code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__UpperCamelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
55
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) _lowerCAmelCase = "CIDAS/clipseg-rd64-refined" _lowerCAmelCase = "image_segmenter" _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ["image", "text"] _lowerCAmelCase = ["image"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): requires_backends(self , ['''vision'''] ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): return self.pre_processor(text=[label] , images=[image] , padding=UpperCamelCase__ , return_tensors='''pt''' ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): A__ : Dict = self.model(**UpperCamelCase__ ).logits return logits def __snake_case ( self , UpperCamelCase__ ): A__ : Union[str, Any] = outputs.cpu().detach().numpy() A__ : Dict = 0 A__ : Dict = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
55
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
from collections import Counter from timeit import timeit def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "" ) -> bool: """simple docstring""" if len(__UpperCamelCase ) == 0: return True A__ : Tuple = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string A__ : dict[str, int] = {} for character in lower_case_input_str: A__ : Union[str, Any] = character_freq_dict.get(__UpperCamelCase , 0 ) + 1 A__ : str = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "" ) -> None: """simple docstring""" print('''\nFor string = ''' , __UpperCamelCase , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(__UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(__UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) _SCREAMING_SNAKE_CASE : Tuple = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Any = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _SCREAMING_SNAKE_CASE : int = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _SCREAMING_SNAKE_CASE : Tuple = 'main' # Default branch name _SCREAMING_SNAKE_CASE : Optional[Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) _SCREAMING_SNAKE_CASE : List[str] = 'aaaaaaa' # This commit does not exist, so we should 404. _SCREAMING_SNAKE_CASE : List[str] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes _SCREAMING_SNAKE_CASE : Optional[Any] = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" print('''Bonjour!''' ) yield print('''Au revoir!''' ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __snake_case ( self , UpperCamelCase__ ): with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __snake_case ( self , UpperCamelCase__ ): with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __snake_case ( self , UpperCamelCase__ ): with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def __snake_case ( self ): self.assertEqual(find_labels(UpperCamelCase__ ) , ['''labels'''] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ['''start_positions''', '''end_positions'''] ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase__ ) , ['''labels'''] ) @require_tf def __snake_case ( self ): self.assertEqual(find_labels(UpperCamelCase__ ) , ['''labels'''] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ['''start_positions''', '''end_positions'''] ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase__ ) , ['''labels'''] ) @require_flax def __snake_case ( self ): # Flax models don't have labels self.assertEqual(find_labels(UpperCamelCase__ ) , [] ) self.assertEqual(find_labels(UpperCamelCase__ ) , [] ) self.assertEqual(find_labels(UpperCamelCase__ ) , [] ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase__ ) , [] )
55
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = CLIPConfig _lowerCAmelCase = ["CLIPEncoderLayer"] def __init__( self , UpperCamelCase__ ): super().__init__(UpperCamelCase__ ) A__ : str = CLIPVisionModelWithProjection(config.vision_config ) A__ : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) A__ : str = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0.5 , UpperCamelCase__=0.5 ): A__ : Optional[Any] = self.vision_model(UpperCamelCase__ )[0] A__ : int = self.p_head(UpperCamelCase__ ) A__ : int = nsfw_detected.flatten() A__ : List[Any] = nsfw_detected > p_threshold A__ : Dict = nsfw_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase__ ): if nsfw_detected_: A__ : List[str] = np.zeros(images[idx].shape ) A__ : Union[str, Any] = self.w_head(UpperCamelCase__ ) A__ : List[Any] = watermark_detected.flatten() A__ : Optional[int] = watermark_detected > w_threshold A__ : Optional[int] = watermark_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase__ ): if watermark_detected_: A__ : int = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
55
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
1
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _SCREAMING_SNAKE_CASE : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( datasets.BuilderConfig ): '''simple docstring''' _lowerCAmelCase = 10_000 _lowerCAmelCase = None _lowerCAmelCase = None class UpperCamelCase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _lowerCAmelCase = ParquetConfig def __snake_case ( self ): return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self , UpperCamelCase__ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) A__ : Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ , (str, list, tuple) ): A__ : Optional[int] = data_files if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ : Optional[int] = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A__ : Dict = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ : int = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCamelCase__ ): with open(UpperCamelCase__ , '''rb''' ) as f: A__ : List[Any] = datasets.Features.from_arrow_schema(pq.read_schema(UpperCamelCase__ ) ) break splits.append(datasets.SplitGenerator(name=UpperCamelCase__ , gen_kwargs={'''files''': files} ) ) return splits def __snake_case ( self , UpperCamelCase__ ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A__ : str = table_cast(UpperCamelCase__ , self.info.features.arrow_schema ) return pa_table def __snake_case ( self , UpperCamelCase__ ): A__ : Dict = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): with open(UpperCamelCase__ , '''rb''' ) as f: A__ : Dict = pq.ParquetFile(UpperCamelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): A__ : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(UpperCamelCase__ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(UpperCamelCase__ )}: {e}" ) raise
55
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "laptop" ) -> DataFrame: """simple docstring""" A__ : List[Any] = F"https://www.amazon.in/laptop/s?k={product}" A__ : Dict = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A__ : Any = BeautifulSoup(requests.get(__UpperCamelCase , headers=__UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles A__ : Optional[Any] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A__ : Optional[int] = item.ha.text A__ : Optional[Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A__ : List[Any] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A__ : Optional[int] = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A__ : str = '''Not available''' try: A__ : Optional[int] = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A__ : Any = '''''' try: A__ : Union[str, Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: A__ : Any = float('''nan''' ) except AttributeError: pass A__ : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A__ : Tuple = ''' ''' A__ : Union[str, Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = 'headphones' get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
55
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , __UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
55
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : bool , __UpperCamelCase : bool ) -> Optional[Any]: """simple docstring""" def run_func(__UpperCamelCase : Optional[int] ): @wraps(__UpperCamelCase ) def run_in_eager_mode(*__UpperCamelCase : Tuple , **__UpperCamelCase : Tuple ): return func(*__UpperCamelCase , **__UpperCamelCase ) @wraps(__UpperCamelCase ) @tf.function(experimental_compile=__UpperCamelCase ) def run_in_graph_mode(*__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ): return func(*__UpperCamelCase , **__UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> ["tf.Tensor"]: """simple docstring""" A__ : Any = random.Random() A__ : List[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = "TensorFlow" @property def __snake_case ( self ): return tf.__version__ def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # initialize GPU on separate process A__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : str = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_inference ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : Dict = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_train ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) A__ : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : List[Any] = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_inference ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) A__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A__ : str = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_train ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) A__ : Union[str, Any] = ( hasattr(UpperCamelCase__ , '''architectures''' ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A__ : Optional[int] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model A__ : int = __import__('''transformers''' , fromlist=[model_class] ) A__ : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) A__ : Any = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: A__ : Tuple = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently A__ : List[str] = config.vocab_size if hasattr(UpperCamelCase__ , '''vocab_size''' ) else config.encoder.vocab_size A__ : List[str] = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ , training=UpperCamelCase__ ) A__ : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) A__ : Any = ( hasattr(UpperCamelCase__ , '''architectures''' ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A__ : List[Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model A__ : Tuple = __import__('''transformers''' , fromlist=[model_class] ) A__ : str = getattr(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: A__ : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently A__ : Tuple = config.vocab_size if hasattr(UpperCamelCase__ , '''vocab_size''' ) else config.encoder.vocab_size A__ : str = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): A__ : Union[str, Any] = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] A__ : Union[str, Any] = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): A__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] A__ : Dict = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients A__ : Optional[Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __snake_case ( self , UpperCamelCase__ ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(UpperCamelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average A__ : Dict = timeit.repeat( UpperCamelCase__ , repeat=self.args.repeat , number=10 , ) return min(UpperCamelCase__ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __snake_case ( self , UpperCamelCase__ ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) A__ : Optional[Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) A__ : int = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() A__ : List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) A__ : str = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) A__ : Any = meminfo.used A__ : int = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) A__ : Any = None else: A__ : Optional[int] = measure_peak_memory_cpu(UpperCamelCase__ ) A__ : Dict = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: A__ : str = stop_memory_tracing(UpperCamelCase__ ) if memory is None: A__ : Tuple = summary.total else: A__ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
55
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Optional[Any] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() A__ : Optional[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A__ : str = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } A__ : Dict = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_6000, '''return_attention_mask''': False, '''do_normalize''': True, } A__ : Optional[int] = tempfile.mkdtemp() A__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A__ : str = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) # load decoder from hub A__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def __snake_case ( self , **UpperCamelCase__ ): A__ : int = self.add_kwargs_tokens_map.copy() kwargs.update(UpperCamelCase__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **UpperCamelCase__ ) def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : Any = self.get_tokenizer() A__ : Any = self.get_feature_extractor() A__ : List[str] = self.get_decoder() A__ : Dict = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) A__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , UpperCamelCase__ ) def __snake_case ( self ): A__ : str = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match A__ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __snake_case ( self ): A__ : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(UpperCamelCase__ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=UpperCamelCase__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __snake_case ( self ): A__ : str = self.get_feature_extractor() A__ : Dict = self.get_tokenizer() A__ : str = self.get_decoder() A__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Tuple = floats_list((3, 1000) ) A__ : List[Any] = feature_extractor(UpperCamelCase__ , return_tensors='''np''' ) A__ : int = processor(UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ): A__ : List[Any] = self.get_feature_extractor() A__ : Optional[Any] = self.get_tokenizer() A__ : List[Any] = self.get_decoder() A__ : Dict = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Union[str, Any] = '''This is a test string''' A__ : Optional[Any] = processor(text=UpperCamelCase__ ) A__ : str = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self , UpperCamelCase__=(2, 10, 16) , UpperCamelCase__=77 ): np.random.seed(UpperCamelCase__ ) return np.random.rand(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.get_feature_extractor() A__ : Dict = self.get_tokenizer() A__ : Optional[Any] = self.get_decoder() A__ : int = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Any = self._get_dummy_logits(shape=(10, 16) , seed=13 ) A__ : str = processor.decode(UpperCamelCase__ ) A__ : List[Any] = decoder.decode_beams(UpperCamelCase__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __snake_case ( self , UpperCamelCase__ ): A__ : int = self.get_feature_extractor() A__ : int = self.get_tokenizer() A__ : int = self.get_decoder() A__ : str = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: A__ : Tuple = processor.batch_decode(UpperCamelCase__ ) else: with get_context(UpperCamelCase__ ).Pool() as pool: A__ : List[Any] = processor.batch_decode(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = list(UpperCamelCase__ ) with get_context('''fork''' ).Pool() as p: A__ : str = decoder.decode_beams_batch(UpperCamelCase__ , UpperCamelCase__ ) A__ , A__ , A__ : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(UpperCamelCase__ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(UpperCamelCase__ , decoded_processor.logit_score ) self.assertListEqual(UpperCamelCase__ , decoded_processor.lm_score ) def __snake_case ( self ): A__ : List[Any] = self.get_feature_extractor() A__ : List[str] = self.get_tokenizer() A__ : Dict = self.get_decoder() A__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : Optional[int] = self._get_dummy_logits() A__ : Dict = 15 A__ : Union[str, Any] = -2_0.0 A__ : List[Any] = -4.0 A__ : List[Any] = processor.batch_decode( UpperCamelCase__ , beam_width=UpperCamelCase__ , beam_prune_logp=UpperCamelCase__ , token_min_logp=UpperCamelCase__ , ) A__ : Optional[Any] = decoded_processor_out.text A__ : str = list(UpperCamelCase__ ) with get_context('''fork''' ).Pool() as pool: A__ : Dict = decoder.decode_beams_batch( UpperCamelCase__ , UpperCamelCase__ , beam_width=UpperCamelCase__ , beam_prune_logp=UpperCamelCase__ , token_min_logp=UpperCamelCase__ , ) A__ : List[str] = [d[0][0] for d in decoded_decoder_out] A__ : Any = [d[0][2] for d in decoded_decoder_out] A__ : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , UpperCamelCase__ ) self.assertTrue(np.array_equal(UpperCamelCase__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , UpperCamelCase__ , atol=1e-3 ) ) self.assertTrue(np.array_equal(UpperCamelCase__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , UpperCamelCase__ , atol=1e-3 ) ) def __snake_case ( self ): A__ : Optional[int] = self.get_feature_extractor() A__ : Tuple = self.get_tokenizer() A__ : Optional[int] = self.get_decoder() A__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) A__ : int = self._get_dummy_logits() A__ : Optional[Any] = 2.0 A__ : Union[str, Any] = 5.0 A__ : Tuple = -2_0.0 A__ : Tuple = True A__ : int = processor.batch_decode( UpperCamelCase__ , alpha=UpperCamelCase__ , beta=UpperCamelCase__ , unk_score_offset=UpperCamelCase__ , lm_score_boundary=UpperCamelCase__ , ) A__ : Any = decoded_processor_out.text A__ : int = list(UpperCamelCase__ ) decoder.reset_params( alpha=UpperCamelCase__ , beta=UpperCamelCase__ , unk_score_offset=UpperCamelCase__ , lm_score_boundary=UpperCamelCase__ , ) with get_context('''fork''' ).Pool() as pool: A__ : Optional[int] = decoder.decode_beams_batch( UpperCamelCase__ , UpperCamelCase__ , ) A__ : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , UpperCamelCase__ ) A__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , UpperCamelCase__ ) def __snake_case ( self ): A__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Any = processor.decoder.model_container[processor.decoder._model_key] A__ : Optional[Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() A__ : Optional[Any] = os.listdir(UpperCamelCase__ ) A__ : Tuple = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) A__ : Dict = WavaVecaProcessorWithLM.from_pretrained(UpperCamelCase__ ) A__ : List[str] = processor.decoder.model_container[processor.decoder._model_key] A__ : int = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() A__ : Tuple = os.listdir(UpperCamelCase__ ) A__ : int = os.listdir(UpperCamelCase__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Any = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Dict = floats_list((3, 1000) ) A__ : List[Any] = processor_wavaveca(UpperCamelCase__ , return_tensors='''np''' ) A__ : Tuple = processor_auto(UpperCamelCase__ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) A__ : int = self._get_dummy_logits() A__ : str = processor_wavaveca.batch_decode(UpperCamelCase__ ) A__ : Union[str, Any] = processor_auto.batch_decode(UpperCamelCase__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __snake_case ( self ): A__ : Any = self.get_feature_extractor() A__ : List[str] = self.get_tokenizer() A__ : int = self.get_decoder() A__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = [d[key] for d in offsets] return retrieved_list def __snake_case ( self ): A__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : str = self._get_dummy_logits()[0] A__ : str = processor.decode(UpperCamelCase__ , output_word_offsets=UpperCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __snake_case ( self ): A__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) A__ : Optional[int] = self._get_dummy_logits() A__ : Any = processor.batch_decode(UpperCamelCase__ , output_word_offsets=UpperCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __snake_case ( self ): import torch A__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=UpperCamelCase__ ) A__ : str = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6000 ) ) A__ : int = iter(UpperCamelCase__ ) A__ : Dict = next(UpperCamelCase__ ) A__ : str = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) A__ : Optional[Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train A__ : Union[str, Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): A__ : Union[str, Any] = model(UpperCamelCase__ ).logits.cpu().numpy() A__ : Tuple = processor.decode(logits[0] , output_word_offsets=UpperCamelCase__ ) A__ : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate A__ : List[Any] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] A__ : Union[str, Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) , UpperCamelCase__ ) self.assertEqual(''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) , output.text ) # output times A__ : List[str] = torch.tensor(self.get_from_offsets(UpperCamelCase__ , '''start_time''' ) ) A__ : Tuple = torch.tensor(self.get_from_offsets(UpperCamelCase__ , '''end_time''' ) ) # fmt: off A__ : str = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) A__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=0.0_1 ) )
55
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
1
from math import factorial _SCREAMING_SNAKE_CASE : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 60 , __UpperCamelCase : int = 1_00_00_00 ) -> int: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length A__ : List[Any] = 0 # the cached sizes of the previous chains A__ : dict[int, int] = {} for start_chain_element in range(1 , __UpperCamelCase ): # The temporary set will contain the elements of the chain A__ : List[Any] = set() A__ : int = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. A__ : Optional[int] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__UpperCamelCase ) chain_set_length += 1 A__ : List[str] = digit_factorial_sum(__UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] A__ : Dict = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution()}""")
55
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _SCREAMING_SNAKE_CASE : Union[str, Any] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ = 14 ): if group not in primes: raise ValueError('''Unsupported Group''' ) A__ : List[str] = primes[group]['''prime'''] A__ : Tuple = primes[group]['''generator'''] A__ : Optional[int] = int(hexlify(urandom(32 ) ) , base=16 ) def __snake_case ( self ): return hex(self.__private_key )[2:] def __snake_case ( self ): A__ : Optional[Any] = pow(self.generator , self.__private_key , self.prime ) return hex(UpperCamelCase__ )[2:] def __snake_case ( self , UpperCamelCase__ ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(UpperCamelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def __snake_case ( self , UpperCamelCase__ ): A__ : str = int(UpperCamelCase__ , base=16 ) if not self.is_valid_public_key(UpperCamelCase__ ): raise ValueError('''Invalid public key''' ) A__ : List[Any] = pow(UpperCamelCase__ , self.__private_key , self.prime ) return shaaaa(str(UpperCamelCase__ ).encode() ).hexdigest() @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCamelCase__ , (prime - 1) // 2 , UpperCamelCase__ ) == 1 ) @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 14 ): A__ : Optional[Any] = int(UpperCamelCase__ , base=16 ) A__ : Any = int(UpperCamelCase__ , base=16 ) A__ : int = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''Invalid public key''' ) A__ : Union[str, Any] = pow(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return shaaaa(str(UpperCamelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ["speech"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): requires_backends(self , ['''speech'''] ) class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ["speech"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): requires_backends(self , ['''speech'''] )
55
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
55
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : Any = TypeVar('T') _SCREAMING_SNAKE_CASE : Optional[int] = TypeVar('U') class UpperCamelCase__ ( Generic[T, U] ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = key A__ : Optional[int] = val A__ : int = None A__ : List[Any] = None def __repr__( self ): return ( F"Node: key: {self.key}, val: {self.val}, " F"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class UpperCamelCase__ ( Generic[T, U] ): '''simple docstring''' def __init__( self ): A__ : Dict = DoubleLinkedListNode(A__ , A__ ) A__ : Tuple = DoubleLinkedListNode(A__ , A__ ) A__ , A__ : Tuple = self.rear, self.head def __repr__( self ): A__ : str = ['''DoubleLinkedList'''] A__ : List[str] = self.head while node.next is not None: rep.append(str(A__ ) ) A__ : Any = node.next rep.append(str(self.rear ) ) return ",\n ".join(A__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : Optional[int] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None A__ : List[str] = node A__ : Optional[Any] = previous A__ : Optional[Any] = node A__ : str = self.rear def __snake_case ( self , UpperCamelCase__ ): if node.prev is None or node.next is None: return None A__ : Dict = node.next A__ : int = node.prev A__ : List[Any] = None A__ : Dict = None return node class UpperCamelCase__ ( Generic[T, U] ): '''simple docstring''' _lowerCAmelCase = {} def __init__( self , UpperCamelCase__ ): A__ : Optional[Any] = DoubleLinkedList() A__ : Optional[Any] = capacity A__ : Optional[Any] = 0 A__ : Tuple = 0 A__ : Tuple = 0 A__ : List[Any] = {} def __repr__( self ): return ( F"CacheInfo(hits={self.hits}, misses={self.miss}, " F"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self , UpperCamelCase__ ): return key in self.cache def __snake_case ( self , UpperCamelCase__ ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 A__ : Union[str, Any] = self.cache[key] A__ : List[str] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(A__ ) return node.val self.miss += 1 return None def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity A__ : List[str] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(A__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 A__ : int = DoubleLinkedListNode(A__ , A__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value A__ : List[str] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list A__ : List[str] = value self.list.add(A__ ) @classmethod def __snake_case ( cls , UpperCamelCase__ = 128 ): def cache_decorator_inner(UpperCamelCase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*UpperCamelCase__ ) -> U: if func not in cls.decorator_function_to_instance_map: A__ : int = LRUCache(A__ ) A__ : str = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: A__ : Union[str, Any] = func(*A__ ) cls.decorator_function_to_instance_map[func].put(args[0] , A__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(A__ , '''cache_info''' , A__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase__ ( _snake_case ): _lowerCAmelCase = ["image_processor"] _lowerCAmelCase = "SamImageProcessor" def __init__( self , UpperCamelCase__ ): super().__init__(lowerCAmelCase__ ) A__ : Optional[int] = self.image_processor A__ : Any = -10 A__ : Dict = self.image_processor.size['''longest_edge'''] def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = None , **UpperCamelCase__ , ): A__ : Any = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # pop arguments that are not used in the foward but used nevertheless A__ : Optional[Any] = encoding_image_processor['''original_sizes'''] if hasattr(lowerCAmelCase__ , '''numpy''' ): # Checks if Torch or TF tensor A__ : Optional[int] = original_sizes.numpy() A__ , A__ , A__ : Optional[Any] = self._check_and_preprocess_points( input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , ) A__ : Optional[int] = self._normalize_and_convert( lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) return encoding_image_processor def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="pt" , ): if input_points is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): A__ : Union[str, Any] = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points ] else: A__ : Optional[Any] = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ ) for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: A__ , A__ : Tuple = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ ) A__ : str = np.array(lowerCAmelCase__ ) if input_labels is not None: A__ : Optional[int] = np.array(lowerCAmelCase__ ) if input_boxes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): A__ : Optional[int] = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ ) for box in input_boxes ] else: A__ : Optional[int] = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ ) for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] A__ : List[str] = np.array(lowerCAmelCase__ ) if input_boxes is not None: if return_tensors == "pt": A__ : int = torch.from_numpy(lowerCAmelCase__ ) # boxes batch size of 1 by default A__ : Any = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": A__ : Optional[Any] = tf.convert_to_tensor(lowerCAmelCase__ ) # boxes batch size of 1 by default A__ : str = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": A__ : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default A__ : Union[str, Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": A__ : Union[str, Any] = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default A__ : Any = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": A__ : Dict = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default A__ : Dict = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": A__ : int = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default A__ : Tuple = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = max([point.shape[0] for point in input_points] ) A__ : Optional[Any] = [] for i, point in enumerate(lowerCAmelCase__ ): if point.shape[0] != expected_nb_points: A__ : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) A__ : Dict = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCAmelCase__ ) A__ : Union[str, Any] = processed_input_points return input_points, input_labels def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ , A__ : int = original_size A__ , A__ : Any = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ ) A__ : int = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ ) if is_bounding_box: A__ : Optional[Any] = coords.reshape(-1 , 2 , 2 ) A__ : List[Any] = coords[..., 0] * (new_w / old_w) A__ : Any = coords[..., 1] * (new_h / old_h) if is_bounding_box: A__ : Any = coords.reshape(-1 , 4 ) return coords def __snake_case ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ): if input_points is not None: if hasattr(lowerCAmelCase__ , '''numpy''' ): # Checks for TF or Torch tensor A__ : List[str] = input_points.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ): raise ValueError('''Input points must be a list of list of floating points.''' ) A__ : Union[str, Any] = [np.array(lowerCAmelCase__ ) for input_point in input_points] else: A__ : Dict = None if input_labels is not None: if hasattr(lowerCAmelCase__ , '''numpy''' ): A__ : str = input_labels.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ): raise ValueError('''Input labels must be a list of list integers.''' ) A__ : List[Any] = [np.array(lowerCAmelCase__ ) for label in input_labels] else: A__ : Optional[Any] = None if input_boxes is not None: if hasattr(lowerCAmelCase__ , '''numpy''' ): A__ : Tuple = input_boxes.numpy().tolist() if ( not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_boxes[0] , lowerCAmelCase__ ) or not isinstance(input_boxes[0][0] , lowerCAmelCase__ ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) A__ : Dict = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes] else: A__ : List[Any] = None return input_points, input_labels, input_boxes @property def __snake_case ( self ): A__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(lowerCAmelCase__ ) ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ )
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( snake_case__, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = CodeGenTokenizer _lowerCAmelCase = CodeGenTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = {"""add_prefix_space""": True} _lowerCAmelCase = False def __snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] A__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) A__ : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A__ : Union[str, Any] = {'''unk_token''': '''<unk>'''} A__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase_ ) ) def __snake_case ( self , **UpperCamelCase__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def __snake_case ( self , **UpperCamelCase__ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def __snake_case ( self , UpperCamelCase__ ): A__ : str = '''lower newer''' A__ : Dict = '''lower newer''' return input_text, output_text def __snake_case ( self ): A__ : Union[str, Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ : Optional[Any] = '''lower newer''' A__ : str = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A__ : List[Any] = tokenizer.tokenize(UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) A__ : Tuple = tokens + [tokenizer.unk_token] A__ : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __snake_case ( self ): if not self.test_rust_tokenizer: return A__ : str = self.get_tokenizer() A__ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ ) A__ : int = '''lower newer''' # Testing tokenization A__ : Dict = tokenizer.tokenize(UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) A__ : Optional[Any] = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Testing conversion to ids without special tokens A__ : Optional[int] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) A__ : Optional[int] = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Testing conversion to ids with special tokens A__ : Any = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ ) A__ : List[str] = tokenizer.encode(UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) A__ : int = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Testing the unknown token A__ : str = tokens + [rust_tokenizer.unk_token] A__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): pass def __snake_case ( self , UpperCamelCase__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # Simple input A__ : List[Any] = '''This is a simple input''' A__ : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') A__ : List[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='''max_length''' , ) def __snake_case ( self ): A__ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input A__ : List[str] = '''This is a simple input''' A__ : str = ['''This is a simple input looooooooong''', '''This is a simple input'''] A__ : Optional[int] = ('''This is a simple input''', '''This is a pair''') A__ : Optional[int] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] A__ : Dict = tokenizer.pad_token_id A__ : str = tokenizer(UpperCAmelCase_ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) A__ : int = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncate=UpperCAmelCase_ , return_tensors='''np''' ) A__ : Dict = tokenizer(*UpperCAmelCase_ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) A__ : Optional[int] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncate=UpperCAmelCase_ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __snake_case ( self ): A__ : List[str] = '''$$$''' A__ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCAmelCase_ , add_bos_token=UpperCAmelCase_ ) A__ : Union[str, Any] = '''This is a simple input''' A__ : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ : Optional[int] = tokenizer.bos_token_id A__ : Optional[Any] = tokenizer(UpperCAmelCase_ ) A__ : str = tokenizer(UpperCAmelCase_ ) self.assertEqual(out_s.input_ids[0] , UpperCAmelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) A__ : str = tokenizer.decode(out_s.input_ids ) A__ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , UpperCAmelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __snake_case ( self ): A__ : List[Any] = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) A__ : Optional[Any] = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' A__ : Optional[int] = '''\nif len_a > len_b: result = a\nelse: result = b''' A__ : int = tokenizer.encode(UpperCAmelCase_ ) A__ : Optional[Any] = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^\"\"\"''', '''\n\n\n'''] A__ : List[Any] = tokenizer.decode(UpperCAmelCase_ , truncate_before_pattern=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __snake_case ( self ): pass
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = "arrow" , **UpperCamelCase__ , ): super().__init__( split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , **A_ , ) A__ : Any = load_from_cache_file A__ : Optional[int] = file_format A__ : Union[str, Any] = Spark( df=A_ , features=A_ , cache_dir=A_ , working_dir=A_ , **A_ , ) def __snake_case ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) A__ : List[str] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=A_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
import os # Precomputes a list of the 100 first triangular numbers _SCREAMING_SNAKE_CASE : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ : Dict = os.path.dirname(os.path.realpath(_lowercase ) ) A__ : Optional[Any] = os.path.join(_lowercase , '''words.txt''' ) A__ : List[Any] = '' with open(_lowercase ) as f: A__ : str = f.readline() A__ : Dict = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] A__ : Union[str, Any] = [ word for word in [sum(ord(_lowercase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowercase ) if __name__ == "__main__": print(solution())
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=14 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_token_type_ids A__ = use_input_mask A__ = use_labels A__ = use_mc_token_ids A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = self.vocab_size - 1 def __snake_case ( self ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None if self.use_mc_token_ids: A__ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() A__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __snake_case ( self ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ): A__ = CTRLModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ): A__ = CTRLLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self ): A__ = self.prepare_config_and_inputs() ( A__ ) = config_and_inputs A__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ): A__ = self.num_labels A__ = CTRLForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class UpperCamelCase__ ( lowercase__, lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _lowerCAmelCase = (CTRLLMHeadModel,) if is_torch_available() else () _lowerCAmelCase = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __snake_case ( self ): A__ = CTRLModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def __snake_case ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCamelCase ) def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __snake_case ( self ): pass @slow def __snake_case ( self ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = CTRLModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __snake_case ( self ): pass @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __snake_case ( self ): A__ = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(__lowerCamelCase ) A__ = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__lowerCamelCase ) # Legal the president is A__ = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a A__ = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=14 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.0_2 , ): A__ : int = parent A__ : List[str] = batch_size A__ : Optional[Any] = seq_length A__ : Tuple = is_training A__ : Optional[Any] = use_input_mask A__ : int = use_token_type_ids A__ : Optional[int] = use_labels A__ : Any = vocab_size A__ : Dict = hidden_size A__ : Any = rotary_dim A__ : Union[str, Any] = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : List[Any] = intermediate_size A__ : List[str] = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : List[Any] = max_position_embeddings A__ : str = initializer_range A__ : List[str] = None A__ : str = vocab_size - 1 A__ : Optional[Any] = vocab_size - 1 A__ : Optional[Any] = vocab_size - 1 def __snake_case ( self ): A__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict = None if self.use_input_mask: A__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __snake_case ( self ): A__ : int = self.prepare_config_and_inputs() A__ : Optional[int] = config_and_inputs A__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = 20 A__ : int = model_class_name(UpperCAmelCase_ ) A__ : int = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) A__ : int = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) A__ : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A__ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) A__ : List[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) A__ : int = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) A__ : Optional[Any] = model(UpperCAmelCase_ ) A__ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : int = 20 A__ : int = model_class_name(UpperCAmelCase_ ) A__ : Optional[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) A__ : Any = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) A__ : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A__ : Optional[int] = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) A__ : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) A__ : List[str] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) A__ : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) A__ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) @require_flax class UpperCamelCase__ ( __lowerCamelCase, __lowerCamelCase, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _lowerCAmelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __snake_case ( self ): A__ : List[Any] = FlaxGPTJModelTester(self ) def __snake_case ( self ): for model_class_name in self.all_model_classes: A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def __snake_case ( self ): for model_class_name in self.all_model_classes: A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def __snake_case ( self ): A__ : Dict = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) A__ : Optional[int] = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) A__ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) A__ : Tuple = False A__ : Any = model.config.eos_token_id A__ : Optional[Any] = jax.jit(model.generate ) A__ : Any = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences A__ : int = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) A__ : Any = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def __snake_case ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A__ : List[str] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) A__ : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) A__ : str = pt_inputs['input_ids'].shape A__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): A__ : List[str] = 0 A__ : Dict = 1 A__ : Optional[int] = 0 A__ : Optional[int] = 1 A__ : Optional[Any] = pt_model_class(UpperCAmelCase_ ).eval() A__ : str = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) A__ : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) A__ : Dict = fx_state with torch.no_grad(): A__ : str = pt_model(**UpperCAmelCase_ ).to_tuple() A__ : Optional[Any] = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) A__ : List[Any] = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) A__ : int = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def __snake_case ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A__ : int = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) A__ : str = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ : Optional[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) A__ : List[Any] = pt_model_class(UpperCAmelCase_ ).eval() A__ : str = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) A__ : Optional[int] = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) A__ : Union[str, Any] = pt_inputs['input_ids'].shape A__ : Tuple = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): A__ : List[str] = 0 A__ : Optional[int] = 1 A__ : List[str] = 0 A__ : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A__ : List[Any] = pt_model(**UpperCAmelCase_ ).to_tuple() A__ : Optional[Any] = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) A__ : int = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): A__ : Dict = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def __snake_case ( self ): for model_class_name in self.all_model_classes: A__ : Optional[int] = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) A__ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> int: """simple docstring""" if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('''String lengths must match!''' ) A__ : Dict = 0 for chara, chara in zip(__UpperCamelCase , __UpperCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 class UpperCamelCase__ ( nn.Module ): '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = (16, 32, 96, 256) _lowerCAmelCase = jnp.floataa def __snake_case ( self ): A__ : Optional[Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A__ : int = [] for i in range(len(self.block_out_channels ) - 1 ): A__ : Optional[Any] = self.block_out_channels[i] A__ : str = self.block_out_channels[i + 1] A__ : str = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_lowerCAmelCase ) A__ : Optional[int] = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_lowerCAmelCase ) A__ : str = blocks A__ : Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ ): A__ : Optional[int] = self.conv_in(_lowerCAmelCase ) A__ : Any = nn.silu(_lowerCAmelCase ) for block in self.blocks: A__ : Any = block(_lowerCAmelCase ) A__ : Dict = nn.silu(_lowerCAmelCase ) A__ : Union[str, Any] = self.conv_out(_lowerCAmelCase ) return embedding @flax_register_to_config class UpperCamelCase__ ( nn.Module, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = 32 _lowerCAmelCase = 4 _lowerCAmelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowerCAmelCase = False _lowerCAmelCase = (320, 640, 1_280, 1_280) _lowerCAmelCase = 2 _lowerCAmelCase = 8 _lowerCAmelCase = None _lowerCAmelCase = 1_280 _lowerCAmelCase = 0.0 _lowerCAmelCase = False _lowerCAmelCase = jnp.floataa _lowerCAmelCase = True _lowerCAmelCase = 0 _lowerCAmelCase = "rgb" _lowerCAmelCase = (16, 32, 96, 256) def __snake_case ( self , UpperCamelCase__ ): # init input tensors A__ : Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) A__ : Union[str, Any] = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) A__ : Any = jnp.ones((1,) , dtype=jnp.intaa ) A__ : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A__ : str = (1, 3, self.sample_size * 8, self.sample_size * 8) A__ : Optional[int] = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) A__ , A__ : Tuple = jax.random.split(_lowerCAmelCase ) A__ : Optional[int] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def __snake_case ( self ): A__ : Tuple = self.block_out_channels A__ : List[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A__ : Tuple = self.num_attention_heads or self.attention_head_dim # input A__ : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A__ : int = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A__ : Union[str, Any] = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) A__ : Optional[int] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A__ : Dict = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A__ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A__ : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down A__ : List[Any] = [] A__ : List[Any] = [] A__ : List[Any] = block_out_channels[0] A__ : str = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): A__ : Tuple = output_channel A__ : Any = block_out_channels[i] A__ : int = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": A__ : Tuple = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A__ : Any = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) for _ in range(self.layers_per_block ): A__ : Any = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) if not is_final_block: A__ : List[Any] = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) A__ : Tuple = down_blocks A__ : Optional[int] = controlnet_down_blocks # mid A__ : Union[str, Any] = block_out_channels[-1] A__ : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=_lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A__ : int = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = False , ): A__ : Any = self.controlnet_conditioning_channel_order if channel_order == "bgr": A__ : int = jnp.flip(_lowerCAmelCase , axis=1 ) # 1. time if not isinstance(_lowerCAmelCase , jnp.ndarray ): A__ : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: A__ : int = timesteps.astype(dtype=jnp.floataa ) A__ : Tuple = jnp.expand_dims(_lowerCAmelCase , 0 ) A__ : Dict = self.time_proj(_lowerCAmelCase ) A__ : Tuple = self.time_embedding(_lowerCAmelCase ) # 2. pre-process A__ : List[Any] = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) A__ : Union[str, Any] = self.conv_in(_lowerCAmelCase ) A__ : int = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) A__ : Dict = self.controlnet_cond_embedding(_lowerCAmelCase ) sample += controlnet_cond # 3. down A__ : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A__ , A__ : int = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: A__ , A__ : Any = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A__ : List[str] = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) # 5. contronet blocks A__ : Any = () for down_block_res_sample, controlnet_block in zip(_lowerCAmelCase , self.controlnet_down_blocks ): A__ : Union[str, Any] = controlnet_block(_lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) A__ : str = controlnet_down_block_res_samples A__ : int = self.controlnet_mid_block(_lowerCAmelCase ) # 6. scaling A__ : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_lowerCAmelCase , mid_block_res_sample=_lowerCAmelCase )
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Optional[Any] = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
import math _SCREAMING_SNAKE_CASE : Any = 1_0 _SCREAMING_SNAKE_CASE : List[str] = 7 _SCREAMING_SNAKE_CASE : int = BALLS_PER_COLOUR * NUM_COLOURS def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 20 ) -> Optional[Any]: """simple docstring""" A__ : Optional[int] = math.comb(_lowerCAmelCase , _lowerCAmelCase ) A__ : Union[str, Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCAmelCase ) A__ : Any = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(2_0))
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> list: """simple docstring""" for i in range(len(__lowerCAmelCase ) - 1 , 0 , -1 ): A__ : str = False for j in range(__lowerCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: A__ : str = unsorted[j - 1], unsorted[j] A__ : Dict = True for j in range(__lowerCAmelCase ): if unsorted[j] > unsorted[j + 1]: A__ : Tuple = unsorted[j + 1], unsorted[j] A__ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by a comma:\n').strip() _SCREAMING_SNAKE_CASE : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase__ ( _snake_case ): '''simple docstring''' _lowerCAmelCase = 'time_series_transformer' _lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "student_t" , UpperCamelCase__ = "nll" , UpperCamelCase__ = 1 , UpperCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase__ = "mean" , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 32 , UpperCamelCase__ = 32 , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , UpperCamelCase__ = 2 , UpperCamelCase__ = True , UpperCamelCase__ = "gelu" , UpperCamelCase__ = 64 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 100 , UpperCamelCase__ = 0.0_2 , UpperCamelCase__=True , **UpperCamelCase__ , ): A__ : str = prediction_length A__ : Union[str, Any] = context_length or prediction_length A__ : Tuple = distribution_output A__ : Optional[Any] = loss A__ : Dict = input_size A__ : Dict = num_time_features A__ : Dict = lags_sequence A__ : int = scaling A__ : int = num_dynamic_real_features A__ : Tuple = num_static_real_features A__ : int = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) A__ : Tuple = cardinality else: A__ : Optional[int] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) A__ : List[str] = embedding_dimension else: A__ : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ : Tuple = num_parallel_samples # Transformer architecture configuration A__ : Tuple = input_size * len(UpperCamelCase__ ) + self._number_of_features A__ : Dict = d_model A__ : Dict = encoder_attention_heads A__ : Optional[int] = decoder_attention_heads A__ : Optional[int] = encoder_ffn_dim A__ : str = decoder_ffn_dim A__ : Optional[Any] = encoder_layers A__ : Optional[Any] = decoder_layers A__ : Union[str, Any] = dropout A__ : Optional[int] = attention_dropout A__ : List[str] = activation_dropout A__ : Any = encoder_layerdrop A__ : Optional[int] = decoder_layerdrop A__ : int = activation_function A__ : List[Any] = init_std A__ : Tuple = use_cache super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" if n_term == "": return [] A__ : List[str] = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(F"1/{temp + 1}" if series else '''1''' ) return series if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : str = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase = "gpt_neox" def __init__( self , UpperCamelCase__=5_0432 , UpperCamelCase__=6144 , UpperCamelCase__=44 , UpperCamelCase__=64 , UpperCamelCase__=2_4576 , UpperCamelCase__="gelu" , UpperCamelCase__=0.2_5 , UpperCamelCase__=1_0000 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=2048 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-5 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) A__ : Tuple = vocab_size A__ : str = max_position_embeddings A__ : int = hidden_size A__ : str = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : Dict = intermediate_size A__ : Dict = hidden_act A__ : Tuple = rotary_pct A__ : Optional[Any] = rotary_emb_base A__ : str = attention_dropout A__ : List[str] = hidden_dropout A__ : List[Any] = classifier_dropout A__ : str = initializer_range A__ : Dict = layer_norm_eps A__ : Any = use_cache A__ : int = tie_word_embeddings A__ : List[Any] = use_parallel_residual A__ : Optional[Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def __snake_case ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) A__ : int = self.rope_scaling.get('''type''' , _A ) A__ : Any = self.rope_scaling.get('''factor''' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[str]=False ): """simple docstring""" A__ : Union[str, Any] = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : str=None ): """simple docstring""" if conf_path is None: A__ : List[Any] = "./model_checkpoints/vqgan_only.yaml" A__ : Dict = load_config(_lowerCamelCase , display=_lowerCamelCase ) A__ : List[str] = VQModel(**config.model.params ) if ckpt_path is None: A__ : List[Any] = "./model_checkpoints/vqgan_only.pt" A__ : Dict = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: A__ : List[str] = sd["state_dict"] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): """simple docstring""" A__ : List[str] = model.encode(_lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) A__ : List[Any] = model.decode(_lowerCamelCase ) return xrec def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : int=False ): """simple docstring""" A__ : str = string.rsplit('''.''' , 1 ) if reload: A__ : Union[str, Any] = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True ): """simple docstring""" A__ : Any = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): """simple docstring""" if ckpt: A__ : List[str] = torch.load(_lowerCamelCase , map_location='''cpu''' ) A__ : str = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: A__ : int = {"state_dict": None} A__ : List[str] = None A__ : Optional[Any] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["model"] return model, global_step
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) torch.set_grad_enabled(False) _SCREAMING_SNAKE_CASE : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any]=1_00 , __UpperCamelCase : Dict=" " ) -> List[str]: """simple docstring""" A__ : Optional[Any] = text.split(a_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(a_ ) , a_ )] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict ) -> dict: """simple docstring""" A__ : Any = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(a_ ): titles.append(title if title is not None else '''''' ) texts.append(a_ ) return {"title": titles, "text": texts} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict , __UpperCamelCase : DPRContextEncoder , __UpperCamelCase : DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" A__ : str = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=a_ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] A__ : Optional[Any] = ctx_encoder(input_ids.to(device=a_ ) , return_dict=a_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : "RagExampleArguments" , __UpperCamelCase : "ProcessingArguments" , __UpperCamelCase : "IndexHnswArguments" , ) -> Optional[int]: """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way A__ : Union[str, Any] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words A__ : int = dataset.map(a_ , batched=a_ , num_proc=processing_args.num_proc ) # And compute the embeddings A__ : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=a_ ) A__ : Union[str, Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) A__ : List[str] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space A__ : str = dataset.map( partial(a_ , ctx_encoder=a_ , ctx_tokenizer=a_ ) , batched=a_ , batch_size=processing_args.batch_size , features=a_ , ) # And finally save your dataset A__ : Dict = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(a_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search A__ : Optional[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=a_ ) # And save the index A__ : Tuple = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(a_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = field( default=str(Path(_UpperCAmelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ), metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"}, ) _lowerCAmelCase = field( default=_UpperCAmelCase, metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."}, ) _lowerCAmelCase = field( default="facebook/rag-sequence-nq", metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"}, ) _lowerCAmelCase = field( default="facebook/dpr-ctx_encoder-multiset-base", metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) }, ) _lowerCAmelCase = field( default=str(Path(_UpperCAmelCase ).parent / "test_run" / "dummy-kb" ), metadata={"help": "Path to a directory where the dataset passages and the index will be saved"}, ) @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = field( default=_UpperCAmelCase, metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." }, ) _lowerCAmelCase = field( default=16, metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." }, ) @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = field( default=768, metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."}, ) _lowerCAmelCase = field( default=128, metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _SCREAMING_SNAKE_CASE : Tuple = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE : Optional[int] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict[Optional[str], Type[Formatter]] = {} _SCREAMING_SNAKE_CASE : Dict[Optional[str], str] = {} _SCREAMING_SNAKE_CASE : Dict[Optional[str], Exception] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str = None , ) -> str: """simple docstring""" A__ : Dict = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) A__ : str = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) A__ : List[str] = format_type def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] = None ) -> Dict: """simple docstring""" A__ : List[str] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A__ : str = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: _SCREAMING_SNAKE_CASE : Optional[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: _SCREAMING_SNAKE_CASE : Dict = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: _SCREAMING_SNAKE_CASE : List[Any] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[str]: """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : str ) -> Formatter: """simple docstring""" A__ : List[Any] = get_format_type_from_alias(_A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
from collections import Counter from timeit import timeit def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] = "" ) -> bool: """simple docstring""" if len(__UpperCamelCase ) == 0: return True A__ : Optional[int] = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string A__ : Tuple = {} for character in lower_case_input_str: A__ : List[str] = character_freq_dict.get(__UpperCamelCase , 0 ) + 1 A__ : Optional[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any = "" ) -> None: """simple docstring""" print('''\nFor string = ''' , __UpperCamelCase , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(__UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(__UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) _SCREAMING_SNAKE_CASE : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _SCREAMING_SNAKE_CASE : List[str] = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' _SCREAMING_SNAKE_CASE : str = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Any ) -> Optional[int]: """simple docstring""" return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str="binary" ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) A__ : Dict = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : int ) -> Any: """simple docstring""" A__ : List[Any] = {} for id_pred, label in zip(__UpperCamelCase , __UpperCamelCase ): A__ : Optional[int] = F"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" A__ : Union[str, Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: A__ : str = [(pred, label)] A__ : List[str] = [], [] for question, preds_labels in question_map.items(): A__ : Optional[Any] = zip(*__UpperCamelCase ) A__ : int = fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase , average='''macro''' ) fas.append(__UpperCamelCase ) A__ : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCamelCase ) ) ems.append(__UpperCamelCase ) A__ : Optional[int] = float(sum(__UpperCamelCase ) / len(__UpperCamelCase ) ) A__ : Any = sum(__UpperCamelCase ) / len(__UpperCamelCase ) A__ : int = float(fa_score(y_true=__UpperCamelCase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __snake_case ( self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg='''macro''' ) elif self.config_name == "record": A__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] A__ : Dict = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' )
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**9 ) -> Union[str, Any]: """simple docstring""" A__ : Union[str, Any] = 1 A__ : Optional[int] = 2 A__ : Union[str, Any] = 0 A__ : Any = 0 A__ : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value A__ : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict = 10 , __UpperCamelCase : Optional[int] = 22 ) -> int: """simple docstring""" A__ : Dict = range(1 , __SCREAMING_SNAKE_CASE ) A__ : Union[str, Any] = range(1 , __SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(1_0, 2_2) = }""")
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) @add_end_docstrings( SCREAMING_SNAKE_CASE_, R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): if self.framework == "tf": A__ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A__ : str = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase__ ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = self.get_masked_index(UpperCamelCase__ ) A__ : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def __snake_case ( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ): if return_tensors is None: A__ : Dict = self.framework A__ : List[Any] = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.ensure_exactly_one_mask_token(UpperCamelCase__ ) return model_inputs def __snake_case ( self , UpperCamelCase__ ): A__ : Optional[int] = self.model(**UpperCamelCase__ ) A__ : Optional[int] = model_inputs['''input_ids'''] return model_outputs def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=5 , UpperCamelCase__=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: A__ : Dict = target_ids.shape[0] A__ : int = model_outputs['''input_ids'''][0] A__ : List[str] = model_outputs['''logits'''] if self.framework == "tf": A__ : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A__ : Tuple = outputs.numpy() A__ : int = outputs[0, masked_index, :] A__ : str = stable_softmax(UpperCamelCase__ , axis=-1 ) if target_ids is not None: A__ : str = tf.gather_nd(tf.squeeze(UpperCamelCase__ , 0 ) , target_ids.reshape(-1 , 1 ) ) A__ : Union[str, Any] = tf.expand_dims(UpperCamelCase__ , 0 ) A__ : Union[str, Any] = tf.math.top_k(UpperCamelCase__ , k=UpperCamelCase__ ) A__ , A__ : Optional[int] = topk.values.numpy(), topk.indices.numpy() else: A__ : Any = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A__ : Optional[Any] = outputs[0, masked_index, :] A__ : Union[str, Any] = logits.softmax(dim=-1 ) if target_ids is not None: A__ : Dict = probs[..., target_ids] A__ , A__ : Union[str, Any] = probs.topk(UpperCamelCase__ ) A__ : Optional[Any] = [] A__ : List[str] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A__ : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A__ : Any = input_ids.numpy().copy() if target_ids is not None: A__ : int = target_ids[p].tolist() A__ : Optional[int] = p # Filter padding out: A__ : Optional[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A__ : Optional[Any] = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) A__ : Any = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(UpperCamelCase__ ) result.append(UpperCamelCase__ ) if single_mask: return result[0] return result def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = [targets] try: A__ : Optional[int] = self.tokenizer.get_vocab() except Exception: A__ : Optional[int] = {} A__ : Tuple = [] for target in targets: A__ : Optional[int] = vocab.get(UpperCamelCase__ , UpperCamelCase__ ) if id_ is None: A__ : Dict = self.tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , max_length=1 , truncation=UpperCamelCase__ , )['''input_ids'''] if len(UpperCamelCase__ ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue A__ : Optional[int] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) A__ : str = list(set(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) A__ : Dict = np.array(UpperCamelCase__ ) return target_ids def __snake_case ( self , UpperCamelCase__=None , UpperCamelCase__=None ): A__ : Optional[Any] = {} if targets is not None: A__ : str = self.get_target_ids(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[Any] = target_ids if top_k is not None: A__ : Tuple = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): A__ : str = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) == 1: return outputs[0] return outputs
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] _SCREAMING_SNAKE_CASE : Tuple = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
import operator as op def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> int: """simple docstring""" A__ : Union[str, Any] = [] A__ : Optional[Any] = lambda __UpperCamelCase , __UpperCamelCase : int(x / y ) # noqa: E731 integer division operation A__ : Optional[int] = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(_lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' ) else: A__ : Dict = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' ) A__ : int = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' ) stack.append( str(opr[x](int(_lowerCamelCase ) , int(_lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(_lowerCamelCase ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=64 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=1 , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = q_groups A__ = k_groups A__ = v_groups A__ = post_attention_groups A__ = intermediate_groups A__ = output_groups def __snake_case ( self ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = SqueezeBertModel(config=_a ) model.to(_a ) model.eval() A__ = model(_a , _a ) A__ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = SqueezeBertForMaskedLM(config=_a ) model.to(_a ) model.eval() A__ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = SqueezeBertForQuestionAnswering(config=_a ) model.to(_a ) model.eval() A__ = model( _a , attention_mask=_a , start_positions=_a , end_positions=_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = self.num_labels A__ = SqueezeBertForSequenceClassification(_a ) model.to(_a ) model.eval() A__ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = self.num_labels A__ = SqueezeBertForTokenClassification(config=_a ) model.to(_a ) model.eval() A__ = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ = self.num_choices A__ = SqueezeBertForMultipleChoice(config=_a ) model.to(_a ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( _a , attention_mask=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self ): A__ = self.prepare_config_and_inputs() (A__) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _lowerCAmelCase = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = False def __snake_case ( self ): A__ = SqueezeBertModelTester(self ) A__ = ConfigTester(self , config_class=_a , dim=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_a ) def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_a ) def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_a ) def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_a ) def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_a ) def __snake_case ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_a ) @slow def __snake_case ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SqueezeBertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): A__ = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) A__ = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) A__ = model(_a )[0] A__ = torch.Size((1, 3) ) self.assertEqual(output.shape , _a ) A__ = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(_a , _a , atol=1e-4 ) )
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
import inspect import unittest class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): try: import diffusers # noqa: F401 except ImportError: assert False def __snake_case ( self ): import diffusers from diffusers.dependency_versions_table import deps A__ : List[str] = inspect.getmembers(a_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": A__ : Optional[Any] = """k-diffusion""" elif backend == "invisible_watermark": A__ : Tuple = """invisible-watermark""" assert backend in deps, F"{backend} is not in the deps table!"
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : str = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _SCREAMING_SNAKE_CASE : Dict = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" _SCREAMING_SNAKE_CASE : Dict = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" _SCREAMING_SNAKE_CASE : Optional[int] = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" _SCREAMING_SNAKE_CASE : List[Any] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" _SCREAMING_SNAKE_CASE : Any = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=[1, 10, 100] , UpperCamelCase__=4 , UpperCamelCase__=3.0 ): if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=lowercase_ ) as executor: A__ : Optional[Any] = [] A__ : List[str] = Counter() A__ : Union[str, Any] = 0 A__ : List[str] = defaultdict(lowercase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowercase_ , lowercase_ ) ): for candidate in candidates: A__ : Any = candidate + """\n""" + test_case A__ : Dict = (test_program, timeout, task_id, completion_id[task_id]) A__ : Union[str, Any] = executor.submit(lowercase_ , *lowercase_ ) futures.append(lowercase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowercase_ ): A__ : Optional[Any] = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) A__ : int = [], [] for result in results.values(): result.sort() A__ : str = [r[1]["""passed"""] for r in result] total.append(len(lowercase_ ) ) correct.append(sum(lowercase_ ) ) A__ : List[str] = np.array(lowercase_ ) A__ : List[Any] = np.array(lowercase_ ) A__ : Optional[int] = k A__ : List[Any] = {F"pass@{k}": estimate_pass_at_k(lowercase_ , lowercase_ , lowercase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str ) -> int: """simple docstring""" def estimator(__UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): A__ : Any = itertools.repeat(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) else: assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A__ : Union[str, Any] = iter(UpperCAmelCase__ ) return np.array([estimator(int(UpperCAmelCase__ ) , int(UpperCAmelCase__ ) , UpperCAmelCase__ ) for n, c in zip(UpperCAmelCase__ , UpperCAmelCase__ )] )
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple=None , **__UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" A__ : List[str] = [x.strip() for x in open(_lowercase ).readlines()] A__ : Any = [x.strip() for x in open(_lowercase ).readlines()][: len(_lowercase )] A__ : Dict = calculate_rouge(_lowercase , _lowercase , **_lowercase ) if save_path is not None: save_json(_lowercase , _lowercase , indent=_lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCamelCase__ ( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = BarthezTokenizer _lowerCAmelCase = BarthezTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def __snake_case ( self ): super().setUp() A__ : str = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCAmelCase ) A__ : Optional[Any] = tokenizer def __snake_case ( self ): A__ : str = '''<pad>''' A__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def __snake_case ( self ): A__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCAmelCase ) , 10_1122 ) def __snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def __snake_case ( self ): A__ : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A__ : Optional[int] = [0, 57, 3018, 7_0307, 91, 2] A__ : int = self.tokenizer( __lowerCAmelCase , max_length=len(__lowerCAmelCase ) , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) A__ : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def __snake_case ( self ): if not self.test_rust_tokenizer: return A__ : List[str] = self.get_tokenizer() A__ : Optional[Any] = self.get_rust_tokenizer() A__ : List[str] = '''I was born in 92000, and this is falsé.''' A__ : List[str] = tokenizer.tokenize(__lowerCAmelCase ) A__ : List[str] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) A__ : str = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) A__ : List[str] = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) A__ : List[Any] = self.get_rust_tokenizer() A__ : Dict = tokenizer.encode(__lowerCAmelCase ) A__ : Tuple = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def __snake_case ( self ): A__ : str = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. A__ : List[Any] = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__lowerCAmelCase , )
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" return np.where(vector > 0 , _snake_case , (alpha * (np.exp(_snake_case ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : str = {'facebook/bart-base': BartForConditionalGeneration} _SCREAMING_SNAKE_CASE : Dict = {'facebook/bart-base': BartTokenizer} def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ : List[str] = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=_lowercase , default=_lowercase , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=_lowercase , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=_lowercase , default=_lowercase , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=_lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowercase , ) parser.add_argument( '''--config_name''' , type=_lowercase , default=_lowercase , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=_lowercase , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=_lowercase , default=_lowercase , help='''Where to store the final ONNX file.''' ) A__ : Dict = parser.parse_args() return args def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int]="cpu" ) -> Union[str, Any]: """simple docstring""" A__ : Dict = model_dict[model_name].from_pretrained(_lowercase ).to(_lowercase ) A__ : Optional[Any] = tokenizer_dict[model_name].from_pretrained(_lowercase ) if model_name in ["facebook/bart-base"]: A__ : Dict = 0 A__ : List[str] = None A__ : int = 0 return huggingface_model, tokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ) -> str: """simple docstring""" model.eval() A__ : Any = None A__ : Dict = torch.jit.script(BARTBeamSearchGenerator(_lowercase ) ) with torch.no_grad(): A__ : Optional[int] = '''My friends are cool but they eat too many carbs.''' A__ : Tuple = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='''pt''' ).to(model.device ) A__ : str = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=_lowercase , max_length=_lowercase , early_stopping=_lowercase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _lowercase , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , _lowercase , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=_lowercase , ) logger.info('''Model exported to {}'''.format(_lowercase ) ) A__ : str = remove_dup_initializers(os.path.abspath(_lowercase ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(_lowercase ) ) A__ : int = onnxruntime.InferenceSession(_lowercase ) A__ : int = ort_sess.run( _lowercase , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(_lowercase ), '''max_length''': np.array(_lowercase ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ : Any = parse_args() A__ : str = 5 A__ : Optional[int] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() A__ : int = torch.device(args.device ) A__ : List[Any] = load_model_tokenizer(args.model_name_or_path , _lowercase ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(_lowercase ) if args.max_length: A__ : Optional[Any] = args.max_length if args.num_beams: A__ : Dict = args.num_beams if args.output_file_path: A__ : Optional[int] = args.output_file_path else: A__ : Optional[Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> float: """simple docstring""" return np.dot(__UpperCamelCase , __UpperCamelCase ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , *, UpperCamelCase__ = np.inf , UpperCamelCase__ = "linear" , UpperCamelCase__ = 0.0 , ): A__ : Optional[int] = regularization A__ : List[str] = gamma if kernel == "linear": A__ : Optional[int] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) A__ : int = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: A__ : List[Any] = F"Unknown kernel: {kernel}" raise ValueError(_SCREAMING_SNAKE_CASE ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = observations A__ : Optional[int] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((A__) , ) : Any = np.shape(_SCREAMING_SNAKE_CASE ) def to_minimize(UpperCamelCase__ ) -> float: A__ : str = 0 ((A__) , ) : List[str] = np.shape(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_SCREAMING_SNAKE_CASE ) A__ : Union[str, Any] = LinearConstraint(_SCREAMING_SNAKE_CASE , 0 , 0 ) A__ : int = Bounds(0 , self.regularization ) A__ : Optional[Any] = minimize( _SCREAMING_SNAKE_CASE , np.ones(_SCREAMING_SNAKE_CASE ) , bounds=_SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x A__ : Dict = l_star # calculating mean offset of separation plane to points A__ : Dict = 0 for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) A__ : Optional[int] = s / n def __snake_case ( self , UpperCamelCase__ ): A__ : str = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _SCREAMING_SNAKE_CASE ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] = "AAPL" ) -> Optional[Any]: """simple docstring""" A__ : List[str] = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" A__ : Union[str, Any] = BeautifulSoup(requests.get(__UpperCamelCase ).text , '''html.parser''' ) A__ : str = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
from ....utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase__ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=2048 ): A__ : Optional[int] = config.__dict__ A__ : List[Any] = modal_hidden_size if num_labels: A__ : Optional[Any] = num_labels
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__ ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = StableUnCLIPPipeline _lowerCAmelCase = TEXT_TO_IMAGE_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCAmelCase = False def __snake_case ( self ): A__ : List[Any] = 32 A__ : Union[str, Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) A__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A__ : Any = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A_ , projection_dim=A_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A__ : Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=A_ , num_layers=1 , ) torch.manual_seed(0 ) A__ : Optional[Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=A_ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) A__ : Tuple = StableUnCLIPImageNormalizer(embedding_dim=A_ ) A__ : Optional[int] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) A__ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A__ : Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A__ : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A_ , layers_per_block=1 , upcast_attention=A_ , use_linear_projection=A_ , ) torch.manual_seed(0 ) A__ : Union[str, Any] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=A_ , steps_offset=1 , ) torch.manual_seed(0 ) A__ : Any = AutoencoderKL() A__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=0 ): if str(A_ ).startswith('''mps''' ): A__ : List[str] = torch.manual_seed(A_ ) else: A__ : str = torch.Generator(device=A_ ).manual_seed(A_ ) A__ : int = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self ): A__ : Any = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=A_ ) def __snake_case ( self ): A__ : List[str] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=A_ ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): A__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) A__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) A__ : Tuple = pipe('''anime turle''' , generator=A_ , output_type='''np''' ) A__ : str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ ) def __snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) A__ : List[Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ : List[Any] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) A__ : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _SCREAMING_SNAKE_CASE : Tuple = datasets.logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _SCREAMING_SNAKE_CASE : Union[str, Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _SCREAMING_SNAKE_CASE : List[Any] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Dict=False , __UpperCamelCase : int=True , __UpperCamelCase : str=False , __UpperCamelCase : Tuple="dummy_doc" ): """simple docstring""" A__ : List[str] = {doc: key_lines} A__ : List[Any] = {doc: sys_lines} A__ : List[str] = {} A__ : List[Any] = 0 A__ : Union[str, Any] = 0 A__ : Union[str, Any] = 0 A__ : Optional[Any] = 0 A__ : List[str] = 0 A__ : List[str] = 0 A__ , A__ : Union[str, Any] = reader.get_doc_mentions(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: A__ : Any = reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) A__ , A__ : str = reader.get_doc_mentions(__UpperCamelCase , sys_doc_lines[doc] , __UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: A__ : Optional[Any] = reader.set_annotated_parse_trees(__UpperCamelCase , key_doc_lines[doc] , __UpperCamelCase , __UpperCamelCase ) if remove_nested: A__ , A__ : Tuple = reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters A__ , A__ : Optional[int] = reader.remove_nested_coref_mentions(__UpperCamelCase , __UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters A__ : int = reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) A__ : Tuple = reader.get_mention_assignments(__UpperCamelCase , __UpperCamelCase ) A__ : Any = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( F"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : int ): """simple docstring""" A__ : Optional[Any] = get_coref_infos(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ : Dict = {} A__ : str = 0 A__ : int = 0 for name, metric in metrics: A__ , A__ , A__ : Optional[Any] = evaluator.evaluate_documents(__UpperCamelCase , __UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"{name}/recall": recall, F"{name}/precision": precision, F"{name}/f1": fa} ) logger.info( name.ljust(10 ) , F"Recall: {recall * 1_00:.2f}" , F" Precision: {precision * 1_00:.2f}" , F" F1: {fa * 1_00:.2f}" , ) if conll_subparts_num == 3: A__ : Optional[Any] = (conll / 3) * 1_00 logger.info(F"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ): """simple docstring""" A__ : Tuple = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: A__ : List[Any] = line.split()[5] if not parse_col == "-": A__ : List[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False ): A__ : Union[str, Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: A__ : Optional[int] = util.check_gold_parse_annotation(UpperCamelCase__ ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" A__ : List[Any] = evaluate( key_lines=UpperCamelCase__ , sys_lines=UpperCamelCase__ , metrics=UpperCamelCase__ , NP_only=UpperCamelCase__ , remove_nested=UpperCamelCase__ , keep_singletons=UpperCamelCase__ , min_span=UpperCamelCase__ , ) return score
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : str = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case ( self ): A__ : int = 1 A__ : List[Any] = 3 A__ : Optional[Any] = (32, 32) A__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : Tuple = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) @property def __snake_case ( self ): def extract(*UpperCamelCase__ , **UpperCamelCase__ ): class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : Any = torch.ones([0] ) def __snake_case ( self , UpperCamelCase__ ): self.pixel_values.to(lowerCAmelCase_ ) return self return Out() return extract def __snake_case ( self ): A__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ : List[str] = self.dummy_cond_unet A__ : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) A__ : Optional[int] = self.dummy_vae A__ : List[str] = self.dummy_text_encoder A__ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) A__ : List[Any] = 77 A__ : str = self.dummy_image.to(lowerCAmelCase_ ) A__ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk A__ : Tuple = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) A__ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase_ ) A__ : Optional[int] = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int = '''A painting of a squirrel eating a burger''' A__ : Optional[Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : List[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowerCAmelCase_ , ) A__ : Union[str, Any] = output.images A__ : Any = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] A__ : Union[str, Any] = image[0, -3:, -3:, -1] A__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Union[str, Any] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __snake_case ( self ): A__ : Optional[Any] = self.dummy_cond_unet A__ : Any = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) A__ : Optional[int] = self.dummy_vae A__ : str = self.dummy_text_encoder A__ : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) A__ : int = 77 A__ : int = self.dummy_image.to(lowerCAmelCase_ ) # put models in fp16 A__ : Any = unet.half() A__ : Optional[Any] = vae.half() A__ : List[str] = bert.half() # make sure here that pndm scheduler skips prk A__ : str = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) A__ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase_ ) A__ : Dict = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : str = '''A painting of a squirrel eating a burger''' A__ : Tuple = torch.manual_seed(0 ) A__ : Union[str, Any] = alt_pipe( [prompt] , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type='''np''' , image=lowerCAmelCase_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __snake_case ( self ): A__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 A__ : Optional[int] = init_image.resize((760, 504) ) A__ : str = '''BAAI/AltDiffusion''' A__ : Tuple = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : List[str] = '''A fantasy landscape, trending on artstation''' A__ : Any = torch.manual_seed(0 ) A__ : List[str] = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase_ , output_type='''np''' , ) A__ : int = output.images[0] A__ : List[str] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) A__ : Any = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): A__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) A__ : Any = init_image.resize((768, 512) ) A__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) A__ : Optional[Any] = '''BAAI/AltDiffusion''' A__ : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : str = '''A fantasy landscape, trending on artstation''' A__ : str = torch.manual_seed(0 ) A__ : List[Any] = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase_ , output_type='''np''' , ) A__ : int = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( __lowercase, __lowercase ): '''simple docstring''' _lowerCAmelCase = '''nat''' _lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , UpperCamelCase__=4 , UpperCamelCase__=3 , UpperCamelCase__=64 , UpperCamelCase__=[3, 4, 6, 5] , UpperCamelCase__=[2, 4, 8, 16] , UpperCamelCase__=7 , UpperCamelCase__=3.0 , UpperCamelCase__=True , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(**__a ) A__ : Any = patch_size A__ : Any = num_channels A__ : int = embed_dim A__ : Tuple = depths A__ : Optional[int] = len(__a ) A__ : Union[str, Any] = num_heads A__ : Any = kernel_size A__ : Dict = mlp_ratio A__ : Tuple = qkv_bias A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Optional[int] = drop_path_rate A__ : Union[str, Any] = hidden_act A__ : int = layer_norm_eps A__ : List[Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ : int = int(embed_dim * 2 ** (len(__a ) - 1) ) A__ : Dict = layer_scale_init_value A__ : int = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(__a ) + 1 )] A__ : Optional[int] = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> str: """simple docstring""" A__ : Optional[int] = os.path.join(args.tf_model_dir , '''parameters.json''' ) A__ : List[Any] = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): A__ : List[Any] = args.output + '''.pt''' A__ : str = OrderedDict() with tf.device('''/CPU:0''' ): A__ : Optional[Any] = tf.train.load_checkpoint(args.tf_model_dir ) A__ : Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): A__ : Dict = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): A__ : List[str] = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): A__ : int = 8 A__ : Any = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time A__ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : Optional[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/moe''' ): A__ : Tuple = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): A__ : Optional[int] = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player A__ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/softmlp/kernel''' ): A__ : List[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player A__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : Any = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): A__ : Tuple = key_name[-9:-7] for i in range(16 ): A__ : List[str] = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) A__ : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/mlp''' ): A__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): A__ : Dict = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player A__ : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : List[str] = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/p1/bias''' ): A__ : List[Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player A__ : List[Any] = vnp.copy() # same because it is one dimensional A__ : str = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/p2/kernel''' ): A__ : int = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player A__ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : str = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/p2/bias''' ): A__ : List[str] = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player A__ : List[Any] = vnp.copy() # same because it is one dimensional A__ : int = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/ln''' ): A__ : Optional[Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ : str = '''model.blocks.%d.feed_forward.norm.bias''' % player A__ : Any = vnp.copy() # same because it is one dimensional A__ : Any = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/g''' ): A__ : int = '''model.blocks.%d.feed_forward.norm.weight''' % player A__ : str = vnp.copy() # same because it is one dimensional A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/att''' ): A__ : Optional[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): A__ : int = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum A__ : Dict = state[:, 0, :, :] A__ : int = state[:, 1, :, :] A__ : Optional[int] = state[:, 2, :, :] A__ : Union[str, Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : int = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : int = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : int = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player A__ : Dict = torch.tensor(_UpperCamelCase ) A__ : Optional[int] = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player A__ : Dict = torch.tensor(_UpperCamelCase ) A__ : str = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player A__ : Optional[Any] = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/o/kernel''' ): A__ : Optional[Any] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player A__ : int = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : List[str] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/an''' ): A__ : List[str] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ : Dict = '''model.blocks.%d.self_attn.norm.bias''' % player A__ : List[Any] = vnp.copy() # same because it is one dimensional A__ : int = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/g''' ): A__ : int = '''model.blocks.%d.self_attn.norm.weight''' % player A__ : Optional[Any] = vnp.copy() # same because it is one dimensional A__ : int = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): A__ : str = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] A__ : Optional[Any] = '''model.%s.weight''' % nlayer A__ : List[str] = vnp.copy() # same in embedded A__ : Optional[int] = torch.tensor(_UpperCamelCase ) if key_name.startswith('''model/wte''' ): A__ : List[str] = '''lm_head.weight''' A__ : Optional[int] = vnp.copy() # same in embedded A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/wob''' ): A__ : Optional[int] = '''final_logits_bias''' A__ : List[Any] = vnp.copy() # same in embedded A__ : List[str] = state.reshape((1, -1) ) A__ : str = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": A__ : int = '''model.last_project.weight''' A__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": A__ : Any = '''model.last_project.bias''' A__ : Any = vnp.copy() # same because it is one dimensional A__ : Optional[int] = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : str = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
from string import ascii_uppercase _SCREAMING_SNAKE_CASE : List[Any] = {str(ord(c) - 5_5): c for c in ascii_uppercase} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ) -> str: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) A__ : List[Any] = '''''' A__ : Dict = 0 A__ : Dict = 0 while div != 1: A__ , A__ : Optional[int] = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: A__ : Optional[int] = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: A__ : Optional[Any] = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value A__ : Tuple = num // base A__ : List[str] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 3_7): for num in range(1_0_0_0): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 50 ) -> Tuple: """simple docstring""" A__ : Dict = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _SCREAMING_SNAKE_CASE : List[str] = '\\n Text data.\n Second line of data.' _SCREAMING_SNAKE_CASE : Dict = 'file' @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ): """simple docstring""" A__ : Dict = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') A__ : Dict = bytes(lowerCAmelCase_ , '''utf-8''' ) with zstd.open(lowerCAmelCase_ , '''wb''' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase_ ) , '''w''' ) as f: f.write(lowerCAmelCase_ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ): """simple docstring""" A__ : List[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} A__ : Optional[Any] = input_paths[compression_format] A__ : str = tmp_path / '''cache''' A__ : int = DownloadConfig(cache_dir=lowerCAmelCase_ , extract_compressed_file=lowerCAmelCase_ ) A__ : Optional[Any] = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ ) with open(lowerCAmelCase_ ) as f: A__ : List[str] = f.read() with open(lowerCAmelCase_ ) as f: A__ : str = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any ): """simple docstring""" A__ : Union[str, Any] = '''custom_cache''' A__ : int = '''custom_extracted_dir''' A__ : Dict = tmp_path / '''custom_extracted_path''' if default_extracted: A__ : Dict = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , lowerCAmelCase_ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowerCAmelCase_ ) ) A__ : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ : Optional[int] = xz_file A__ : Union[str, Any] = ( DownloadConfig(extract_compressed_file=lowerCAmelCase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase_ ) ) A__ : str = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ ) assert Path(lowerCAmelCase_ ).parent.parts[-2:] == expected def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ): """simple docstring""" A__ : Dict = str(Path(lowerCAmelCase_ ).resolve() ) assert cached_path(lowerCAmelCase_ ) == text_file # relative path A__ : Optional[int] = str(Path(lowerCAmelCase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCAmelCase_ ) == text_file def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ): """simple docstring""" A__ : str = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(lowerCAmelCase_ ): cached_path(lowerCAmelCase_ ) # relative path A__ : Optional[Any] = '''./__missing_file__.txt''' with pytest.raises(lowerCAmelCase_ ): cached_path(lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ): """simple docstring""" A__ : str = get_from_cache(F"tmp://{tmpfs_file}" ) with open(lowerCAmelCase_ ) as f: A__ : Dict = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( ): """simple docstring""" with pytest.raises(lowerCAmelCase_ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ): """simple docstring""" A__ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowerCAmelCase_ ): http_get('''https://huggingface.co''' , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ): """simple docstring""" A__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowerCAmelCase_ ): ftp_get('''ftp://huggingface.co''' , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ): """simple docstring""" A__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowerCAmelCase_ ): fsspec_get('''s3://huggingface.co''' , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): fsspec_head('''s3://huggingface.co''' )
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
from manim import * class UpperCamelCase__ ( _UpperCAmelCase ): '''simple docstring''' def __snake_case ( self ): A__ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) A__ : str = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A__ : Optional[Any] = [mem.copy() for i in range(6 )] A__ : str = [mem.copy() for i in range(6 )] A__ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) A__ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) A__ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) A__ : List[Any] = Text('''CPU''' , font_size=24 ) A__ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) A__ : List[Any] = [mem.copy() for i in range(4 )] A__ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) A__ : List[str] = Text('''GPU''' , font_size=24 ) A__ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) A__ : Optional[Any] = [mem.copy() for i in range(6 )] A__ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) A__ : Dict = Text('''Model''' , font_size=24 ) A__ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) A__ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) A__ : List[str] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) A__ : List[str] = [mem.copy() for i in range(6 )] A__ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) A__ : str = Text('''Loaded Checkpoint''' , font_size=24 ) A__ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) A__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ : Union[str, Any] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) A__ : List[Any] = MarkupText( F"<span fgcolor=\'{BLUE}\'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) A__ : List[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) A__ : Optional[int] = [] A__ : List[str] = [] for i, rect in enumerate(lowercase__ ): A__ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) A__ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int | float | str , __UpperCamelCase : int | float | str ) -> Dict: """simple docstring""" if nth_term == "": return [""] A__ = int(a_ ) A__ = int(a_ ) A__ = [] for temp in range(int(a_ ) ): series.append(F"1 / {pow(temp + 1 , int(a_ ) )}" if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : int = int(input('Enter the last number (nth term) of the P-Series')) _SCREAMING_SNAKE_CASE : Optional[int] = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
from __future__ import annotations _SCREAMING_SNAKE_CASE : Any = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = graph # mapping node to its parent in resulting breadth first tree A__ : Dict = {} A__ : Tuple = source_vertex def __snake_case ( self ): A__ : Optional[int] = {self.source_vertex} A__ : str = None A__ : Dict = [self.source_vertex] # first in first out queue while queue: A__ : Optional[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase__ ) A__ : Union[str, Any] = vertex queue.append(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): if target_vertex == self.source_vertex: return self.source_vertex A__ : str = self.parent.get(UpperCamelCase__ ) if target_vertex_parent is None: A__ : Tuple = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(UpperCamelCase__ ) return self.shortest_path(UpperCamelCase__ ) + F"->{target_vertex}" if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
from math import loga def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowercase_ , lowercase_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
from __future__ import annotations _SCREAMING_SNAKE_CASE : Tuple = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = graph # mapping node to its parent in resulting breadth first tree A__ : Tuple = {} A__ : Union[str, Any] = source_vertex def __snake_case ( self ): A__ : List[Any] = {self.source_vertex} A__ : Dict = None A__ : Optional[int] = [self.source_vertex] # first in first out queue while queue: A__ : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_snake_case ) A__ : Union[str, Any] = vertex queue.append(_snake_case ) def __snake_case ( self , UpperCamelCase__ ): if target_vertex == self.source_vertex: return self.source_vertex A__ : Optional[Any] = self.parent.get(_snake_case ) if target_vertex_parent is None: A__ : List[str] = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(_snake_case ) return self.shortest_path(_snake_case ) + F"->{target_vertex}" if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> str: """simple docstring""" A__ : Dict = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) A__ : Any = MaskFormerConfig(backbone_config=__UpperCamelCase ) A__ : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok A__ : Optional[int] = 8_47 A__ : Optional[int] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok A__ : List[Any] = 1_50 A__ : Union[str, Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok A__ : Any = 1_71 A__ : Dict = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO A__ : int = 1_33 A__ : Any = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok A__ : Tuple = 19 A__ : Union[str, Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok A__ : Dict = 65 A__ : int = '''mapillary-vistas-id2label.json''' A__ : Optional[int] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Tuple = {int(__UpperCamelCase ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" A__ : Optional[int] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int ) -> str: """simple docstring""" A__ : List[Any] = dct.pop(__UpperCamelCase ) A__ : List[str] = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" A__ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ : Union[str, Any] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) A__ : Dict = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] = in_proj_weight[:dim, :] A__ : str = in_proj_bias[: dim] A__ : Optional[int] = in_proj_weight[ dim : dim * 2, : ] A__ : Any = in_proj_bias[ dim : dim * 2 ] A__ : int = in_proj_weight[ -dim :, : ] A__ : Any = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" A__ : Optional[Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ : Optional[int] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) A__ : List[str] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[: hidden_size, :] A__ : Tuple = in_proj_bias[:config.hidden_size] A__ : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] A__ : Dict = in_proj_bias[hidden_size : hidden_size * 2] A__ : Optional[int] = in_proj_weight[-hidden_size :, :] A__ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ : str = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) A__ : Tuple = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Any = in_proj_weight[: hidden_size, :] A__ : Tuple = in_proj_bias[:config.hidden_size] A__ : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] A__ : int = in_proj_bias[hidden_size : hidden_size * 2] A__ : Optional[Any] = in_proj_weight[-hidden_size :, :] A__ : Any = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] = False ) -> Optional[int]: """simple docstring""" A__ : str = get_maskformer_config(__UpperCamelCase ) # load original state_dict with open(__UpperCamelCase , '''rb''' ) as f: A__ : str = pickle.load(__UpperCamelCase ) A__ : List[str] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys A__ : Optional[Any] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_swin_q_k_v(__UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__UpperCamelCase , __UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): A__ : Tuple = torch.from_numpy(__UpperCamelCase ) # load 🤗 model A__ : Any = MaskFormerForInstanceSegmentation(__UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(__UpperCamelCase , param.shape ) A__ , A__ : Dict = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__UpperCamelCase ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results A__ : List[str] = prepare_img() if "vistas" in model_name: A__ : Any = 65 elif "cityscapes" in model_name: A__ : Dict = 6_55_35 else: A__ : Dict = 2_55 A__ : Optional[Any] = True if '''ade''' in model_name else False A__ : Optional[int] = MaskFormerImageProcessor(ignore_index=__UpperCamelCase , reduce_labels=__UpperCamelCase ) A__ : Any = image_processor(__UpperCamelCase , return_tensors='''pt''' ) A__ : Union[str, Any] = model(**__UpperCamelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": A__ : Optional[int] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple=None ) -> Union[str, Any]: """simple docstring""" A__ : List[str] = argparse.ArgumentParser(add_help=snake_case_ , allow_abbrev=snake_case_ ) # The main config parser A__ : Union[str, Any] = config_command_parser(snake_case_ ) # The subparser to add commands to A__ : str = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(snake_case_ , parents=[parent_parser] ) update_command_parser(snake_case_ , parents=[parent_parser] ) return config_parser def SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" A__ : Optional[int] = get_config_parser() A__ : Union[str, Any] = config_parser.parse_args() if not hasattr(snake_case_ , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(snake_case_ ) if __name__ == "__main__": main()
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _SCREAMING_SNAKE_CASE : List[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _SCREAMING_SNAKE_CASE : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Vector , __UpperCamelCase : Vector ) -> str: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowerCamelCase_ ) - np.asarray(lowerCamelCase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Vector , __UpperCamelCase : Vector ) -> List[Any]: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowerCamelCase_ , lowerCamelCase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
from collections import defaultdict def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : List[Any] = 1 A__ : int = True for v in tree[start]: if v not in visited: ret += dfs(__snake_case ) if ret % 2 == 0: cuts.append(__snake_case ) return ret def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" dfs(1 ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = 1_0, 9 _SCREAMING_SNAKE_CASE : Tuple = defaultdict(list) _SCREAMING_SNAKE_CASE : dict[int, bool] = {} _SCREAMING_SNAKE_CASE : list[int] = [] _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : str = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( __lowercase ): '''simple docstring''' _lowerCAmelCase = 'microsoft/speecht5_tts' _lowerCAmelCase = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) _lowerCAmelCase = 'text_reader' _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ['text'] _lowerCAmelCase = ['audio'] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=__A , return_tensors='''pt''' , truncation=__A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[str] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : List[str] = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**__A ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(__A ).cpu().detach()
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _SCREAMING_SNAKE_CASE : int = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = None A__ : int = len(__A ) A__ : Optional[int] = [any_type for _ in range(self.N )] + arr A__ : Optional[Any] = fnc self.build() def __snake_case ( self ): for p in range(self.N - 1 , 0 , -1 ): A__ : Any = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): p += self.N A__ : Tuple = v while p > 1: A__ : str = p // 2 A__ : Dict = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): # noqa: E741 A__ , A__ : Dict = l + self.N, r + self.N A__ : List[Any] = None while l <= r: if l % 2 == 1: A__ : Tuple = self.st[l] if res is None else self.fn(__A , self.st[l] ) if r % 2 == 0: A__ : Dict = self.st[r] if res is None else self.fn(__A , self.st[r] ) A__ , A__ : Optional[Any] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _SCREAMING_SNAKE_CASE : Tuple = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] _SCREAMING_SNAKE_CASE : Tuple = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } _SCREAMING_SNAKE_CASE : List[str] = SegmentTree(test_array, min) _SCREAMING_SNAKE_CASE : int = SegmentTree(test_array, max) _SCREAMING_SNAKE_CASE : Optional[Any] = SegmentTree(test_array, lambda a, b: a + b) def SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" for i in range(len(UpperCamelCase__ ) ): for j in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): A__ : str = reduce(UpperCamelCase__ , test_array[i : j + 1] ) A__ : int = reduce(UpperCamelCase__ , test_array[i : j + 1] ) A__ : str = reduce(lambda __UpperCamelCase , __UpperCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ ) assert max_range == max_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ ) assert sum_range == sum_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ ) test_all_segments() for index, value in test_updates.items(): _SCREAMING_SNAKE_CASE : int = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
_SCREAMING_SNAKE_CASE : str = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : int ) -> str: """simple docstring""" A__ : str = [False] * len(_UpperCAmelCase ) A__ : Optional[Any] = [s] A__ : int = True while queue: A__ : str = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCAmelCase ) A__ : Optional[int] = True A__ : Tuple = u return visited[t] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" A__ : Dict = [-1] * (len(_UpperCAmelCase )) A__ : Union[str, Any] = 0 A__ : Optional[Any] = [] A__ : str = [i[:] for i in graph] # Record original cut, copy. while bfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A__ : Tuple = float('''Inf''' ) A__ : Union[str, Any] = sink while s != source: # Find the minimum value in select path A__ : Dict = min(_UpperCAmelCase , graph[parent[s]][s] ) A__ : Optional[int] = parent[s] max_flow += path_flow A__ : Tuple = sink while v != source: A__ : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow A__ : Tuple = parent[v] for i in range(len(_UpperCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = 'https://openaipublic.azureedge.net/jukebox/models/' _SCREAMING_SNAKE_CASE : Dict = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Optional[Any]: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: A__ : Union[str, Any] = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: A__ : Optional[int] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: A__ : Optional[Any] = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: A__ : Dict = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: A__ : Optional[int] = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: A__ : int = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A__ : Optional[Any] = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: A__ : int = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ : str = {} import re A__ : Any = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) A__ : Union[str, Any] = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) A__ : Dict = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) A__ : Union[str, Any] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) A__ : List[Any] = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) A__ : Any = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) A__ : Tuple = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) A__ : List[str] = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) A__ : str = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__UpperCamelCase ): A__ : Optional[Any] = re_encoder_block_conv_in.match(__UpperCamelCase ) A__ : Optional[int] = regex_match.groups() A__ : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) A__ : Dict = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" A__ : Dict = re_encoder_block_conv_in.sub(__UpperCamelCase , __UpperCamelCase ) elif re_encoder_block_resnet.fullmatch(__UpperCamelCase ): A__ : str = re_encoder_block_resnet.match(__UpperCamelCase ) A__ : Tuple = regex_match.groups() A__ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) A__ : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] A__ : str = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." A__ : List[Any] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ : Tuple = prefix + resnet_block A__ : Optional[Any] = re_encoder_block_resnet.sub(__UpperCamelCase , __UpperCamelCase ) elif re_encoder_block_proj_out.fullmatch(__UpperCamelCase ): A__ : Tuple = re_encoder_block_proj_out.match(__UpperCamelCase ) A__ : Optional[Any] = regex_match.groups() A__ : Optional[int] = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" A__ : Union[str, Any] = re_encoder_block_proj_out.sub(__UpperCamelCase , __UpperCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__UpperCamelCase ): A__ : Dict = re_decoder_block_conv_out.match(__UpperCamelCase ) A__ : Union[str, Any] = regex_match.groups() A__ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ : List[str] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" A__ : str = re_decoder_block_conv_out.sub(__UpperCamelCase , __UpperCamelCase ) elif re_decoder_block_resnet.fullmatch(__UpperCamelCase ): A__ : Any = re_decoder_block_resnet.match(__UpperCamelCase ) A__ : int = regex_match.groups() A__ : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ : int = {'1': 1, '3': 2}[groups[-2]] A__ : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." A__ : Dict = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ : Union[str, Any] = prefix + resnet_block A__ : Any = re_decoder_block_resnet.sub(__UpperCamelCase , __UpperCamelCase ) elif re_decoder_block_proj_in.fullmatch(__UpperCamelCase ): A__ : int = re_decoder_block_proj_in.match(__UpperCamelCase ) A__ : Optional[Any] = regex_match.groups() A__ : Optional[int] = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" A__ : Optional[int] = re_decoder_block_proj_in.sub(__UpperCamelCase , __UpperCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__UpperCamelCase ): A__ : str = re_prior_cond_conv_out.match(__UpperCamelCase ) A__ : Optional[int] = regex_match.groups() A__ : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ : Tuple = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" A__ : Tuple = re_prior_cond_conv_out.sub(__UpperCamelCase , __UpperCamelCase ) elif re_prior_cond_resnet.fullmatch(__UpperCamelCase ): A__ : Dict = re_prior_cond_resnet.match(__UpperCamelCase ) A__ : Optional[int] = regex_match.groups() A__ : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ : Any = {'1': 1, '3': 2}[groups[-2]] A__ : Any = F"conditioner_blocks.upsampler.upsample_block.{block_index}." A__ : List[str] = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ : int = prefix + resnet_block A__ : List[str] = re_prior_cond_resnet.sub(__UpperCamelCase , __UpperCamelCase ) elif re_prior_cond_proj_in.fullmatch(__UpperCamelCase ): A__ : Optional[Any] = re_prior_cond_proj_in.match(__UpperCamelCase ) A__ : str = regex_match.groups() A__ : Optional[Any] = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" A__ : Tuple = re_prior_cond_proj_in.sub(__UpperCamelCase , __UpperCamelCase ) # keep original key else: A__ : int = original_key A__ : Optional[int] = replace_key(__UpperCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: A__ : str = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) A__ : List[str] = original_key A__ : List[Any] = original_key A__ : Union[str, Any] = value return new_dict @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str=None , __UpperCamelCase : int=None ) -> str: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): A__ : Union[str, Any] = requests.get(F"{PREFIX}{file}" , allow_redirects=__UpperCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=__UpperCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , '''wb''' ).write(r.content ) A__ : Union[str, Any] = MODEL_MAPPING[model_name.split('''/''' )[-1]] A__ : Any = JukeboxConfig.from_pretrained(__UpperCamelCase ) A__ : Optional[Any] = JukeboxModel(__UpperCamelCase ) A__ : Optional[int] = [] A__ : Union[str, Any] = {} for i, dict_name in enumerate(__UpperCamelCase ): A__ : List[Any] = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] A__ : List[Any] = {} for k in old_dic.keys(): if k.endswith('''.b''' ): A__ : Any = old_dic[k] elif k.endswith('''.w''' ): A__ : List[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A__ : str = old_dic[k] else: A__ : List[Any] = old_dic[k] A__ : Union[str, Any] = 'vqvae' if i == 0 else F"priors.{3 - i}" A__ : Any = fix_jukebox_keys(__UpperCamelCase , model.state_dict() , __UpperCamelCase , __UpperCamelCase ) weight_dict.append(__UpperCamelCase ) A__ : Any = weight_dict.pop(0 ) model.vqvae.load_state_dict(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , '''w''' ) as txtfile: json.dump(__UpperCamelCase , __UpperCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) return weight_dict if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
716
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A__ : List[str] = 0 for ch in input_str: A__ : Any = ord(_lowercase ) A__ : List[str] = pow(2 , _lowercase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
717
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
0
class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ): A__ : Optional[Any] = val A__ : Any = None A__ : Optional[Any] = None def __snake_case ( self , UpperCamelCase__ ): if self.val: if val < self.val: if self.left is None: A__ : Any = Node(_lowercase ) else: self.left.insert(_lowercase ) elif val > self.val: if self.right is None: A__ : str = Node(_lowercase ) else: self.right.insert(_lowercase ) else: A__ : Tuple = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ) -> Tuple: """simple docstring""" if root: inorder(root.left , _lowerCamelCase ) res.append(root.val ) inorder(root.right , _lowerCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" if len(_lowerCamelCase ) == 0: return arr A__ : Optional[int] = Node(arr[0] ) for i in range(1 , len(_lowerCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. A__ : Tuple = [] inorder(_lowerCamelCase , _lowerCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
718
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ : Any = HfArgumentParser(lowercase_ ) A__ : List[Any] = parser.parse_args_into_dataclasses()[0] A__ : str = TensorFlowBenchmark(args=lowercase_ ) try: A__ : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: A__ : List[Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" A__ : Tuple = """ """.join(str(lowercase_ ).split(''' ''' )[:-1] ) A__ : str = """""" A__ : Tuple = eval(str(lowercase_ ).split(''' ''' )[-1] ) A__ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: A__ : str = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ) -> int: """simple docstring""" for attribute in key.split('''.''' ): A__ : int = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: A__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: A__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": A__ : List[Any] = value elif weight_type == "weight_g": A__ : int = value elif weight_type == "weight_v": A__ : Optional[int] = value elif weight_type == "bias": A__ : Tuple = value else: A__ : Union[str, Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" A__ : Dict = [] A__ : str = fairseq_model.state_dict() A__ : Optional[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): A__ : int = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) A__ : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: A__ : str = True if "*" in mapped_key: A__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] A__ : str = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: A__ : Union[str, Any] = '''weight_g''' elif "weight_v" in name: A__ : List[str] = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: A__ : List[str] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ : Optional[int] = '''weight''' else: A__ : int = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" A__ : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] A__ : Tuple = name.split('''.''' ) A__ : int = int(items[0] ) A__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A__ : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A__ : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A__ : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A__ : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : List[str]=None ) -> str: """simple docstring""" A__ : Dict = torch.load(lowerCAmelCase__ ) A__ : Optional[Any] = WavLMConfigOrig(checkpoint['''cfg'''] ) A__ : int = WavLMOrig(lowerCAmelCase__ ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: A__ : Tuple = WavLMConfig.from_pretrained(lowerCAmelCase__ ) else: A__ : Dict = WavLMConfig() A__ : Optional[int] = WavLMModel(lowerCAmelCase__ ) recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavlm.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
720
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _SCREAMING_SNAKE_CASE : List[str] = None try: import msvcrt except ImportError: _SCREAMING_SNAKE_CASE : Optional[Any] = None try: import fcntl except ImportError: _SCREAMING_SNAKE_CASE : List[str] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _SCREAMING_SNAKE_CASE : Tuple = OSError # Data # ------------------------------------------------ _SCREAMING_SNAKE_CASE : Optional[int] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] _SCREAMING_SNAKE_CASE : List[str] = """3.0.12""" _SCREAMING_SNAKE_CASE : Tuple = None def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" global _logger A__ : Dict = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ ): A__ : List[str] = lock_file return None def __str__( self ): A__ : Any = F"The file lock '{self.lock_file}' could not be acquired." return temp class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ): A__ : Union[str, Any] = lock return None def __enter__( self ): return self.lock def __exit__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): self.lock.release() return None class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=-1 , UpperCamelCase__=None ): A__ : Any = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long A__ : Tuple = self.hash_filename_if_too_long(UpperCamelCase__ , UpperCamelCase__ ) # The path to the lock file. A__ : Any = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. A__ : Union[str, Any] = None # The default timeout value. A__ : List[str] = timeout # We use this lock primarily for the lock counter. A__ : Dict = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. A__ : List[Any] = 0 return None @property def __snake_case ( self ): return self._lock_file @property def __snake_case ( self ): return self._timeout @timeout.setter def __snake_case ( self , UpperCamelCase__ ): A__ : Optional[int] = float(UpperCamelCase__ ) return None def __snake_case ( self ): raise NotImplementedError() def __snake_case ( self ): raise NotImplementedError() @property def __snake_case ( self ): return self._lock_file_fd is not None def __snake_case ( self , UpperCamelCase__=None , UpperCamelCase__=0.0_5 ): if timeout is None: A__ : Optional[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 A__ : Any = id(self ) A__ : Optional[int] = self._lock_file A__ : str = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(UpperCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: A__ : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __snake_case ( self , UpperCamelCase__=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: A__ : Optional[int] = id(self ) A__ : str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() A__ : Dict = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): self.release() return None def __del__( self ): self.release(force=UpperCamelCase__ ) return None def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = os.path.basename(UpperCamelCase__ ) if len(UpperCamelCase__ ) > max_length and max_length > 0: A__ : List[str] = os.path.dirname(UpperCamelCase__ ) A__ : Optional[Any] = str(hash(UpperCamelCase__ ) ) A__ : str = filename[: max_length - len(UpperCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(UpperCamelCase__ , UpperCamelCase__ ) else: return path class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=-1 , UpperCamelCase__=None ): from .file_utils import relative_to_absolute_path super().__init__(UpperCamelCase__ , timeout=UpperCamelCase__ , max_filename_length=UpperCamelCase__ ) A__ : Any = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __snake_case ( self ): A__ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: A__ : Union[str, Any] = os.open(self._lock_file , UpperCamelCase__ ) except OSError: pass else: try: msvcrt.locking(UpperCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCamelCase__ ) else: A__ : Dict = fd return None def __snake_case ( self ): A__ : Optional[int] = self._lock_file_fd A__ : str = None msvcrt.locking(UpperCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=-1 , UpperCamelCase__=None ): A__ : int = os.statvfs(os.path.dirname(UpperCamelCase__ ) ).f_namemax super().__init__(UpperCamelCase__ , timeout=UpperCamelCase__ , max_filename_length=UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC A__ : List[str] = os.open(self._lock_file , UpperCamelCase__ ) try: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCamelCase__ ) else: A__ : Union[str, Any] = fd return None def __snake_case ( self ): A__ : str = self._lock_file_fd A__ : int = None fcntl.flock(UpperCamelCase__ , fcntl.LOCK_UN ) os.close(UpperCamelCase__ ) return None class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __snake_case ( self ): A__ : List[Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: A__ : Any = os.open(self._lock_file , UpperCamelCase__ ) except OSError: pass else: A__ : Optional[Any] = fd return None def __snake_case ( self ): os.close(self._lock_file_fd ) A__ : List[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _SCREAMING_SNAKE_CASE : str = None if msvcrt: _SCREAMING_SNAKE_CASE : int = WindowsFileLock elif fcntl: _SCREAMING_SNAKE_CASE : Tuple = UnixFileLock else: _SCREAMING_SNAKE_CASE : List[str] = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
import re def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" if len(re.findall('''[ATCG]''' , __UpperCamelCase ) ) != len(__UpperCamelCase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : Union[str, Any] = TypeVar('T') class UpperCamelCase__ ( Generic[T] ): _lowerCAmelCase = 42 # Cache store of keys _lowerCAmelCase = 42 # References of the keys in cache _lowerCAmelCase = 10 # Maximum capacity of cache def __init__( self , UpperCamelCase__ ): A__ : List[str] = deque() A__ : Any = set() if not n: A__ : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: A__ : str = n def __snake_case ( self , UpperCamelCase__ ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: A__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase__ ) else: self.dq_store.remove(lowercase__ ) self.dq_store.appendleft(lowercase__ ) self.key_reference.add(lowercase__ ) def __snake_case ( self ): for k in self.dq_store: print(lowercase__ ) def __repr__( self ): return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Tuple = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
701
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> list: """simple docstring""" if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence A__ : Any = gray_code_sequence_string(SCREAMING_SNAKE_CASE_ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE_ ) ): A__ : Any = int(sequence[i] , 2 ) return sequence def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> list: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] A__ : Optional[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits A__ : Optional[Any] = gray_code_sequence_string(bit_count - 1 ) A__ : Union[str, Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): A__ : Optional[Any] = '0' + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): A__ : int = '1' + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
702
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
0
from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 1_00_00_00 , __UpperCamelCase : int = 10 ): """simple docstring""" A__ : defaultdict = defaultdict(__lowercase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: A__ : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: A__ : List[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowercase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
import re def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" if len(re.findall('''[ATCG]''' , __snake_case ) ) != len(__snake_case ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } _SCREAMING_SNAKE_CASE : Optional[Any] = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } _SCREAMING_SNAKE_CASE : Optional[Any] = '''</w>''' _SCREAMING_SNAKE_CASE : Union[str, Any] = '''@@ ''' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char return pairs # Speech2Text2 has no max input length _SCREAMING_SNAKE_CASE : int = {'''facebook/s2t-wav2vec2-large-en-de''': 1_0_2_4} class UpperCamelCase__ ( __a ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase__ , UpperCamelCase__="<s>" , UpperCamelCase__="<pad>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=False , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__( unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , do_lower_case=snake_case__ , **snake_case__ , ) A__ = do_lower_case with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: A__ = json.load(snake_case__ ) A__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) A__ = None A__ = None else: with open(snake_case__ , encoding='''utf-8''' ) as merges_handle: A__ = merges_handle.read().split('''\n''' )[:-1] A__ = [tuple(merge.split()[:2] ) for merge in merges] A__ = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) A__ = {} @property def __snake_case ( self ): return len(self.decoder ) def __snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self , UpperCamelCase__ ): A__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A__ = get_pairs(snake_case__ ) if not pairs: return token while True: A__ = min(snake_case__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(snake_case__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(snake_case__ ): try: A__ = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(snake_case__ ) A__ = new_word if len(snake_case__ ) == 1: break else: A__ = get_pairs(snake_case__ ) A__ = ''' '''.join(snake_case__ ) if word == "\n " + BPE_TOKEN_MERGES: A__ = '''\n''' + BPE_TOKEN_MERGES if word.endswith(snake_case__ ): A__ = word.replace(snake_case__ , '''''' ) A__ = word.replace(''' ''' , snake_case__ ) A__ = word return word def __snake_case ( self , UpperCamelCase__ ): if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: A__ = text.lower() A__ = text.split() A__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(snake_case__ ).split(''' ''' ) ) ) return split_tokens def __snake_case ( self , UpperCamelCase__ ): return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __snake_case ( self , UpperCamelCase__ ): A__ = self.decoder.get(snake_case__ , self.unk_token ) return result def __snake_case ( self , UpperCamelCase__ ): A__ = ''' '''.join(snake_case__ ) # make sure @@ tokens are concatenated A__ = ''''''.join(string.split(snake_case__ ) ) return string def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if not os.path.isdir(snake_case__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A__ = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) A__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) A__ = token_index writer.write(''' '''.join(snake_case__ ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCamelCase__ ( ctypes.Structure ): '''simple docstring''' _lowerCAmelCase = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" if os.name == "nt": A__ : List[Any] = CursorInfo() A__ : str = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase_ , ctypes.byref(lowerCAmelCase_ ) ) A__ : Union[str, Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase_ , ctypes.byref(lowerCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" if os.name == "nt": A__ : str = CursorInfo() A__ : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCAmelCase_ , ctypes.byref(lowerCAmelCase_ ) ) A__ : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCAmelCase_ , ctypes.byref(lowerCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
706
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Tuple: """simple docstring""" A__ : Dict = XCLIPTextConfig() # derive patch size from model name A__ : Tuple = model_name.find('''patch''' ) A__ : Tuple = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) A__ : Tuple = XCLIPVisionConfig(patch_size=_snake_case , num_frames=_snake_case ) if "large" in model_name: A__ : List[Any] = 7_68 A__ : Optional[Any] = 30_72 A__ : Optional[Any] = 12 A__ : Dict = 10_24 A__ : Optional[int] = 40_96 A__ : Union[str, Any] = 16 A__ : int = 24 A__ : List[Any] = 7_68 A__ : str = 30_72 if model_name == "xclip-large-patch14-16-frames": A__ : List[str] = 3_36 A__ : List[Any] = XCLIPConfig.from_text_vision_configs(_snake_case , _snake_case ) if "large" in model_name: A__ : int = 7_68 return config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" if name == "token_embedding.weight": A__ : Any = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": A__ : int = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: A__ : Optional[int] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: A__ : Dict = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: A__ : Union[str, Any] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: A__ : Union[str, Any] = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): A__ : List[Any] = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: A__ : Dict = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: A__ : Tuple = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": A__ : List[str] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": A__ : Union[str, Any] = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): A__ : List[str] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: A__ : int = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: A__ : Union[str, Any] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: A__ : List[str] = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: A__ : List[Any] = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: A__ : Tuple = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: A__ : str = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: A__ : Any = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": A__ : Dict = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): A__ : Any = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): A__ : Optional[int] = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Any ) -> Tuple: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ : Union[str, Any] = orig_state_dict.pop(_snake_case ) if "attn.in_proj" in key: A__ : List[Any] = key.split('''.''' ) if key.startswith('''visual''' ): A__ : Union[str, Any] = key_split[3] A__ : Tuple = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: A__ : int = val[ :dim, : ] A__ : Optional[Any] = val[ dim : dim * 2, : ] A__ : Any = val[ -dim:, : ] else: A__ : Optional[int] = val[ :dim ] A__ : Dict = val[ dim : dim * 2 ] A__ : str = val[ -dim: ] else: if "weight" in key: A__ : Tuple = val[ :dim, : ] A__ : Optional[Any] = val[ dim : dim * 2, : ] A__ : List[Any] = val[ -dim:, : ] else: A__ : str = val[:dim] A__ : int = val[ dim : dim * 2 ] A__ : Optional[int] = val[-dim:] elif key.startswith('''mit''' ): A__ : int = key_split[2] A__ : Optional[int] = config.vision_config.mit_hidden_size if "weight" in key: A__ : str = val[:dim, :] A__ : Dict = val[dim : dim * 2, :] A__ : Optional[Any] = val[-dim:, :] else: A__ : int = val[:dim] A__ : List[str] = val[dim : dim * 2] A__ : Any = val[-dim:] else: A__ : Optional[Any] = key_split[2] A__ : int = config.text_config.hidden_size if "weight" in key: A__ : Any = val[:dim, :] A__ : Optional[Any] = val[ dim : dim * 2, : ] A__ : Optional[int] = val[-dim:, :] else: A__ : Dict = val[:dim] A__ : int = val[ dim : dim * 2 ] A__ : Tuple = val[-dim:] else: A__ : Any = rename_key(_snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: A__ : List[Any] = val.T A__ : Any = val return orig_state_dict def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" if num_frames == 8: A__ : List[str] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: A__ : List[str] = '''eating_spaghetti.npy''' elif num_frames == 32: A__ : Optional[Any] = '''eating_spaghetti_32_frames.npy''' A__ : Optional[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=_snake_case , repo_type='''dataset''' , ) A__ : Dict = np.load(_snake_case ) return list(_snake_case ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : int=None , __UpperCamelCase : Union[str, Any]=False ) -> Dict: """simple docstring""" A__ : Any = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } A__ : Optional[int] = model_to_url[model_name] A__ : str = 8 if "16-frames" in model_name: A__ : Any = 16 elif "shot" in model_name: A__ : Any = 32 A__ : Optional[Any] = get_xclip_config(_snake_case , _snake_case ) A__ : Union[str, Any] = XCLIPModel(_snake_case ) model.eval() if "drive" in checkpoint_url: A__ : int = '''pytorch_model.bin''' gdown.cached_download(_snake_case , _snake_case , quiet=_snake_case ) A__ : Tuple = torch.load(_snake_case , map_location='''cpu''' )['''model'''] else: A__ : Optional[Any] = torch.hub.load_state_dict_from_url(_snake_case )['''model'''] A__ : Any = convert_state_dict(_snake_case , _snake_case ) A__ : Union[str, Any] = XCLIPModel(_snake_case ) A__ , A__ : Any = model.load_state_dict(_snake_case , strict=_snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() A__ : Tuple = 3_36 if model_name == '''xclip-large-patch14-16-frames''' else 2_24 A__ : Tuple = VideoMAEImageProcessor(size=_snake_case ) A__ : str = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ : Tuple = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ : Optional[Any] = XCLIPProcessor(image_processor=_snake_case , tokenizer=_snake_case ) A__ : List[Any] = prepare_video(_snake_case ) A__ : Optional[int] = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=_snake_case , return_tensors='''pt''' , padding=_snake_case ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): A__ : List[str] = model(**_snake_case ) # Verify outputs A__ : Dict = outputs.logits_per_video A__ : Union[str, Any] = logits_per_video.softmax(dim=1 ) print('''Probs:''' , _snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": A__ : Optional[Any] = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": A__ : Dict = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": A__ : List[Any] = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": A__ : Dict = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": A__ : str = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": A__ : Union[str, Any] = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": A__ : List[Any] = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": A__ : Optional[int] = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": A__ : str = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": A__ : Union[str, Any] = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": A__ : List[str] = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": A__ : Dict = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": A__ : List[Any] = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": A__ : Dict = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": A__ : Union[str, Any] = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": A__ : str = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": A__ : Optional[int] = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": A__ : List[Any] = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_snake_case ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(_snake_case , organization='''nielsr''' ) processor.push_to_hub(_snake_case , organization='''nielsr''' ) slow_tokenizer.push_to_hub(_snake_case , organization='''nielsr''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
707
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
0
from collections import defaultdict def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> bool: """simple docstring""" A__ : Tuple = first_str.lower().strip() A__ : str = second_str.lower().strip() # Remove whitespace A__ : Optional[Any] = first_str.replace(''' ''' , '''''' ) A__ : str = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_A ) != len(_A ): return False # Default values for count should be 0 A__ : int = defaultdict(_A ) # For each character in input strings, # increment count in the corresponding for i in range(len(_A ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE : Optional[int] = input('Enter the first string ').strip() _SCREAMING_SNAKE_CASE : str = input('Enter the second string ').strip() _SCREAMING_SNAKE_CASE : Union[str, Any] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
708
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
0
# flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE : Tuple = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
709
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = {'''vocab_file''': '''vocab.txt'''} _SCREAMING_SNAKE_CASE : List[Any] = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _SCREAMING_SNAKE_CASE : str = { '''YituTech/conv-bert-base''': 5_1_2, '''YituTech/conv-bert-medium-small''': 5_1_2, '''YituTech/conv-bert-small''': 5_1_2, } _SCREAMING_SNAKE_CASE : List[Any] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class UpperCamelCase__ ( snake_case__ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ConvBertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__="[UNK]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="[PAD]" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) A__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): A__ : List[str] = getattr(_A , normalizer_state.pop('''type''' ) ) A__ : str = do_lower_case A__ : str = strip_accents A__ : Optional[Any] = tokenize_chinese_chars A__ : str = normalizer_class(**_A ) A__ : Any = do_lower_case def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : List[Any] = [self.sep_token_id] A__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
710
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) A__ : Union[str, Any] = sum(__snake_case ) / len(__snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
711
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class UpperCamelCase__ ( lowercase_ ): '''simple docstring''' _lowerCAmelCase = "luke" def __init__( self , UpperCamelCase__=5_0267 , UpperCamelCase__=50_0000 , UpperCamelCase__=768 , UpperCamelCase__=256 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , **UpperCamelCase__ , ): super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) A__ : int = vocab_size A__ : int = entity_vocab_size A__ : Optional[Any] = hidden_size A__ : Union[str, Any] = entity_emb_size A__ : Union[str, Any] = num_hidden_layers A__ : str = num_attention_heads A__ : Optional[int] = hidden_act A__ : Union[str, Any] = intermediate_size A__ : str = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : Any = initializer_range A__ : Any = layer_norm_eps A__ : str = use_entity_aware_attention A__ : List[str] = classifier_dropout
712
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCamelCase__ ( __lowerCamelCase ): '''simple docstring''' @slow @require_torch def __snake_case ( self ): A__ : Optional[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) A__ : int = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A__ : int = bertabert.config.encoder.vocab_size A__ : Union[str, Any] = tokenizer.sep_token_id A__ : Tuple = tokenizer.cls_token_id A__ : Union[str, Any] = 128 A__ : Tuple = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) A__ : Optional[Any] = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) A__ : str = train_dataset.select(range(32 ) ) A__ : int = val_dataset.select(range(16 ) ) A__ : str = 4 def _map_to_encoder_decoder_inputs(UpperCamelCase__ ): # Tokenizer will automatically set [BOS] <text> [EOS] A__ : Dict = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=UpperCamelCase_ , max_length=512 ) A__ : Optional[Any] = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=UpperCamelCase_ , max_length=128 ) A__ : Any = inputs.input_ids A__ : int = inputs.attention_mask A__ : List[str] = outputs.input_ids A__ : List[Any] = outputs.input_ids.copy() A__ : Optional[Any] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] A__ : int = outputs.attention_mask assert all(len(UpperCamelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCamelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCamelCase__ ): A__ : List[str] = pred.label_ids A__ : Tuple = pred.predictions # all unnecessary tokens are removed A__ : Tuple = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) A__ : int = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) A__ : Union[str, Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCamelCase_ ) )] ) / len(UpperCamelCase_ ) return {"accuracy": accuracy} # map train dataset A__ : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset A__ : List[Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) A__ : str = self.get_auto_remove_tmp_dir() A__ : Tuple = SeqaSeqTrainingArguments( output_dir=UpperCamelCase_ , per_device_train_batch_size=UpperCamelCase_ , per_device_eval_batch_size=UpperCamelCase_ , predict_with_generate=UpperCamelCase_ , evaluation_strategy='''steps''' , do_train=UpperCamelCase_ , do_eval=UpperCamelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A__ : Dict = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) # start training trainer.train()
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
0
from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" A__ : Any = int(lowerCamelCase__ ) assert noofclusters < len(lowerCamelCase__ ) # Find out the dimensionality A__ : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors A__ : List[str] = list(range(len(lowerCamelCase__ ) ) ) shuffle(lowerCamelCase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. A__ : List[str] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION A__ : List[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points A__ : Tuple = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowerCamelCase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values A__ : Tuple = tf.placeholder('''float64''' , [dim] ) A__ : List[str] = [] for centroid in centroids: cent_assigns.append(tf.assign(lowerCamelCase__ , lowerCamelCase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) A__ : str = [tf.Variable(0 ) for i in range(len(lowerCamelCase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value A__ : Dict = tf.placeholder('''int32''' ) A__ : List[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowerCamelCase__ , lowerCamelCase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input A__ : Tuple = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors A__ : Optional[Any] = tf.reduce_mean(lowerCamelCase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input A__ : Optional[int] = tf.placeholder('''float''' , [dim] ) A__ : int = tf.placeholder('''float''' , [dim] ) A__ : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowerCamelCase__ , lowerCamelCase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input A__ : Optional[int] = tf.placeholder('''float''' , [noofclusters] ) A__ : List[Any] = tf.argmin(lowerCamelCase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. A__ : List[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowerCamelCase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. A__ : Optional[int] = 1_00 for _ in range(lowerCamelCase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowerCamelCase__ ) ): A__ : Union[str, Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. A__ : int = [ sess.run(lowerCamelCase__ , feed_dict={va: vect, va: sess.run(lowerCamelCase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input A__ : Union[str, Any] = sess.run( lowerCamelCase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowerCamelCase__ ): # Collect all the vectors assigned to this cluster A__ : Optional[int] = [ vectors[i] for i in range(len(lowerCamelCase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location A__ : Optional[int] = sess.run( lowerCamelCase__ , feed_dict={mean_input: array(lowerCamelCase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments A__ : str = sess.run(lowerCamelCase__ ) A__ : str = sess.run(lowerCamelCase__ ) return centroids, assignments
714
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
0