _lowerCAmelCase = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) _lowerCAmelCase = "question" _lowerCAmelCase = "context" _lowerCAmelCase = "answers" @property def __snake_case ( self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "ibert" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=False , UpperCamelCase__="none" , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : str = hidden_act A__ : Tuple = intermediate_size A__ : int = hidden_dropout_prob A__ : int = attention_probs_dropout_prob A__ : List[str] = max_position_embeddings A__ : Union[str, Any] = type_vocab_size A__ : Union[str, Any] = initializer_range A__ : Any = layer_norm_eps A__ : List[Any] = position_embedding_type A__ : List[str] = quant_mode A__ : Tuple = force_dequant class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def __snake_case ( self ): if self.task == "multiple-choice": A__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple="shi-labs/oneformer_demo" ) -> Dict: """simple docstring""" with open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) as f: A__ = json.load(__UpperCamelCase ) A__ = {} A__ = [] A__ = [] for key, info in class_info.items(): A__ = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(__UpperCamelCase ) ) A__ = thing_ids A__ = class_names return metadata class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=10 , UpperCamelCase__=False , UpperCamelCase__=255 , UpperCamelCase__="shi-labs/oneformer_demo" , UpperCamelCase__="ade20k_panoptic.json" , UpperCamelCase__=10 , ): A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = {'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size A__ = do_normalize A__ = image_mean A__ = image_std A__ = class_info_file A__ = prepare_metadata(UpperCamelCase__ , UpperCamelCase__ ) A__ = num_text A__ = repo_path # for the post_process_functions A__ = 2 A__ = 10 A__ = 10 A__ = 3 A__ = 4 A__ = num_labels A__ = do_reduce_labels A__ = ignore_index def __snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=False ): if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): A__ = image.size else: A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w ) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h ) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[0] )[0] A__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width def __snake_case ( self ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCAmelCase = image_processing_class def __snake_case ( self ): A__ = OneFormerImageProcessorTester(self ) @property def __snake_case ( self ): return self.image_processing_tester.prepare_image_processor_dict() def __snake_case ( self ): A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''ignore_index''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''class_info_file''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''num_text''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''repo_path''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''metadata''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_reduce_labels''' ) ) def __snake_case ( self ): pass def __snake_case ( self ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values A__ = self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ = image_processor( UpperCamelCase__ , ['''semantic'''] * len(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A__ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values A__ = self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ = image_processor( UpperCamelCase__ , ['''semantic'''] * len(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self ): # Initialize image_processor A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A__ = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values A__ = self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ = image_processor( UpperCamelCase__ , ['''semantic'''] * len(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__="np" ): A__ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A__ = self.image_processing_tester.num_labels A__ = None A__ = None A__ = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ ) if with_segmentation_maps: A__ = num_labels if is_instance_map: A__ = list(range(UpperCamelCase__ ) ) * 2 A__ = dict(enumerate(UpperCamelCase__ ) ) A__ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A__ = [Image.fromarray(UpperCamelCase__ ) for annotation in annotations] A__ = image_processor( UpperCamelCase__ , ['''semantic'''] * len(UpperCamelCase__ ) , UpperCamelCase__ , return_tensors='''pt''' , instance_id_to_semantic_id=UpperCamelCase__ , pad_and_return_pixel_mask=UpperCamelCase__ , ) return inputs def __snake_case ( self ): pass def __snake_case ( self ): def common(UpperCamelCase__=False , UpperCamelCase__=None ): A__ = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase__ , is_instance_map=UpperCamelCase__ , segmentation_type=UpperCamelCase__ ) A__ = inputs['''mask_labels'''] A__ = inputs['''class_labels'''] A__ = inputs['''pixel_values'''] A__ = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase__ ) common(is_instance_map=UpperCamelCase__ , segmentation_type='''pil''' ) common(is_instance_map=UpperCamelCase__ , segmentation_type='''pil''' ) def __snake_case ( self ): A__ = np.zeros((20, 50) ) A__ = 1 A__ = 1 A__ = 1 A__ = binary_mask_to_rle(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __snake_case ( self ): A__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) A__ = self.image_processing_tester.get_fake_oneformer_outputs() A__ = fature_extractor.post_process_semantic_segmentation(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A__ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A__ = fature_extractor.post_process_semantic_segmentation(UpperCamelCase__ , target_sizes=UpperCamelCase__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __snake_case ( self ): A__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) A__ = self.image_processing_tester.get_fake_oneformer_outputs() A__ = image_processor.post_process_instance_segmentation(UpperCamelCase__ , threshold=0 ) self.assertTrue(len(UpperCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , UpperCamelCase__ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __snake_case ( self ): A__ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) A__ = self.image_processing_tester.get_fake_oneformer_outputs() A__ = image_processor.post_process_panoptic_segmentation(UpperCamelCase__ , threshold=0 ) self.assertTrue(len(UpperCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , UpperCamelCase__ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Union[str, Any] = tempfile.mkdtemp() A__ : Optional[Any] = SamImageProcessor() A__ : List[str] = SamProcessor(UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Optional[int] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): A__ : Union[str, Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : str = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A__ : List[str] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.get_image_processor() A__ : Optional[Any] = SamProcessor(image_processor=UpperCamelCase__ ) A__ : str = self.prepare_image_inputs() A__ : Dict = image_processor(UpperCamelCase__ , return_tensors='''np''' ) A__ : Dict = processor(images=UpperCamelCase__ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __snake_case ( self ): A__ : str = self.get_image_processor() A__ : Tuple = SamProcessor(image_processor=UpperCamelCase__ ) A__ : Any = [torch.ones((1, 3, 5, 5) )] A__ : Union[str, Any] = [[1764, 2646]] A__ : Optional[int] = [[683, 1024]] A__ : int = processor.post_process_masks(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : List[Any] = processor.post_process_masks( UpperCamelCase__ , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np A__ : Optional[Any] = [np.ones((1, 3, 5, 5) )] A__ : Optional[int] = processor.post_process_masks(UpperCamelCase__ , np.array(UpperCamelCase__ ) , np.array(UpperCamelCase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : List[str] = [[1, 0], [0, 1]] with self.assertRaises(UpperCamelCase__ ): A__ : int = processor.post_process_masks(UpperCamelCase__ , np.array(UpperCamelCase__ ) , np.array(UpperCamelCase__ ) ) @require_vision @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Union[str, Any] = tempfile.mkdtemp() A__ : List[str] = SamImageProcessor() A__ : str = SamProcessor(UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Any = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): A__ : Tuple = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : Any = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A__ : List[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.get_image_processor() A__ : Optional[int] = SamProcessor(image_processor=UpperCamelCase__ ) A__ : Dict = self.prepare_image_inputs() A__ : List[str] = image_processor(UpperCamelCase__ , return_tensors='''np''' ) A__ : Optional[int] = processor(images=UpperCamelCase__ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __snake_case ( self ): A__ : Optional[Any] = self.get_image_processor() A__ : Optional[int] = SamProcessor(image_processor=UpperCamelCase__ ) A__ : str = [tf.ones((1, 3, 5, 5) )] A__ : List[Any] = [[1764, 2646]] A__ : Tuple = [[683, 1024]] A__ : Optional[int] = processor.post_process_masks(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : Dict = processor.post_process_masks( UpperCamelCase__ , tf.convert_to_tensor(UpperCamelCase__ ) , tf.convert_to_tensor(UpperCamelCase__ ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np A__ : str = [np.ones((1, 3, 5, 5) )] A__ : str = processor.post_process_masks( UpperCamelCase__ , np.array(UpperCamelCase__ ) , np.array(UpperCamelCase__ ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) A__ : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A__ : str = processor.post_process_masks( UpperCamelCase__ , np.array(UpperCamelCase__ ) , np.array(UpperCamelCase__ ) , return_tensors='''tf''' ) @require_vision @require_torchvision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Optional[int] = tempfile.mkdtemp() A__ : Any = SamImageProcessor() A__ : Union[str, Any] = SamProcessor(UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Dict = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __snake_case ( self ): A__ : Any = self.get_image_processor() A__ : List[Any] = SamProcessor(image_processor=UpperCamelCase__ ) A__ : List[Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A__ : Tuple = [tf.convert_to_tensor(UpperCamelCase__ )] A__ : Any = [torch.tensor(UpperCamelCase__ )] A__ : Optional[int] = [[1764, 2646]] A__ : Any = [[683, 1024]] A__ : Optional[int] = processor.post_process_masks( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , return_tensors='''tf''' ) A__ : List[Any] = processor.post_process_masks( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __snake_case ( self ): A__ : Dict = self.get_image_processor() A__ : Dict = SamProcessor(image_processor=UpperCamelCase__ ) A__ : Union[str, Any] = self.prepare_image_inputs() A__ : Dict = image_processor(UpperCamelCase__ , return_tensors='''pt''' )['''pixel_values'''].numpy() A__ : List[str] = processor(images=UpperCamelCase__ , return_tensors='''pt''' )['''pixel_values'''].numpy() A__ : Union[str, Any] = image_processor(UpperCamelCase__ , return_tensors='''tf''' )['''pixel_values'''].numpy() A__ : Union[str, Any] = processor(images=UpperCamelCase__ , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) )
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **UpperCamelCase__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A__ : Optional[int] = deprecated_arg[3:] A__ : List[str] = not kwargs.pop(UpperCamelCase__ ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) A__ : str = kwargs.pop('''tpu_name''' , self.tpu_name ) A__ : int = kwargs.pop('''device_idx''' , self.device_idx ) A__ : Optional[int] = kwargs.pop('''eager_mode''' , self.eager_mode ) A__ : str = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**UpperCamelCase__ ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "Name of TPU"}, ) _lowerCAmelCase = field( default=0, metadata={"help": "CPU / GPU device index. Defaults to 0."}, ) _lowerCAmelCase = field(default=SCREAMING_SNAKE_CASE_, metadata={"help": "Benchmark models in eager model."} ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." }, ) @cached_property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) A__ : List[str] = None if self.tpu: try: if self.tpu_name: A__ : str = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A__ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A__ : List[Any] = None return tpu @cached_property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A__ : Union[str, Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) A__ : Any = tf.distribute.OneDeviceStrategy(device=F"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU A__ : str = tf.distribute.OneDeviceStrategy(device=F"/cpu:{self.device_idx}" ) return strategy @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __snake_case ( self ): return self.n_gpu > 0
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _SCREAMING_SNAKE_CASE : str = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) _SCREAMING_SNAKE_CASE : int = dataset.iloc[:, 1:2].values _SCREAMING_SNAKE_CASE : str = dataset.iloc[:, 2].values _SCREAMING_SNAKE_CASE : str = train_test_split(X, y, test_size=0.2, random_state=0) _SCREAMING_SNAKE_CASE : int = PolynomialFeatures(degree=4) _SCREAMING_SNAKE_CASE : Optional[int] = poly_reg.fit_transform(X) _SCREAMING_SNAKE_CASE : List[str] = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" plt.scatter(__UpperCamelCase , __UpperCamelCase , color='''red''' ) plt.plot(__UpperCamelCase , pol_reg.predict(poly_reg.fit_transform(__UpperCamelCase ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" A__ : Optional[int] = 3_84 if "tiny" in model_name: A__ : Any = [3, 3, 9, 3] A__ : Union[str, Any] = [96, 1_92, 3_84, 7_68] if "small" in model_name: A__ : int = [3, 3, 27, 3] A__ : Dict = [96, 1_92, 3_84, 7_68] if "base" in model_name: A__ : Tuple = [3, 3, 27, 3] A__ : List[Any] = [1_28, 2_56, 5_12, 10_24] A__ : Union[str, Any] = 5_12 if "large" in model_name: A__ : int = [3, 3, 27, 3] A__ : Union[str, Any] = [1_92, 3_84, 7_68, 15_36] A__ : Optional[Any] = 7_68 if "xlarge" in model_name: A__ : Dict = [3, 3, 27, 3] A__ : str = [2_56, 5_12, 10_24, 20_48] A__ : List[str] = 10_24 # set label information A__ : Any = 1_50 A__ : Optional[int] = '''huggingface/label-files''' A__ : Union[str, Any] = '''ade20k-id2label.json''' A__ : List[Any] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Any = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : Any = {v: k for k, v in idalabel.items()} A__ : int = ConvNextConfig( depths=__UpperCamelCase , hidden_sizes=__UpperCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) A__ : int = UperNetConfig( backbone_config=__UpperCamelCase , auxiliary_in_channels=__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Dict: """simple docstring""" A__ : Optional[Any] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" A__ : Optional[Any] = dct.pop(__UpperCamelCase ) A__ : Dict = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" A__ : int = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } A__ : Dict = model_name_to_url[model_name] A__ : str = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' )['''state_dict'''] A__ : Dict = get_upernet_config(__UpperCamelCase ) A__ : Union[str, Any] = UperNetForSemanticSegmentation(__UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ : int = state_dict.pop(__UpperCamelCase ) if "bn" in key: A__ : Union[str, Any] = key.replace('''bn''' , '''batch_norm''' ) A__ : Union[str, Any] = val # rename keys A__ : List[str] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify on image A__ : List[Any] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' A__ : int = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) A__ : Union[str, Any] = SegformerImageProcessor() A__ : Union[str, Any] = processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): A__ : Dict = model(__UpperCamelCase ) if model_name == "upernet-convnext-tiny": A__ : Union[str, Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": A__ : List[str] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": A__ : Any = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": A__ : Union[str, Any] = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": A__ : List[Any] = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=2 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=None , UpperCamelCase__=2 , UpperCamelCase__=2 , ): A__ : Dict = parent A__ : Tuple = batch_size A__ : int = patch_size A__ : int = max_length A__ : Tuple = num_mel_bins A__ : List[Any] = is_training A__ : List[Any] = use_labels A__ : Any = hidden_size A__ : Optional[int] = num_hidden_layers A__ : List[Any] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : List[str] = hidden_act A__ : Dict = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : Dict = type_sequence_label_size A__ : List[Any] = initializer_range A__ : List[str] = scope A__ : List[Any] = frequency_stride A__ : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A__ : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 A__ : int = (self.max_length - self.patch_size) // self.time_stride + 1 A__ : Any = frequency_out_dimension * time_out_dimension A__ : Dict = num_patches + 2 def __snake_case ( self ): A__ : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) A__ : Tuple = None if self.use_labels: A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = self.get_config() return config, input_values, labels def __snake_case ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = ASTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self ): A__ : Any = self.prepare_config_and_inputs() ( A__ ) : str = config_and_inputs A__ : Optional[int] = {'''input_values''': input_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowerCAmelCase = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __snake_case ( self ): A__ : Union[str, Any] = ASTModelTester(self ) A__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def __snake_case ( self ): pass def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Tuple = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = model_class(UpperCamelCase__ ) A__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Dict = [*signature.parameters.keys()] A__ : List[Any] = ['''input_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : int = ASTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Tuple = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) A__ : List[Any] = torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def __snake_case ( self ): A__ : Union[str, Any] = self.default_feature_extractor A__ : Optional[Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(UpperCamelCase__ ) A__ : str = self.default_feature_extractor A__ : Optional[int] = prepare_audio() A__ : Optional[Any] = audio.squeeze().numpy() A__ : Any = feature_extractor(UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Optional[Any] = model(**UpperCamelCase__ ) # verify the logits A__ : Optional[int] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : str = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCamelCase__ : '''simple docstring''' def __snake_case ( self ): torch.manual_seed(0 ) A__ : int = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) A__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) A__ : Tuple = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : Any = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=UpperCamelCase__ , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) A__ : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __snake_case ( self ): torch.manual_seed(0 ) A__ : Dict = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) A__ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) A__ : str = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A__ : int = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=UpperCamelCase__ , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) A__ : List[Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) A__ : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __snake_case ( self ): A__ : int = self.get_dummy_components() A__ : Tuple = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : List[str] = self.get_dummy_inputs(UpperCamelCase__ ) A__ : Optional[int] = inputs['''prompt'''] A__ : Optional[int] = inputs['''generator'''] A__ : int = inputs['''num_inference_steps'''] A__ : Optional[Any] = inputs['''output_type'''] if "image" in inputs: A__ : Optional[Any] = inputs['''image'''] else: A__ : Dict = None if "mask_image" in inputs: A__ : List[str] = inputs['''mask_image'''] else: A__ : List[str] = None if "original_image" in inputs: A__ : Optional[int] = inputs['''original_image'''] else: A__ : Tuple = None A__ : int = pipe.encode_prompt(UpperCamelCase__ ) # inputs with prompt converted to embeddings A__ : List[str] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: A__ : Dict = image if mask_image is not None: A__ : str = mask_image if original_image is not None: A__ : List[str] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : int = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase__ , UpperCamelCase__ ) is None , F"`{optional_component}` did not stay set to None after loading." , ) A__ : int = self.get_dummy_inputs(UpperCamelCase__ ) A__ : Optional[int] = inputs['''generator'''] A__ : str = inputs['''num_inference_steps'''] A__ : Optional[int] = inputs['''output_type'''] # inputs with prompt converted to embeddings A__ : List[str] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: A__ : List[Any] = image if mask_image is not None: A__ : Union[str, Any] = mask_image if original_image is not None: A__ : List[str] = original_image A__ : Any = pipe_loaded(**UpperCamelCase__ )[0] A__ : int = np.abs(to_np(UpperCamelCase__ ) - to_np(UpperCamelCase__ ) ).max() self.assertLess(UpperCamelCase__ , 1e-4 ) def __snake_case ( self ): A__ : Optional[Any] = self.get_dummy_components() A__ : List[Any] = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : int = self.get_dummy_inputs(UpperCamelCase__ ) A__ : str = pipe(**UpperCamelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase__ ) A__ : Optional[int] = self.pipeline_class.from_pretrained(UpperCamelCase__ ) pipe_loaded.to(UpperCamelCase__ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A__ : List[Any] = self.get_dummy_inputs(UpperCamelCase__ ) A__ : str = pipe_loaded(**UpperCamelCase__ )[0] A__ : Optional[int] = np.abs(to_np(UpperCamelCase__ ) - to_np(UpperCamelCase__ ) ).max() self.assertLess(UpperCamelCase__ , 1e-4 )
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "laptop" ) -> DataFrame: """simple docstring""" A__ : List[Any] = F"https://www.amazon.in/laptop/s?k={product}" A__ : Dict = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A__ : Any = BeautifulSoup(requests.get(__UpperCamelCase , headers=__UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles A__ : Optional[Any] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A__ : Optional[int] = item.ha.text A__ : Optional[Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A__ : List[Any] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A__ : Optional[int] = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A__ : str = '''Not available''' try: A__ : Optional[int] = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A__ : Any = '''''' try: A__ : Union[str, Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: A__ : Any = float('''nan''' ) except AttributeError: pass A__ : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A__ : Tuple = ''' ''' A__ : Union[str, Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = 'headphones' get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=2 , ): A__ : Any = parent A__ : str = batch_size A__ : Optional[int] = image_size A__ : Tuple = patch_size A__ : Dict = num_channels A__ : Optional[Any] = is_training A__ : List[str] = use_labels A__ : int = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : str = intermediate_size A__ : Any = hidden_act A__ : List[str] = hidden_dropout_prob A__ : int = attention_probs_dropout_prob A__ : List[str] = type_sequence_label_size A__ : Dict = initializer_range A__ : Any = scope A__ : Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A__ : Dict = (image_size // patch_size) ** 2 A__ : Dict = num_patches + 2 def __snake_case ( self ): A__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Optional[Any] = None if self.use_labels: A__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = TFDeiTModel(config=UpperCamelCase__ ) A__ : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = TFDeiTForMaskedImageModeling(config=UpperCamelCase__ ) A__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ : Optional[Any] = 1 A__ : Any = TFDeiTForMaskedImageModeling(UpperCamelCase__ ) A__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = self.type_sequence_label_size A__ : str = TFDeiTForImageClassification(UpperCamelCase__ ) A__ : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ : Optional[Any] = 1 A__ : Optional[int] = TFDeiTForImageClassification(UpperCamelCase__ ) A__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ : Optional[int] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self ): A__ : Dict = self.prepare_config_and_inputs() A__ : Tuple = config_and_inputs A__ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _lowerCAmelCase = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self ): A__ : int = TFDeiTModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __snake_case ( self ): pass def __snake_case ( self ): A__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Dense ) ) def __snake_case ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[Any] = model_class(UpperCamelCase__ ) A__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : List[str] = [*signature.parameters.keys()] A__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def __snake_case ( self ): A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Any = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __snake_case ( self ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[str] = TFDeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" A__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __snake_case ( self ): A__ : Any = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A__ : Optional[int] = self.default_image_processor A__ : Dict = prepare_img() A__ : Any = image_processor(images=UpperCamelCase__ , return_tensors='''tf''' ) # forward pass A__ : str = model(**UpperCamelCase__ ) # verify the logits A__ : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : List[str] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_55.0 <= level <= 2_55.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def SCREAMING_SNAKE_CASE ( __UpperCamelCase : NDArray[floataa] , __UpperCamelCase : NDArray[floataa] , __UpperCamelCase : list[int] , __UpperCamelCase : int , ) -> list[float]: """simple docstring""" A__ : Tuple = coefficient_matrix.shape A__ : List[str] = constant_matrix.shape if rowsa != colsa: A__ : Optional[Any] = F"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(__UpperCamelCase ) if colsa != 1: A__ : Any = F"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A__ : Union[str, Any] = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A__ : Dict = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"matrix but received {len(__UpperCamelCase )} and {rowsa}" ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) A__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) A__ : Union[str, Any] = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A__ : str = [] for row in range(__UpperCamelCase ): A__ : Any = 0 for col in range(__UpperCamelCase ): if col == row: A__ : List[str] = table[row][col] elif col == cols - 1: A__ : Union[str, Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A__ : List[Any] = (temp + val) / denom new_val.append(__UpperCamelCase ) A__ : Any = new_val return [float(__UpperCamelCase ) for i in new_val] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : NDArray[floataa] ) -> bool: """simple docstring""" A__ : Union[str, Any] = table.shape A__ : Union[str, Any] = True for i in range(0 , __UpperCamelCase ): A__ : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
_SCREAMING_SNAKE_CASE : Union[str, Any] = {str(digit): digit**5 for digit in range(1_0)} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( ): """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(__UpperCamelCase ) ) if __name__ == "__main__": print(solution())
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "isbn/0140328726" ) -> dict: """simple docstring""" A__ : List[str] = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: A__ : str = F"{olid} is not a valid Open Library olid" raise ValueError(__UpperCamelCase ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict ) -> dict: """simple docstring""" A__ : int = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } A__ : Union[str, Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A__ : int = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] A__ : int = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): A__ : Union[str, Any] = ''', '''.join(__UpperCamelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _SCREAMING_SNAKE_CASE : Optional[int] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _SCREAMING_SNAKE_CASE : Dict = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('\n'.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = '▁' _SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'} _SCREAMING_SNAKE_CASE : int = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _SCREAMING_SNAKE_CASE : List[str] = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=[] , UpperCamelCase__ = None , **UpperCamelCase__ , ): A__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ : Tuple = vocab_file A__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def __snake_case ( self ): return self.sp_model.get_piece_size() def __snake_case ( self ): A__ : Dict = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A__ : Tuple = self.__dict__.copy() A__ : List[str] = None return state def __setstate__( self , UpperCamelCase__ ): A__ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A__ : int = {} A__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.piece_to_id(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): if index < self.sp_model.get_piece_size(): A__ : Dict = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def __snake_case ( self , UpperCamelCase__ ): A__ : int = [] A__ : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token A__ : Any = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ : str = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: A__ : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
from math import factorial _SCREAMING_SNAKE_CASE : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 60 , __UpperCamelCase : int = 1_00_00_00 ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length A__ : List[Any] = 0 # the cached sizes of the previous chains A__ : dict[int, int] = {} for start_chain_element in range(1 , __UpperCamelCase ): # The temporary set will contain the elements of the chain A__ : List[Any] = set() A__ : int = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. A__ : Optional[int] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__UpperCamelCase ) chain_set_length += 1 A__ : List[str] = digit_factorial_sum(__UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] A__ : Dict = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution()}""")
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _SCREAMING_SNAKE_CASE : List[Any] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' _SCREAMING_SNAKE_CASE : List[str] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' _SCREAMING_SNAKE_CASE : str = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) A__ : Optional[Any] = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> int: """simple docstring""" A__ : List[str] = float(pearsonr(__UpperCamelCase , __UpperCamelCase )[0] ) A__ : Optional[int] = float(spearmanr(__UpperCamelCase , __UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase__ : def __init__( self , UpperCamelCase__ = None ): if components is None: A__ : Optional[int] = [] A__ : Dict = list(UpperCamelCase__ ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self , UpperCamelCase__ ): A__ : Optional[int] = len(self ) if size == len(UpperCamelCase__ ): A__ : Optional[int] = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('''must have the same size''' ) def __sub__( self , UpperCamelCase__ ): A__ : Optional[Any] = len(self ) if size == len(UpperCamelCase__ ): A__ : List[Any] = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , UpperCamelCase__ ): ... @overload def __mul__( self , UpperCamelCase__ ): ... def __mul__( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , (float, int) ): A__ : Optional[Any] = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A__ : Optional[int] = len(self ) A__ : List[Any] = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('''invalid operand!''' ) def __snake_case ( self ): return Vector(self.__components ) def __snake_case ( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): assert -len(self.__components ) <= pos < len(self.__components ) A__ : Tuple = value def __snake_case ( self ): if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) A__ : Tuple = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = False ): A__ : Dict = self * other A__ : Any = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (isinstance(__UpperCamelCase , __UpperCamelCase )) A__ : Union[str, Any] = [0] * dimension A__ : str = 1 return Vector(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : Vector , __UpperCamelCase : Vector ) -> Vector: """simple docstring""" assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and (isinstance(__UpperCamelCase , (int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Vector: """simple docstring""" random.seed(__UpperCamelCase ) A__ : Optional[Any] = [random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) class UpperCamelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = matrix A__ : Optional[int] = w A__ : Any = h def __str__( self ): A__ : Optional[int] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , UpperCamelCase__ ): if self.__width == other.width() and self.__height == other.height(): A__ : Dict = [] for i in range(self.__height ): A__ : Any = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , UpperCamelCase__ ): if self.__width == other.width() and self.__height == other.height(): A__ : List[str] = [] for i in range(self.__height ): A__ : int = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , UpperCamelCase__ ): ... @overload def __mul__( self , UpperCamelCase__ ): ... def __mul__( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A__ : Optional[Any] = zero_vector(self.__height ) for i in range(self.__height ): A__ : Optional[Any] = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A__ : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def __snake_case ( self ): return self.__height def __snake_case ( self ): return self.__width def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: A__ : Any = value else: raise Exception('''change_component: indices out of bounds''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) A__ : int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A__ : Any = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('''Indices out of bounds''' ) def __snake_case ( self ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Matrix: """simple docstring""" A__ : list[list[float]] = [[0] * n for _ in range(__UpperCamelCase )] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Matrix: """simple docstring""" random.seed(__UpperCamelCase ) A__ : list[list[float]] = [ [random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase ) ] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _SCREAMING_SNAKE_CASE : Union[str, Any] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ = 14 ): if group not in primes: raise ValueError('''Unsupported Group''' ) A__ : List[str] = primes[group]['''prime'''] A__ : Tuple = primes[group]['''generator'''] A__ : Optional[int] = int(hexlify(urandom(32 ) ) , base=16 ) def __snake_case ( self ): return hex(self.__private_key )[2:] def __snake_case ( self ): A__ : Optional[Any] = pow(self.generator , self.__private_key , self.prime ) return hex(UpperCamelCase__ )[2:] def __snake_case ( self , UpperCamelCase__ ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(UpperCamelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def __snake_case ( self , UpperCamelCase__ ): A__ : str = int(UpperCamelCase__ , base=16 ) if not self.is_valid_public_key(UpperCamelCase__ ): raise ValueError('''Invalid public key''' ) A__ : List[Any] = pow(UpperCamelCase__ , self.__private_key , self.prime ) return shaaaa(str(UpperCamelCase__ ).encode() ).hexdigest() @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCamelCase__ , (prime - 1) // 2 , UpperCamelCase__ ) == 1 ) @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 14 ): A__ : Optional[Any] = int(UpperCamelCase__ , base=16 ) A__ : Any = int(UpperCamelCase__ , base=16 ) A__ : int = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''Invalid public key''' ) A__ : Union[str, Any] = pow(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return shaaaa(str(UpperCamelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ): A__ : int = val A__ : Optional[Any] = None A__ : str = None def __snake_case ( self , UpperCamelCase__ ): if self.val: if val < self.val: if self.left is None: A__ : str = Node(UpperCamelCase__ ) else: self.left.insert(UpperCamelCase__ ) elif val > self.val: if self.right is None: A__ : Dict = Node(UpperCamelCase__ ) else: self.right.insert(UpperCamelCase__ ) else: A__ : List[str] = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" if root: inorder(root.left , __UpperCamelCase ) res.append(root.val ) inorder(root.right , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) == 0: return arr A__ : Any = Node(arr[0] ) for i in range(1 , len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. A__ : Optional[Any] = [] inorder(__UpperCamelCase , __UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0